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Abstract: Effective implementation of precision medicine will be enhanced by a thorough
understanding of each patient’s genetic composition to better treat his or her presenting symptoms or
mitigate the onset of disease. This ideally includes the sequence information of a complete genome
for each individual. At Partners HealthCare Personalized Medicine, we have developed a clinical
process for whole genome sequencing (WGS) with application in both healthy individuals and those
with disease. In this manuscript, we will describe our bioinformatics strategy to efficiently process
and deliver genomic data to geneticists for clinical interpretation. We describe the handling of data
from FASTQ to the final variant list for clinical review for the final report. We will also discuss our
methodology for validating this workflow and the cost implications of running WGS.

Keywords: clinical sequencing; WGS; NGS; next generation sequencing; bioinformatics; validation;
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1. Introduction

Precision medicine is becoming an increasing focus in medical research [1]. To achieve the
resolution necessary to personalize clinical care, greater attention has been drawn towards higher
resolution of the patient genome. Next generation sequencing (NGS) provided a cost-effective method
for targeted sequencing of known disease genes at base pair resolution [2]. Moreover, the advent of
exome sequencing enabled rapid discovery of genes causing Mendelian disorders. While gene panels
and exome sequencing have proved fast and cost-effective for delivering genomic results back to
the patient, these technologies are limited by our current knowledge of the exome, which changes
over time. Additionally, the use of targeted capture may introduce biases to the data, including PCR
duplicates, depth of coverage disparities, and failures at difficult to amplify target regions [3].

Practical considerations such as sequencing costs, data processing and maintenance, and data
analysis complexities are important considerations when a laboratory is considering a new NGS
program. These issues are amplified in whole genome sequencing (WGS) due to the volume of the
data and have long been barriers to entry for clinical laboratories looking to adopt WGS. Despite the
ability of WGS to interrogate the entirety of the genome, clinical interpretation still often focuses
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on only 3% of the genome (i.e., exome data, pharmacogenomics risk variants, and single nucleotide
variants associated with complex disease risk) [4–7]. Therefore, WGS services may be overlooked
for clinical applications as they trend towards increased costs and longer turnaround times due to
a heavier computational load, increased number of variants for analysis, and larger data archives.
However, the steadily decreasing cost of sequencing and storage now allow laboratories to consider
genome sequencing. WGS, and more specifically PCR-free WGS, also decreases the need to re-sequence
each time the coding sequences of targeted regions change, novel genes are discovered, or a new
reference genome is released. The balance between cost, turnaround time, accuracy, and completeness
has to be addressed when launching a WGS program. Here, we describe the workflow we adopted
and the challenges we met supporting the bioinformatics of WGS in a clinical setting.

2. Results

2.1. Bioinformatics Validation

Our pipeline performs robustly as different entry points and different runs of the same sample
returned exactly the same variants. Using HapMap sample NA12878 and previous Sanger confirmed
regions, we identified thresholds for variants of Quality by Depth (QD) ě 4 and Fisher Strand Bias
(FS) ď 30 as providing the optimal balance of sensitivity and specificity. This sample has been well
characterized by our laboratory and also by other groups [8,9]. Of 425 total confirmed variants, all
425 variants were detected by genome sequencing for a sensitivity of 100% (95% CI: 99.1%–100%
for SNVs and 79.6%–100% for indels; Table 1a). In addition, four likely reference sequence errors,
positions where only the alternative allele has ever been identified, were correctly genotyped by
genome sequencing as homozygous for the alternative allele, three of which had incorrect genotype
calls with previous orthogonal assays. In addition to these true positive variants, calls were also made
for 21 false positive (FP) variants, including 20 substitutions and one indel (Table 1b). After filtration
of variants based on optimal QD and FS thresholds discussed, only one FP remained.

Table 1. Sensitivity and Specificity of WGS. Utilizing HapMap sample NA12878, we previously
identified and confirmed via Sanger sequencing 425 variants in 195 genes across ~700 kb of sequence.
(a) Analysis of raw variants identified 21 false positive (FP) variants within this region of NA12878.
After application of laboratory-defined thresholds (FS ď 30 and QD ě 4), this limited the number of
FP to only one with no increase in false negatives (FN). (b) All 425 Sanger confirmed variants were
identified in the WGS data above our quality thresholds. (c) Concordance with 1000 Genomes data
for variants across the genome was high, particularly for SNVs. Concordance remained high when
matching on predicted genotype.

(a) Specificity

Variant Type FP (before Thresholds) FP (after Thresholds)

SNVs 20 1
Indels 1 0

(b) Sensitivity

Variant Type # FN Sensitivity 95% Cl

SNVs 410 0 100% 99.1%–100%
Indels 15 0 100% 79.6%–100%

(c) Concordance with 1000 Genomes data

Variant
Type

1K Genomes
Variants

Present in
NGS Calls

% Present in
NGS Calls

Present in NGS Calls
with Matched

Genotypes

% Present in NGS
Calls with Matched

Genotypes

SNVs 2,762,933 2,735,592 99.01% 2,730,826 98.84%
Indels 3,27,474 299,300 91.39% 285,401 87.15%
Total 3,090,407 3,034,892 98.20% 3,016,227 97.60%
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Our genome-wide comparison of the variants detected through this pipeline compared to those
detected at a similar coverage through the 1000 Genomes Project for NA12878 confirmed similar results
(Table 1c). Out of 2.7 million SNVs and 285,000 indels detected through our pipeline, we found that
98.8% of these SNVs were also called in the 1000 Genomes dataset. In addition, 97.6% of the total
variants called were concordant for genotype. Annotation and variant filtration were also performed
on NA12878. Greater than 50 variants were randomly selected for manual inspection to ensure that
they were properly annotated and filtered.

2.2. Known Regions of Poor Coverage

All of the genomes delivered to us from Illumina’s CLIA-laboratory have at least 30X coverage,
with an average coverage of 43X. However, this coverage varies across the coding sequences of the
genome and affects both clinically relevant and clinically unknown regions of the genome. A gene-level
list of the percentage of callable bases is provided in Supplementary Table S1. In total, of the 1381 genes
with at least five asserted Pathogenic or Likely pathogenic variants by clinical laboratories in ClinVar,
94 had <90% coverage across their coding region. The 20 genes with the poorest coverage metrics
included many with high prevalence and clinical relevance (Table 2). In our clinical process, for
indication gene-list driven analyses, we report back the coverage of analyzed genes, highlighting those
with coverage issues. This provides a useful guide to determining potential false negative findings,
including those due to regions that are difficult to sequence with NGS technologies.

Table 2. Top 20 Poorly Covered Genes with Clinical Relevance. Clinical relevance is defined as having
at least five Pathogenic or Likely pathogenic variants in ClinVar reported in the gene by submitting
laboratories or working groups.

Gene # Clinically
Significant Variants % Callable Disease Disease

Prevalence

STRC 8 20 Sensorineural hearing loss Common
ADAMTSL2 5 32 Geleophysic dysplasia Rare

CYP21A2 13 44 Congenital adrenal hyperplasia Common
ARX 19 45 X-linked infantile spasm syndrome Rare

MECP2 250 53 Rett syndrome Common
GJB1 16 53 Charcot-Marie-Tooth disease Common

ABCD1 33 57 X-linked adrenoleukodystrophy Moderate
EMD 11 57 Emery-Dreifuss muscular dystrophy Moderate
G6PD 16 58 Glucose-6-phosphate dehydrogenase deficiency Common

GATA1 12 60 Dyserythropoietic anemia and thrombocytopenia Rare
AVPR2 15 62 Nephrogenic diabetes insipidus Rare
EDA 37 63 Hypohidrotic ectodermal dysplasia Moderate

SLC16A2 11 63 Allan-Herndon-Dudley syndrome Rare
FLNA 42 64 Otopalatodigital syndrome Rare
EBP 24 64 X-linked chondrodysplasia punctata Rare

RPGR 17 64 Retinitis pigmentosa Common
TAZ 17 64 Barth syndrome Rare
IDS 16 64 Hunter syndrome Moderate

FGD1 8 64 Aarskog-Scott syndrome Rare
GPR143 6 65 Ocular albinism Moderate

2.3. Cost Analysis and Scalability

The majority of our bioinformatics costs of WGS lies in data storage and not in computational
processing. As part of our clinical workflow, the FASTQ, BAM, and VCF files are periodically archived
on a replicated, secondary storage site. We also store MD5 checksums to ensure data consistency
during transfer and storage. These disks are primarily used to store data, and any access to these
files must be done after they are copied back onto a faster storage location (e.g., primary storage).
Based on the calculations of CPU time used and the lifespan of our cluster as well as the hourly costs
of a bioinformatics analyst, we estimated that it costs $77 for the computational time and $128 for
the hands-on time necessary to process a genome. However, approximately 300 GB per genome of
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storage is required to keep files containing unaligned and aligned reads as well as the final variant
calls (respective FASTQ, BAM, and VCF files). In Table 3, we estimate the annual cost of storage per
genome to be around $40–$55, depending on whether the genome is stored on a primary storage
device or a secondary (or archival) disk; the bioinformatics process and storage of a genome for one
year for our laboratory is approximately $245. Disk storage of sequencing data incurs significant cost
in addition to the sequencing and interpretive components, and depending upon laboratory needs and
policies, the availability of the data on either active or deep storage may differ. This pipeline is built on
a high performance computing (HPC) cluster, so the ability to process many genomes at a given time
is heavily dependent on the size of the cluster. With our current infrastructure, we do not run more
than 10 genomes simultaneously. The pipeline is scalable with respect to the cluster size, but we have
not explored scaling this process to simultaneously handle hundreds or thousands of genomes.

Table 3. Cost Analysis for Storage of WGS data. Primary storage assumes unreplicated, active storage
with high input/output (I/O) capacity. Secondary storage assumes replicated, deep storage with low
I/O capacity. The cost of processing a genome and data retention on the primary and secondary storage
for one year is ~$245.

Storage Type Genome/Month ($) Genome/Year ($) Genome/5 Years ($)

Primary 4.42 53.04 265.20
Secondary 3.48 41.76 208.80

Total 7.90 94.80 474.00

3. Discussion

The validated bioinformatics workflow we described above has been used to process hundreds of
genomes. We have been updating its functionality and re-validating the components of this process
multiple times since initially implementing the pipeline. The modularity of our process allows us to
repeat only the annotation, upload, and filtration processes when new or updated annotation resources
are available. Similarly, filtrations can be easily re-queried from the persistent variant data in the
Oracle database.

We have also compared the results of our NA12878 with the Genome in a Bottle Consortium
(GIAB) dataset driven by the National Institute of Standards and Technology (NIST) [9]. A similar tool
known as the Genetic Testing Reference Materials Coordination Program (GeT-RM) allows users to
query across different alignments of the same dataset to see if the variant of interest found by your
pipeline also is found by other pipelines. This dataset includes variant data generated by our laboratory.
Both of these resources are tremendously valuable in validating clinical genome sequencing.

The limitation of genome sequencing is an important consideration. Although it is often times
termed “whole genome,” it has many regions that cannot be accurately determined by current
technologies. These regions are inaccessible to current, standard clinical WGS analysis and include
regions of high homology for which reads cannot be uniquely mapped, regions where the reference
genome contains errors, regions with multiple reference haplotypes, and tandem repeats that extend
beyond the sequenced read length. These regions can overlap with clinically relevant areas and can
potentially lead to false negative results if not dealt with carefully. In Table 2, we have indicated a
subset of these that consistently have the lowest coverage in our WGS assay. Current techniques for
managing these regions include repeat-primed PCR for repeat expansion disorders, long-range PCR
for genes with homology issues, and allele-based barcoding techniques to anchor reads to unique
neighboring regions. Aligning to the GRCh38 reference genome may help for regions with multiple
reference alleles, but it is still unclear how those regions will be implemented in a clinical workflow.
Eventually the use of longer read technologies, and possibly de novo assembly, will enable more
accurate aligning and detection of variants in these difficult regions.

As genome sequencing becomes more routine, additional enhancements will continuously be
made to the process. In our laboratory, these enhancements focus on a user interface for variant
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filtration to enable live filtering for our clinical staff, identification of copy number and structural
variation from the WGS data, and upgrading the pipeline to align to the GRCh38 reference genome.
This work requires a team of bioinformaticians with a broad skillset that can interact directly with both
the clinical staff and the information technology teams. Finding this dynamic can prove to be one of
the most challenging aspects of creating a clinical genome sequencing program.

4. Methods and Materials

4.1. Bioinformatics Pipeline

The bioinformatics pipeline processes data from the hard drives delivered by Illumina Clinical
Services Laboratory (San Diego, CA, USA) to the variant report files generated for clinical interpretation
in a fairly automated fashion. As these hard drives are received, they are accessioned in the laboratory
and uploaded to our high performance computing (HPC) environment. The BAM files delivered on
the hard drives contain reads aligned by the pipeline developed at Illumina using CASAVA (or ISAAC
in recent data deliveries). These files contained both aligned and unaligned reads, so the conversion
from BAM back to FASTQ format to decouple mapping information from the read sequence does not
incur loss of sequencing information.

Data processing from the FASTQ file to the VCF file was performed primarily using the parameters
recommended by each respective software package [10–13]. Paired-end alignment of the sequencing
reads to the hg19 reference genome was performed using bwa 0.6.1-r104. The aligned reads were
sorted and PCR duplicates removed using samtools 0.1.18. Local indel realignment, base quality
recalibration, variant calling by UnifiedGenotyper, and variant recalibration were performed using
Genome Analysis ToolKit (GATK) 2.2.5 and the recommendations in the Best Practices Workflow by
the GATK development team at the Broad Institute (Cambridge, MA, USA). The entire workflow is
summarized in Figure 1. For more efficient computing, our validated process includes parallelization
by dividing files into smaller pieces for even distribution across the cluster. This method was
described in our application of this pipeline to the MedSeq Project, a randomized clinical trial
assessing the impact of genome sequencing in clinical practice [14] and to the discovery of a putative
locus causing a novel recessive syndrome presenting with skeletal malformation and malignant
lymphoproliferative disease [15]. Similar pipelines have been used successfully in other clinical labs
using NGS previously [4,6,16–18].

Successive variant annotation is accomplished through a set of scripts that independently annotate
the dataset with a wide collection of information, including: (1) transcript and gene annotations from
Alamut (Interactive Biosoftware, Rouen, France); (2) gene annotations from variant effect predictor
(VEP); (3) variant annotations from 1000 Genomes Project, ClinVar, and Exome Sequencing Project
(ESP); and (4) clinical interpretation from our laboratory maintained in GeneInsight (Cambridge, MA,
USA) [19–22]. As a clinical laboratory, we are focused on genomic regions that are known or likely to
be associated with disease. Thus, we have limited the annotation of variants called on the genome to
only those that lie in our target regions. The target region contains the RefSeq coding sequence for all
genes mapped to hg19, pharmacogenomic variants, and association or risk variants taken from the
NHGRI GWAS catalog [23]. These regions are buffered by 50 base pairs (bp). The VCF file is limited
to only this target region prior to variant annotation. Additionally, during filtration and coverage
analysis, we focus in on the regions most likely to contain clinically reportable disease causing variants.
Thus, we created clinical region of interest (ROI) files containing all coding regions of all exons for each
gene ˘15 bp or ˘2 bp for filtration and coverage, respectively.

The sample data and variant annotations are uploaded to an Oracle SQL database. The variant
filtration process was designed to query this database and return the variants of interest in an excel
spreadsheet for careful clinical review. Variant filtration has been an evolving process, and filtration
specifications vary depending on the prevalence, penetrance, and predicted mode of inheritance of
the genetic disorder. Table 4 lists some of the common filtrations used to generate the final report.
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Often, the final variant report is generated using Boolean logic to combine more than one of these
filters. The overview of the entire bioinformatics process, from alignment and variant calling to final
report generation is outlined in Figure 2.
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Figure 1. WGS Alignment and Variant Calling Pipeline. There are multiple entry points to our pipeline
where it can be re-triggered due to system failures or outside datasets. Standard processing of genome
data from the Illumina Clinical Services Laboratory starts at the top entry point. From there, FASTQ
sequences are aligned to the reference hg19 genome using the burrows-wheeler aligner (bwa). Since the
alignment is computationally intensive, we divided the sequence files into smaller files. The alignments,
known as “raw” BAM files in our pipeline, are processed through a series of steps prior to variant
calling. The “final” BAM file is the resulting file after removing PCR artifacts, local indel realignment,
and base quality recalibration. This is used as the input file to the variant caller portion of the pipeline.
Variant calling happens in two phases, where the variants are identified and then their quality scores
are recalibrated in the final VCF file.
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Table 4. Example Filtration Methods. These filters are applied using Boolean logic to produce the final
list of filtered variants in each individual.

Filter Name Parameter Description

Frequency X (e.g., 0.01 or 0.05) Keep variants that have frequencies in ESP or
1000 Genomes ď X

Loss-of-Function

Keep variants that may implicate loss of gene function,
including those annotated with the following Sequence
Ontology keywords: frameshift_variant, stop_gained,

stop_lost, splice_acceptor_variant, initiator_codon_variant,
splice_donor_variant.

Gene List Gene list (in HGNC
nomenclature)

Gene filtration is based on selecting variants that are within
particular genes. We check if a variant is annotated with a
gene symbol of interest within a clinical region of interest

Reported
Pathogenic

Select variants that are classified as Pathogenic or Likely
pathogenic in variant databases, including ClinVar

GeneInsight Select variants that are classified as Pathogenic or Likely
pathogenic in our internal GeneInsight database

Compound
Heterozygous

Select LOF and missense variants if there are at least two
alterations in the gene that may impact function of both alleles
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Figure 2. Bioinformatics Workflow. Our process is divided into four major phases. During this process,
there are three trigger points that require manual hands-on time: (1) Alignment and Variant Calling;
(2) Annotation and Upload to Oracle SQL; and (3) Variant Filtration. Segmenting these processes offer
the ability to check the data integrity throughout this process and the flexibility of utilizing parts of
these scripts for processing a non-standard clinical or research sample.

4.2. Bioinformatics Validation

The WGS dataset of NA12878 retrieved from Coriell Cell Repositories (Camden, NJ, USA) and
sequenced at Illumina was used to validate the efficacy of this pipeline. The pipeline was run twice on
the exact same dataset to test the robustness of the pipeline, proving it can consistently deliver the same
results for a given dataset. For this test, the pipeline was triggered from two different upstream entry
points, Illumina-aligned BAM files and FASTQ files, and the final variant output files of this test were
compared. Another source of validation comes from understanding the sensitivity and specificity of
the variant calling pipeline. These metrics were estimated using different standard datasets that have
assessed the genome level variation on NA12878. The variant calls were first compared to internally
generated sequencing data. NA12878 has been the validation standard of many laboratories, and
we have sequenced about 700 kb of sequence across 195 genes from our cardiomyopathy, hearing
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loss, respiratory, Noonan syndrome, and Marfan syndrome tests using a combination of orthogonal
technologies including Sanger sequencing, array-based sequencing, and targeted next-generation
sequencing [2,24,25]. Consequently, we estimated sensitivity and specificity of our WGS workflow
using only this specific region of interest. As recommended for earlier versions of GATK, we varied
the QD and FS filters for variants called to find the optimal threshold. We additionally checked
the concordance rate of our genome-level data against the variants in NA12878 reported by the
1000 Genomes Project dataset of high coverage WGS (>30ˆ average coverage) [19]. The variants were
assessed by their presence in each VCF file (variant concordance) as well as the concordance of the
genotype called for each variant (genotype concordance).

4.3. Characterization of Poorly-Covered Regions

We selected 15 genomes sequenced at Illumina Clinical Services Laboratory and processed through
our bioinformatics pipeline in FY2014 to generate a coverage list for the coding sequence of RefSeq
genes plus 2 bp of buffer to encapsulate splice sites. We customized GATK 2.2.5 to run CallableLoci
to determine the callability of every coding base pair, where “callable” is defined as a base having at
least 8X of coverage from quality reads and less than 10% of the total reads in that region have poor
mapping quality. The average of the callable base pairs for each gene across 15 genomes was calculated
for this coverage list. Our pipeline did not perform variant calling on chrMT, so mitochondrial genes
were excluded from this list.

Next, we wanted to assess the clinical relevance of the poorly covered regions identified in the
coverage list. To do so, we selected the ClinVar dataset of reported variants, a public archive of variants
and their clinical significance as contributed by the medical genetics community [26]. We selected
“Pathogenic” and “Likely pathogenic” variants interpreted by the clinical significance element in
the XML release of the ClinVar dataset (August 2015 release). ClinVar has several categorizations of
variants, and we define a unique variant as one having a unique MeasureSet ID. To identify clinically
relevant genes that are currently assayed in clinical sequencing laboratories, we focused on variants
submitted by laboratories and working groups. To do this, we removed variant classifications from
large, research-grade databases, including OMIM. MeasureSet IDs with submissions of conflicting
clinical significance, such as being reported as pathogenic by one laboratory but benign in a different
laboratory, were also excluded. However, an assertion of pathogenic in one laboratory but uncertain
significance in another laboratory would be consistent and therefore not counted as a conflicted variant.

4.4. Cost Analysis and Scalability

WGS is more computationally intensive and demanding of storage than other current sequencing
solutions. It incurs additional costs as clinical sequencing requires the data to be preserved for a set
amount of time. The computational costs were estimated by the price of purchasing the compute nodes
adjusted for the amount of CPU-hours necessary for a genome run and the lifespan of the hardware,
which is guaranteed for five years at Partners HealthCare. The hands-on time was estimated by the
price we charge per hour for bioinformatics analysis multiplied by the time necessary to successfully
trigger the pipeline, deliver the variants to the geneticists, and archive the data. We also calculated the
cost of storage based on current internal prices offered. The cluster resources used to run the genome
sequencing pipeline is shared across many bioinformatics processes. At present, we have 10 compute
nodes, each with 128 GB RAM and 16-core Intel Xeon 2.60 GHz processors running CentOS 6.5 and
IBM LSF job scheduler.

5. Conclusions

We have described the implementation of clinical WGS in our laboratory at Partners HealthCare
Personalized Medicine. Our implementation includes specialized scripts to perform: (1) alignment
and variant calling; (2) variant annotation; (3) importing data to an SQL database; and (4) variant
filtration. Each of these components has been clinically validated and can be updated independently
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of each other. WGS has been shown to reliably identify genetic variants, but the main challenge
remains in clinical interpretation of those variants. This is particularly true for the vast majority of
non-protein-coding variants, which are largely omitted in whole exome sequencing. With a larger
public knowledgebase on non-coding regions, such as ENCODE data and GWAS signals, we can begin
to create filtrations that include larger portions of the non-coding regions as they start to have utility in
the clinical setting, ultimately enabling the full utility of complete genome sequencing.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/2075-4426/6/1/
12/s1.
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