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Abstract: Main-sequence stars with convective envelopes often appear larger and cooler than pre-
dicted by standard models of stellar evolution for their measured masses. This is believed to be
caused by stellar activity. In a recent study, accurate measurements were published for the K-type
components of the 1.62-day detached eclipsing binary EPIC 219511354, showing the radii and tem-
peratures for both stars to be affected by these discrepancies. This is a rare example of a system in
which the age and chemical composition are known, by virtue of being a member of the well-studied
open cluster Ruprecht 147 (age∼3 Gyr, [Fe/H] = +0.10). Here, we report a detailed study of this
system with nonstandard models incorporating magnetic inhibition of convection. We show that
these calculations are able to reproduce the observations largely within their uncertainties, providing
robust estimates of the strength of the magnetic fields on both stars: 1600± 130 G and 1830± 150 G
for the primary and secondary, respectively. Empirical estimates of the magnetic field strengths
based on the measured X-ray luminosity of the system are roughly consistent with these predictions,
supporting this mechanism as a possible explanation for the radius and temperature discrepancies.

Keywords: stellar evolution; eclipsing binaries; fundamental stellar parameters; stellar activity;
magnetic fields; open clusters

1. Introduction

The theory of stellar evolution has been one of the great success stories of 20th century
Astronomy. The ability to reproduce observed properties of stars in such basic maps of
Astronomy as the color-magnitude diagram or the mass–luminosity relation, and to predict
unobservable properties such as their ages, have propelled our knowledge and had a
significant impact on a wide array of research areas ranging from the formation of planets
and stars to the evolution of entire galaxies.

While stellar astrophysics is continually advancing, so are the observational capabil-
ities to measure fundamental properties of stars. Double-lined eclipsing binaries have
traditionally been our best source of those properties, enabling masses and radii to be
determined to a few percent in suitable cases, e.g., [1,2]. Such measurements are increas-
ingly challenging stellar evolution theory. For example, it has been known for more than
two decades that stars in the lower part of the main sequence (spectral types K and M)
are very often larger for their mass than predicted by standard evolution models, by as
much as 10%, depending on the model. This phenomenon of “radius inflation” is thought
to be connected with stellar activity, which is common in these types of objects and can
manifest itself in the form of strong magnetic fields (though these are hard to measure
directly in binaries); star spots causing photometric variability; X-ray emission; or other
spectroscopic signatures such as the lines of Hα or Ca II H and K appearing in emission.
Rapid rotation is also a common occurrence. At the same time, many of the same inflated
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stars display effective temperatures that are cooler than one would expect at their measured
mass (“temperature suppression”), although this effect has not received as much attention
because temperatures are more difficult to measure accurately.

These discrepancies are not exclusive to K and M stars. As it turns out, some active
stars near the mass of the Sun, or even slightly more massive, also display enlarged radii
and cooler temperatures than expected (see, e.g., [3–5]), as magnetic activity can occur
more generally in any star with a convective envelope. For a detailed history and further
description of the radius inflation and temperature suppression problems, we refer the
reader to the reviews by [6,7]. See also the contribution by Morales and Ribas in this
volume.

Over the last decade or so, efforts have been made to incorporate nonstandard physics
into stellar evolution models (e.g., [8–10]) in an attempt to explain changes in the global
properties of stars resulting from the actions of magnetic fields or spots associated with
activity. Both of these effects tend to inhibit the convective transport of energy, and
stars respond by expanding their surface area and reducing their surface temperature,
in qualitative agreement with the observations. Detailed studies of individual binary
systems using these nonstandard models are still relatively few in number but have shown
promising results in several cases. So far, they have focused mostly on binaries with M
dwarf components, for which radius inflation is more obvious.

A nagging difficulty in assessing the magnitude of the radius and temperature dis-
crepancies for eclipsing binaries is that both of those stellar properties depend, to some
extent, on the age and chemical composition of the system, which are generally not known
for most of the well-measured binaries. In past studies, it has often been assumed that the
metallicity is solar, for lack of a spectroscopic determination, and age choices have typically
ranged between 1 and 5 Gyr, but are essentially arbitrary. The lack of better constraints
on the age and metallicity makes it more difficult to make progress on understanding the
impact of activity, particularly in detailed investigations with nonstandard models.

Recently, Ref. [11] reported accurate masses, radii, and effective temperatures for the
K-type eclipsing binary EPIC 219511354, the subject of this paper, in which both compo-
nents were shown to be significantly larger and cooler than predicted by standard models.
This represents an ideal opportunity to study radius inflation and temperature suppression,
because both the age and metallicity are independently known from membership of the
binary in the open cluster Ruprecht 147. It presents a rare chance to test models incorporat-
ing magnetic inhibition of convection, with no free parameters other than the strength of
the magnetic fields required to match the measured stellar properties. EPIC 219511354 is
also more massive than the majority of objects subjected to this kind of study, which makes
it particularly interesting.

The organization of this paper is as follows. Section 2 summarizes the observational
properties of EPIC 219511354, as well as the constraints on the metallicity and age of
the parent cluster Ruprecht 147. Magnetic models for the components are described and
presented in Section 3, giving predictions for the average strength of the magnetic fields
on the stars. Additional models invoking the presence of spots to explain the radius
and temperature anomalies are presented here as well. We then test those predictions
in Section 4, by deriving estimates for the magnetic fields based on the X-ray emission
from the system and empirical power-law relations connecting various activity-related
properties of stars. We conclude in Section 5 with a discussion of the results along with
final remarks.

2. The Eclipsing Binary EPIC 219511354 in Ruprecht 147

EPIC 219511354 is one of five relatively bright, detached, double-lined eclipsing bina-
ries identified in the old open cluster Ruprecht 147 by [12], using photometric observations
gathered by NASA’s K2 mission in late 2015. Four of these systems have been studied
in detail in a series of papers by [11,13–15] based on the K2 light curves together with
high-resolution spectroscopic observations. EPIC 219511354 is an active 1.62-day binary
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with K-type components in a hierarchical triple system, with a near-circular inner orbit.
We refer to the binary components as stars Aa and Ab. The unseen third star (B), possibly
an M dwarf or a white dwarf, travels in an eccentric outer orbit with a period of about
220 days [11].

Evidence for activity is severalfold. The K2 light curve shows out-of-eclipse variability
with a peak-to-peak amplitude of about 6%, attributed to spots on one or, more likely,
both stars. The light curve residuals during primary and secondary eclipse show excess
scatter that is also consistent with the presence of spots being occulted by the star in
front. Both components are rapid rotators, with measured v sin i values of about 30 km s−1

each, which imply that their rotation rates are close to those expected from spin-orbit
synchronization due to tidal forces. Further evidence of activity is given by the fact that
the Hα line in the spectra is completely filled in, or slightly in emission, see [11]. Finally,
EPIC 219511354 has been detected in X-rays by the Swift mission [16]. We summarize the
properties of the components in Table 1, where we include the temperature difference, ∆Teff,
which is determined directly from the light curve to higher precision than the individual
temperatures.

Table 1. Fundamental properties of the EPIC 219511354 components [11].

Parameter Primary Star (Aa) Secondary Star (Ab)

Mass (M�) 0.912± 0.013 0.822± 0.010
Radius (R�) 0.920± 0.016 0.851± 0.016

Effective temperature (K) 5035± 150 4690± 130
Surface gravity (log g, cgs) 4.470± 0.016 4.494± 0.017
Bolometric luminosity (L�) 0.490± 0.060 0.316± 0.038

v sin i (km s−1) a 32± 3 31± 4
∆Teff (K) 345± 60

Distance (pc) b 287.4± 1.8
[Fe/H] (dex) c +0.10± 0.04

Age (Gyr) d 2.67± 0.21

a Measured projected rotational velocity. b Based on the parallax from the Gaia EDR3 catalog [17], with a zero-point
adjustment following [18]. c Metallicity of the parent cluster Ruprecht 147 [19–21], assumed to be the same for
EPIC 219511354. d Based on the PARSEC 1.2S models of [22].

The study of [11] compared the measured masses (M), radii (R), and effective tempera-
tures (Teff) of EPIC 219511354 against model isochrones from the PARSEC series [22] for the
known age and metallicity of the cluster (see below); they reported that both radii are larger
than predicted by 10–14% and both temperatures are cooler than expected by about 6%.
The radius discrepancies are highly significant given their formal uncertainties of only 1.7%
and 1.9% for the primary and secondary star, respectively. The temperature differences, on
the other hand, are only significant at the 2σ level on account of the larger uncertainties,
but are still suggestive given that both deviate in the same direction (opposite to the radii).

A key advantage of the EPIC 219511354 system for our purposes is its membership
in Ruprecht 147, whose metallicity is well-known and is slightly supersolar,
[Fe/H] = +0.10 ± 0.04; [19–21]. On the assumption that the three other eclipsing bi-
naries studied by [13–15] (EPIC 219394517, EPIC 219568666, and EPIC 219552514) all have
the same composition as the parent cluster, consistent age estimates were derived inde-
pendently for each of them based on the same PARSEC models mentioned above, giving a
weighted average of 2.67± 0.21 Gyr. This is consistent with the result of [23] from isochrone
fitting in the color-magnitude diagram of the cluster giving an age of ∼3 Gyr.

Figure 1 shows the four eclipsing binaries in Ruprecht 147 that have been studied so
far, plotted against the PARSEC models for this average age in both the mass–radius and
mass–temperature diagrams. EPIC 219511354 clearly deviates from the best-fit isochrone,
in the same direction as is often observed for other active K and M dwarfs.
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Figure 1. Comparison of measurements for four Ruprecht 147 eclipsing binaries against
model isochrones from the PARSEC 1.2S series by [22] for the measured composition of the cluster
([Fe/H] = +0.10, Z = 0.0191 in these models). EPIC 219511354 is marked in red and deviates from
the best fit. (a) Mass vs. radius diagram. Dotted lines represent isochrones from 2 to 3 Gyr in steps of
0.2 Gyr, from the bottom up. The best-fit isochrone with an age of 2.67 Gyr according to these models
is indicated with a dashed line. (b) Mass vs. effective temperature diagram, with the same isochrones
as in the previous panel.

In contrast with the clear evidence of activity in EPIC 219511354, the other three
eclipsing binaries studied previously in the cluster appear to be much less active. While
they do show distortions in their light curves that are attributed to spots, the amplitude of
those variations is only at the level 1% or less, far smaller than in the system discussed here.
Furthermore, none show spectroscopic signs of activity such as the lines of Ca II H and K
or Hα in emission, nor have they been detected as X-ray sources. EPIC 219511354 therefore
stands out as the most active of the four, consistent with it being the only one that deviates
significantly from the models shown in Figure 1.

3. Magnetic Models

With an estimated age and metallicity, EPIC 219511354 provides one of the most
stringent tests of the magnetic hypothesis—that is, the hypothesis that magnetic fields or
magnetic activity are responsible for observed radius and effective temperature discrep-
ancies between stellar evolution models and measurements of fundamental parameters
of low-mass stars in eclipsing binary systems. There are two primary mechanisms often
discussed in this context: inhibition of convection due to the presence of strong magnetic
fields [8,9], and the suppression of radiant flux due to starspots [24]. Both mechanisms
produce similar effects in stellar models, but lead to different qualitative and quantitative
predictions. We evaluate predictions from each mechanism.

3.1. Magnetic Inhibition of Convection

For testing magnetic inhibition of convection, we computed a series of stellar evolution
models for EPIC 219511354 Aa and Ab from [8,25], with fixed masses (MAa = 0.91 M�,
MAb = 0.82 M�) and metallicity ([Fe/H] = +0.10 dex). These models rely on the framework
of the Dartmouth Stellar Evolution Program [26], with additional physics to account
for perturbations from magnetic fields. For consistency, we first redetermined the age
of the cluster from a best fit to the radius and effective temperature of the turnoff star
EPIC 219552514 Aa [15] using standard (i.e., nonmagnetic) Dartmouth models, with some
updates from the original series, as described by [25]. We obtained an age of 3 Gyr. The
small difference relative to the age obtained from the PARSEC models of [22] is due to
differences in the physical ingredients of the two models.

A small grid of mass tracks for each star was then created with average surface
magnetic field strengths in the range 1200 G ≤ 〈B f 〉 ≤ 2000 G, in increments of 100 G.
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Here, B is the field strength and f is the filling factor. Models for EPIC 219511354 Aa with
〈B f 〉 ≥ 1700 G did not converge as they exceed equipartition strengths near the model
photosphere1. From these models, we constructed radius–temperature–〈B f 〉 relationships
at an age of 3 Gyr.

Standard nonmagnetic model predictions from [25] underestimate the observed radii
of EPIC 219511354 Aa and Ab by 9.5% and 12%, respectively. Effective temperatures are
overestimated by 4.5% and 3.8%, respectively. To establish the surface magnetic field in
our models required to reproduce the observed stellar properties, we calculated a χ2 value
for the primary and secondary stars independently using our derived radius–temperature–
〈B f 〉 relationships at 3 Gyr. We then found the 〈B f 〉 values that minimized the total
χ2 = χ2

radius + χ2
temp value (χ2

min) for each stellar component. Approximate uncertainties in
the model 〈B f 〉 values were determined by satisfying χ2(〈B f 〉) = χ2

min + 1.
Models with magnetic inhibition of convection predict 〈B f 〉Aa = 1500± 150 G and

〈B f 〉Ab = 1850± 150 G. Results are shown in Figure 2a,b for EPIC 219511354 Aa and Ab,
respectively. The ratio of surface magnetic field strengths is 〈B f 〉Aa/〈B f 〉Ab = 0.81± 0.10,
indicating that the secondary has the stronger field. We find that models with magnetic
inhibition of convection are able to reproduce the observed properties of EPIC 219511354 Aa
and Ab within 1σ of their formal errors (see Table 1), with the exception of the secondary’s
effective temperature. Magnetic models able to reproduce the secondary star’s radius
predict effective temperatures that are systematically too cool compared with the measured
effective temperature by 3.4% (1.2σ).

We may improve our fit to the secondary star’s effective temperature by calculating a
joint χ2 value for the two components. The total χ2 value is the sum of the χ2 values for the
individual radii, the primary star’s effective temperature, and the temperature difference
∆Teff from Table 1. This yields a slightly stronger surface magnetic field strength for the
primary star, 〈B f 〉Aa = 1600± 130 G, and a marginally weaker strength for the secondary
star, 〈B f 〉Ab = 1830± 150 G. These results are fully consistent with those from fitting the
individual components.

Our results vary little for adopted ages between about 2.5 and 3.5 Gyr. Model proper-
ties do not change appreciably over this 1-Gyr time span, and the magnetic model evolution
parallels standard model evolution. Furthermore, the results are also quite insensitive to
the adopted metallicity, provided it is within the measurement errors. This indicates that
our 〈B f 〉 values are robust. However, if the age and metallicity of EPIC 219511354 were
instead left completely free, the results could be significantly different, emphasizing the
importance of having those constraints in this case.

3.2. Starspots

Stellar models that incorporate changes to stellar properties due to the presence of
starspots were tested using SPOTS models [24,27]. The SPOTS model grid has a fixed,
solar metallicity and a fixed temperature ratio between spots and the ambient photosphere
of 0.80. However, it does allow for variations in the starspot surface coverage between
spotless and 85% [27]. We estimated the predicted surface coverage of starspots for each
component of EPIC 219511354 at an age of 3.0 Gyr.

We find that SPOTS models require a surface coverage fspot = 0.59± 0.04 and fspot ≈
0.91± 0.03 to fit the observed properties for the primary and secondary, respectively. We
were able to interpolate within the SPOTS grid to estimate the surface coverage for the
primary star but we were forced to extrapolate from the grid to estimate the surface coverage
for the secondary. It is evident that the expected surface coverage for EPIC 219511354 Ab is
fspot > 0.85, although the precise value may differ from our extrapolated estimate.
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Figure 2. Estimating the average surface magnetic field strength for EPIC 219511354 Aa (top panels)
and Ab (bottom panels). For each star, we plot the model radius and model Teff as a function of
time for standard stellar evolution models from [25] (black lines), magnetic stellar evolution models
with 〈B f 〉 in increments of 400 G (dotted lines), and best-fit magnetic stellar evolution model (dash-
dotted lines). Gray shaded regions represent the 1σ and 3σ uncertainties surrounding the measured
values. Side panels illustrate how the model radius and effective temperature change compared with
the standard model as a function of 〈B f 〉. Open symbols show the observed radius and effective
temperature deviations with the best-fit 〈B f 〉 values.

From the starspot surface coverage values, we can estimate the average surface mag-
netic field strength for the individual components. If one assumes that starspots are in
pressure equipartition with the surrounding photospheric gas, the expected temperature
ratio between starspots and photospheric gas should be approximately 80% for stars
similar to EPIC 219511354 Aa and Ab. Therefore, we can estimate that the stars are cov-
ered by a fraction fspot of equipartition-strength magnetic fields. Equipartition values are
Beq, Aa ≈ 1700 G and Beq, Ab ≈ 2000 G, based on estimates of the gas pressure at τross = 1
from MARCS model atmospheres [28]; thus, SPOTS models predict 〈B f 〉Ab ≈ 1000 G and
〈B f 〉Ab ≈ 1800 G, for a ratio 〈B f 〉Aa/〈B f 〉Ab ≈ 0.56. This ratio is formally lower than that
we obtained from the models with magnetic inhibition of convection.
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Limitations imposed by the SPOTS grid mean that we are unable to provide an accurate
constraint on the required starspot properties. In particular, the adopted temperature ratio
between starspots and the ambient photosphere is fixed at 80% in these models. A ratio
of 80% is reasonable for pressure equipartition, but this ratio could be as low as 70–75%
based on energy equipartition2. A lower ratio implies cooler spots, reducing the required
surface coverage to about 40% and 70% for Aa and Ab, respectively. As a result, the surface
coverages quoted above should be interpreted as upper limits on the actual values.

4. Empirical Estimates of the Magnetic Field Strength

The detection of EPIC 219511354 as an X-ray source by the Swift mission gives us
a means to quantify, in an approximate way, the strength of the magnetic field on each
component of the binary, if we assume that the contribution of the tertiary is negligible.
This is an important check on the predictions from the previous section based on magnetic
models. The 0.3–10 keV X-ray flux reported by [16] is FX = 3.70± 0.59× 10−13 erg s−1 cm−2.
When combined with the distance listed in Table 1, it leads to a total X-ray luminosity of
LX = 3.71± 0.57× 1030 erg s−1. To make use of this observational constraint, we proceeded
as follows.

We first appealed to a power-law relation reported by [29] (Figure 1 in that work) be-
tween the average surface magnetic field strength, 〈B f 〉, and the Rossby number,
Ro ≡ Prot/τc. Here, Prot is the rotation period and τc is the convective turnover time,
which [29] obtained from a relation by [30] as a function of Teff. The [29] relation, 〈B f 〉 ∝
Ro−1.2, has considerable scatter, so we initially applied it only in a differential sense, making
use of the slope to calculate the ratio of the magnetic field strengths. As the components
are rotating very close to their synchronous velocities, we have assumed that Prot = Porb,
leading to 〈B f 〉Aa/〈B f 〉Ab = (τc,Ab/τc,Aa)

−1.2 = 0.828± 0.035. This suggests the secondary
component has the stronger average magnetic field strength, and the ratio agrees well with
the prediction from models with magnetic inhibition of convection described above.

Next, we used a result from a study of magnetic field observations of the Sun and
active stars by [31], who showed that there is a fairly tight power-law relation LX ∝ Φp

between the X-ray luminosity and the unsigned surface magnetic flux, Φ = 4πR2〈B f 〉,
which holds over many orders of magnitude. [25] provided an update of this relation
specifically for dwarf stars, giving p ≈ 2.2. With the ratio of the radii known (Table 1),
we computed the X-ray luminosity ratio as LX,Aa/LX,Ab = 0.93± 0.14 and, with the total
luminosity derived earlier, we inferred the individual values log LX,Aa = 30.22± 0.12 and
log LX,Ab = 30.25± 0.08, with LX in the usual units of erg s−1. The relation by [31], with
updated parameters from [25], finally leads to individual estimates of the magnetic field
strengths of 〈B f 〉Aa = 1100± 150 G and 〈B f 〉Ab = 1300± 160 G.

More direct estimates of 〈B f 〉 may also be obtained via the full [29] relation and,
although they are formally consistent with those above, the results, 〈B f 〉Aa = 2000± 840 G
and 〈B f 〉Ab = 2400± 1100 G, are considerably more imprecise because of the scatter of
the [29] relation.

These approximate field strengths are in line with those of other active K dwarfs (see,
e.g., [32]) and are also consistent with an empirical relation between 〈B f 〉 and the rotational
velocity shown in Figure 21 of that paper, for the measured v sin i values of EPIC 219511354.

Both sets of estimates are roughly consistent with the values required by the magnetic
models from the previous section to match the radius and temperature measurements
for the binary components of EPIC 219511354. In particular, our most precise empirical
estimates are within about 2 or 2.5σ of the predicted values from theory.

Finally, with bolometric luminosities computed from the radii and temperatures listed
in Table 1, we may also calculate the X-ray to bolometric luminosity ratios, log(LX/Lbol)Aa =
−3.36± 0.12 and log(LX/Lbol)Ab = −3.33± 0.08, indicating that the activity in both com-
ponents is at the saturation level (see, e.g., [33]).
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5. Discussion and Final Remarks

Radius inflation and temperature suppression in convective stars are now well-established
phenomena. Mass–radius diagrams—and less often, mass–temperature diagrams—shown in
many papers on this subject are being populated by growing numbers of K and M dwarfs
in eclipsing binaries, boosted in recent years by new systems discovered in photometric
searches for transiting planets, including those from space. While the radius and tempera-
ture deviations are seen clearly from the ensemble of measurements, relatively few of the
systems with well-measured properties, i.e., mass and radius uncertainties below 3% (see,
e.g., [2]), have been subjected to detailed studies with models incorporating nonstandard
physics, in an attempt to explain those discrepancies. This would seem to be the next logical
step to understand the nature of the deviations.

Among the main-sequence binaries examined with the methodology and magnetic
models employed in this paper, five examples with components above the fully convective
boundary (corresponding to masses of about 0.30–0.35 M�) have been studied so far. They
are UV Psc, YY Gem, CU Cnc, EF Aqr, and V530 Ori [8,25,34]. Their properties can all
be adequately explained with surface magnetic field strengths 〈B f 〉 ranging from 1.3 to
4.6 kG, depending on the system, which are consistent for the most part with empirical
estimates based on X-ray emission in the cases where such observations exist. In some
systems, these predictions depend to some degree on the poorly known age and metallicity
of the binaries, among other factors. Our study of EPIC 219511354 adds another example to
this short list, with the important distinction that both age and metallicity are well-known,
which removes free parameters and makes the test of these models more demanding. We
find that the predicted strengths of the magnetic fields needed to explain the observed
radius inflation and temperature suppression are within about 40% of our most precise
empirical estimates (a 2–2.5σ difference, provided both the theoretical and observational
errors are realistic).

However, the ability of magnetic models of the same lineage as those applied here
to explain the properties of fully convective M dwarfs, including CM Dra and Kepler-
16 [35], has been less satisfactory. The predicted field strengths required to reproduce the
observations tend to be larger than is thought to be plausible for such objects, particularly
for stars with the largest deviations compared with standard models.

Several other binary systems, both above and below the fully convective boundary,
have been studied with a different prescription for incorporating the effects of magnetic
fields, e.g., [9,36,37]. Not all of these systems are eclipsing (i.e., with direct radius measure-
ments) and, in at least one case, the precision of the mass and radius measurements is rather
poor, but a general conclusion one draws is that the predicted strengths for the magnetic
fields tend to be lower than with the models used in this paper. For example, for YY Gem,
a system with partially convective components, the predicted 〈B f 〉 values from [36] are a
factor of 3–4 lower than those measured directly by [38] using Zeeman–Doppler imaging
techniques, whereas those by [25] are some 20–40% larger. For an in-depth description of
the differences between these models, see [25,39].

The results for EPIC 219511354 in this paper seem encouraging and suggest that
modeling efforts are on the right track. On the observational side, dozens of mass and radius
measurements are now available for K and M dwarf eclipsing binaries, but the quality of
the data is by no means uniform. As has been pointed out before (e.g., [6]) systematic errors
in the measurements are likely an important, if not dominant, contributor to the scatter in
the mass–radius diagram for cool main-sequence stars. In most cases, this is caused by the
ubiquitous presence of spots on these active stars, which can bias the results, particularly for
the radii (see, e.g., [40,41]). Painful evidence of these biases can be seen by comparing results
for eclipsing systems for which two or more independent studies have been made. T-Cyg1-
12664 [42–44], NSVS 07394765 [45,46], and PTFEB132.707+19.810 [47,48] are three recent
examples where significant differences in the reported component masses and/or radii are
seen among authors, who sometimes even made use of some of the same photometric or
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spectroscopic observations. Part of these disagreements could also be due to the application
of different methodologies for the analysis.

The overall scatter seen in recently published mass–radius diagrams for K and M
dwarfs leads us to believe that the utility of such diagrams for understanding the impact of
activity on the global properties of these kinds of stars has probably reached its limit. We
no longer advance our knowledge much by simply adding more objects to the diagram,
some of which may be of questionable quality. It seems more likely that more progress
can be made by focusing on individual systems with the best-measured properties, ideally
with known ages and metallicities, for which estimates can be made of the strength of the
activity either by inference from the X-ray flux, as in EPIC 219511354, or preferably from
direct measurements via Doppler tomography or other methods. This has been a main
motivation for this paper. Quantifying the activity in one of those ways is essential for
testing the predictions of magnetic models, or of models with spots. Eclipsing binaries in
open clusters, though relatively uncommon, are a promising source of constraints on such
models, as the age and metallicity may be known from the parent population, as in the case
of EPIC 219511354.
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Notes
1 We are referring specifically to pressure equipartition, which is defined as the condition that the isotropic magnetic pressure

equals the surrounding gas pressure, Pmag = B2/8π = Pgas.
2 Here, the magnetic field’s energy density is equal to the internal energy density of the gas. This permits magnetic field strengths

about ∼20% stronger than in pressure equipartition.
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