Application of Treatment Response Biomarkers from Major Depression to Perinatal Depression
Abstract
1. Introduction
2. Materials and Methods
3. Review
3.1. Brain-Derived Neurotrophic Factor (BDNF)
3.1.1. BDNF and MDD
3.1.2. BDNF in Perinatal Depression
3.2. S100 Calcium-Protein B (S100B)
3.2.1. S100B in MDD
3.2.2. S100B in Perinatal Depression
3.3. Electroencephalography (EEG)
3.3.1. EEG in MDD
3.3.2. EEG in Perinatal Depression
3.4. Event-Related Potentials (ERPs)
3.4.1. ERPs in MDD
3.4.2. ERP in Perinatal Depression
3.5. Metabolomics
3.5.1. Metabolomics in MDD
3.5.2. Metabolomics in Perinatal Depression
3.6. Hypothalamic–Pituitary–Adrenal (HPA) Axis
3.6.1. The HPA Axis and MDD
3.6.2. The HPA Axis and Perinatal Depression
3.7. Neuroimaging Markers
3.7.1. Neuroimaging Markers in MDD
3.7.2. Neuroimaging Markers in Perinatal Depression
3.8. Inflammatory Markers
3.8.1. Inflammatory Markers in MDD
3.8.2. Inflammatory Markers in Perinatal Depression
3.9. Neuroactive Steroids
3.9.1. Allopregnanolone (ALLO) and Perinatal Depression
3.9.2. ALLO in MDD
3.9.3. DHEA and DHEA-S in MDD
3.9.4. DHEA and DHEA-S in Perinatal Depression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MDD | Major depressive disorder |
| TMS | Transcranial magnetic stimulation |
| rTMS | Repetitive transcranial magnetic stimulation |
| ECT | Electroconvulsive therapy |
| BDNF | Brain-derived neurotrophic factor |
| VNS | Vagal nerve stimulation |
| SSRI | Selective serotonin reuptake inhibitor |
| HAM-D | Hamilton Depression Rating Scale |
| S100B | S100 calcium-binding protein B |
| FFA | Frontal alpha asymmetry |
| EEG | Electroencephalography |
| SNRI | Serotonin Norepinephrine Reuptake Inhibitor |
| ERP | Event-related Potentials |
| LDAEP | Loudness Dependence of Auditory Evoked Potentials |
| HPA | Hypothalamic–pituitary–adrenal |
| CRH | Corticotropin-releasing hormone |
| ACTH | Adrenocorticotropic hormone |
| fMRI | Functional magnetic resonance imaging |
| ACC | Anterior cingulate cortex |
| mOFC | Medial orbitofrontal cortex |
References
- Gelaye, B.; Rondon, M.B.; Araya, R.; Williams, M.A. Epidemiology of maternal depression, risk factors, and child outcomes in low-income and middle-income countries. Lancet Psychiatry 2016, 3, 973–982. [Google Scholar] [CrossRef]
- Lindahl, V.; Pearson, J.L.; Colpe, L. Prevalence of suicidality during pregnancy and the postpartum. Arch. Women’s Ment. Health 2005, 8, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, Y.; Zhang, Z.; Yan, W. Antenatal depressive symptoms and the risk of preeclampsia or operative deliveries: A meta-analysis. PLoS ONE 2015, 10, e0119018. [Google Scholar] [CrossRef]
- Dadi, A.F.; Akalu, T.Y.; Wolde, H.F.; Baraki, A.G. Effect of perinatal depression on birth and infant health outcomes: A systematic review and meta-analysis of observational studies from Africa. Arch. Public Health 2022, 80, 34. [Google Scholar] [CrossRef] [PubMed]
- Pawlby, S.; Hay, D.F.; Sharp, D.; Waters, C.S.; O’Keane, V. Antenatal depression predicts depression in adolescent offspring: Prospective longitudinal community-based study. J. Affect. Disord. 2009, 113, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Pawlby, S.; Plant, D.T.; King, D.; Pariante, C.M.; Knapp, M. Perinatal depression and child development: Exploring the economic consequences from a South London cohort. Psychol. Med. 2015, 45, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Al-Abri, K.; Edge, D.; Armitage, C.J. Prevalence and correlates of perinatal depression. Soc. Psychiatry Psychiatr. Epidemiol. 2023, 58, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.C.; Chawla, D.; Johansen Taber, K.; Payne, J.L.; Del Tredici, A.L. Real-world pharmacotherapy treatment patterns among patients diagnosed with postpartum depression in the United States. BMC Psychiatry 2025, 25, 572. [Google Scholar] [CrossRef]
- Viktorin, A.; Meltzer-Brody, S.; Kuja-Halkola, R.; Sullivan, P.F.; Landén, M.; Lichtenstein, P.; Magnusson, P.K. Heritability of perinatal depression and genetic overlap with nonperinatal depression. Am. J. Psychiatry 2016, 173, 158–165. [Google Scholar] [CrossRef]
- O’Brien, S.; Sethi, A.; Gudbrandsen, M.; Lennuyeux-Comnene, L.; Murphy, D.G.M.; Craig, M.C. Is postnatal depression a distinct subtype of major depressive disorder? An exploratory study. Arch. Women’s Ment. Health 2021, 24, 329–333. [Google Scholar] [CrossRef]
- Wenzel, E.S.; Frye, R.; Roberson-Nay, R.; Payne, J.L. The neurobiology of postpartum depression. Trends Neurosci. 2025, 48, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Waqas, A.; Nadeem, M.; Rahman, A. Exploring heterogeneity in perinatal depression: A comprehensive review. BMC Psychiatry 2023, 23, 643. [Google Scholar] [CrossRef]
- Rogers, A.; Obst, S.; Teague, S.J.; Rossen, L.; Spry, E.A.; Macdonald, J.A.; Sunderland, M.; Olsson, C.A.; Youssef, G.; Hutchinson, D. Association between maternal perinatal depression and anxiety and child and adolescent development: A meta-analysis. JAMA Pediatr. 2020, 174, 1082–1092. [Google Scholar] [CrossRef] [PubMed]
- Cox, E.Q.; Sowa, N.A.; Meltzer-Brody, S.E.; Gaynes, B.N. The perinatal depression treatment cascade: Baby steps toward improving outcomes. J. Clin. Psychiatry 2016, 77, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, D.; Moretti, F.; Bartoccetti, A.; Mauro, S.; Crocamo, C.; Carrà, G.; Bartoli, F. The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: Insight from meta-analyses. Neurosci. Biobehav. Rev. 2023, 149, 105159. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Duman, R.; Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biol. Psychiatry 2008, 64, 527–532. [Google Scholar] [CrossRef]
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic and quantitative meta-analysis. J. Affect. Disord. 2015, 174, 432–440. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Lopes, M.; Fregni, F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol. 2008, 11, 1169–1180. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Baeken, C.; Machado-Vieira, R.; Gattaz, W.F.; Vanderhasselt, M.A. BDNF blood levels after non-invasive brain stimulation interventions in major depressive disorder: A systematic review and meta-analysis. World J. Biol. Psychiatry 2015, 16, 114–122. [Google Scholar] [CrossRef]
- Haile, C.N.; Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Foulkes, A.; Iqbal, S.; Mahoney, J.J., 3rd; De La Garza, R., 2nd; Charney, D.S.; et al. Plasma brain-derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int. J. Neuropsychopharmacol. 2014, 17, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Meshkat, S.; Alnefeesi, Y.; Jawad, M.Y.; Di Vincenzo, J.D.; Rodrigues, N.B.; Ceban, F.; Lui, L.M.W.; McIntyre, R.S.; Rosenblat, J.D. Brain-derived neurotrophic factor (BDNF) as a biomarker of treatment response in patients with treatment-resistant depression (TRD): A systematic review and meta-analysis. Psychiatry Res. 2022, 317, 114857. [Google Scholar] [CrossRef]
- Pelosof, R.; Santos, L.A.; Farhat, L.C.; Gattaz, W.F.; Talib, L.; Brunoni, A.R. BDNF blood levels after electroconvulsive therapy in patients with mood disorders: An updated systematic review and meta-analysis. World J. Biol. Psychiatry 2022, 24, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zou, Z.; Xiao, J.; Min, W.; Nan, L.P.; Yuan, C.; Yuan, L.; Yang, C.; Huang, R.; He, Y. Brain-derived neurotrophic factor blood levels after electroconvulsive therapy in patients with mental disorders: A systematic review and meta-analysis. Gen. Hosp. Psychiatry 2023, 83, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Mandolini, G.M.; Lazzaretti, M.; Delvecchio, G.; Bressi, C.; Soares, J.C.; Brambilla, P. Association between serum BDNF levels and maternal perinatal depression: A review. J. Affect. Disord. 2020, 261, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Pawluski, J.L.; Brain, U.; Hammond, G.L.; Oberlander, T.F. Selective serotonin reuptake inhibitor effects on neural biomarkers of perinatal depression. Arch. Women’s Ment. Health 2019, 22, 431–435. [Google Scholar] [CrossRef]
- Zhou, Y.; Bai, Z.; Zhang, W.; Xu, S.; Feng, Y.; Li, Q.; Li, L.; Ping, A.; Chen, L.; Wang, S.; et al. Effect of dexmedetomidine on postpartum depression in women with prenatal depression: A randomized clinical trial. JAMA Netw. Open 2024, 7, e2353252. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, T.; Bargiel, W.; Grabarczyk, M.; Skibinska, M. Peripheral S100B protein levels in five major psychiatric disorders: A systematic review. Brain Sci. 2023, 13, 1334. [Google Scholar] [CrossRef] [PubMed]
- Tural, U.; Irvin, M.K.; Iosifescu, D.V. Correlation between S100B and severity of depression in MDD: A meta-analysis. World J. Biol. Psychiatry 2022, 23, 456–463. [Google Scholar] [CrossRef]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.S.; Kim, H.; Lim, S.W.; Jang, K.W.; Kim, D.K. Serum S100B levels and major depressive disorder: Its characteristics and role in antidepressant response. Psychiatry Investig. 2008, 5, 193–198. [Google Scholar] [CrossRef]
- Arolt, V.; Peters, M.; Erfurth, A.; Wiesmann, M.; Missler, U.; Rudolf, S.; Kirchner, H.; Rothermundt, M. S100B and response to treatment in major depression: A pilot study. Eur. Neuropsychopharmacol. 2003, 13, 235–239. [Google Scholar] [CrossRef]
- Ambrée, O.; Bergink, V.; Grosse, L.; Alferink, J.; Drexhage, H.A.; Rothermundt, M.; Arolt, V.; Birkenhäger, T.K. S100B serum levels predict treatment response in patients with melancholic depression. Int. J. Neuropsychopharmacol. 2015, 19, pyv103. [Google Scholar] [CrossRef]
- Navinés, R.; Oriolo, G.; Horrillo, I.; Cavero, M.; Aouizerate, B.; Schaefer, M.; Capuron, L.; Meana, J.J.; Martin-Santos, R. High S100B levels predict antidepressant response in patients with major depression even when considering inflammatory and metabolic markers. Int. J. Neuropsychopharmacol. 2022, 25, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Carlier, A.; Boers, K.; Veerhuis, R.; Bouckaert, F.; Sienaert, P.; Eikelenboom, P.; Vandenbulcke, M.; Stek, M.L.; van Exel, E.; Dols, A.; et al. S100 calcium-binding protein B in older patients with depression treated with electroconvulsive therapy. Psychoneuroendocrinology 2019, 110, 104414. [Google Scholar] [CrossRef] [PubMed]
- Gbyl, K.; Jørgensen, N.R.; Videbech, P. Serum S100B protein after electroconvulsive therapy in patients with depression. Acta Neuropsychiatr. 2022, 34, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Veldman, E.R.; Tiger, M.; Ekman, C.J.; Lundberg, J.; Svenningsson, P. Plasma levels of brain-derived neurotrophic factor and S100B in relation to antidepressant response to ketamine. Front. Neurosci. 2021, 15, 698633. [Google Scholar] [CrossRef] [PubMed]
- Elboga, G.; Demir, B.; Gonultas, U.; Kocamer Sahin, S.; Surme, I.; Altindag, A.; Taysi, S. The effect of repetitive transcranial magnetic stimulation and pharmacotherapy on serum protein S100B in treatment-resistant depression. Psychiatr. Danub. 2023, 35, 500–507. [Google Scholar] [CrossRef]
- Ozkan, B.N.; Bozali, K.; Boylu, M.E.; Velioglu, H.A.; Aktas, S.; Kirpinar, I.; Guler, E.M. Altered blood parameters in major depression patients receiving repetitive transcranial magnetic stimulation therapy: A randomized case-control study. Transl. Psychiatry 2024, 14, 264. [Google Scholar] [CrossRef]
- van der Vinne, N.; Vollebregt, M.A.; van Putten, M.J.A.M.; Arns, M. Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. Neuroimage Clin. 2017, 16, 79–87. [Google Scholar] [CrossRef]
- Horato, N.; Quagliato, L.A.; Nardi, A.E. The relationship between emotional regulation and hemispheric lateralization in depression: A systematic review and meta-analysis. Transl. Psychiatry 2022, 12, 162. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, M.; Fan, X. Meta-analysis of resting frontal alpha asymmetry as a biomarker of depression. npj Ment. Health Res. 2025, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Bruder, G.; Hegerl, U.; Spooner, C.; Palmer, D.M.; Etkin, A.; Fallahpour, K.; Gatt, J.M.; Hirshberg, L.; Gordon, E. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clin. Neurophysiol. 2016, 127, 509–519. [Google Scholar] [CrossRef]
- Strafella, R.; Chen, R.; Rajji, T.K.; Blumberger, D.M.; Voineskos, D. Resting and TMS-EEG markers of treatment response in major depressive disorder: A systematic review. Front. Hum. Neurosci. 2022, 16, 940759. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, D.A.; Webb, C.A.; Dillon, D.G.; Tenke, C.E.; Kayser, J.; Goer, F.; Fava, M.; McGrath, P.; Weissman, M.; Parsey, R.; et al. Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression: A randomized clinical trial. JAMA Psychiatry 2018, 75, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.X.; Qin, P.P.; Xia, A.W.L.; Kan, R.L.D.; Zhang, B.B.B.; Tang, A.H.P.; Li, A.S.M.; Lin, T.T.Z.; Giron, C.G.; Pei, J.J.; et al. Neurophysiological and neuroimaging markers of repetitive transcranial magnetic stimulation treatment response in major depressive disorder: A systematic review and meta-analysis of predictive modeling studies. Neurosci. Biobehav. Rev. 2024, 162, 105695. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Spronk, D.; Fitzgerald, P.B. Potential differential effects of 9 Hz rTMS and 10 Hz rTMS in the treatment of depression. Brain Stimul. 2010, 3, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Drinkenburg, W.H.; Fitzgerald, P.B.; Kenemans, J.L. Neurophysiological predictors of non-response to rTMS in depression. Brain Stimul. 2012, 5, 569–576. [Google Scholar] [CrossRef]
- Krepel, N.; Sack, A.T.; Kenemans, J.L.; Fitzgerald, P.B.; Drinkenburg, W.H.; Arns, M. Non-replication of neurophysiological predictors of non-response to rTMS in depression and neurophysiological data-sharing proposal. Brain Stimul. 2018, 11, 639–641. [Google Scholar] [CrossRef]
- Petrosino, N.J.; Zandvakili, A.; Carpenter, L.L.; Philip, N.S. Pilot testing of peak alpha frequency stability during repetitive transcranial magnetic stimulation. Front. Psychiatry 2018, 9, 605. [Google Scholar] [CrossRef]
- Roelofs, C.L.; Krepel, N.; Corlier, J.; Carpenter, L.L.; Fitzgerald, P.B.; Daskalakis, Z.J.; Tendolkar, I.; Wilson, A.; Downar, J.; Bailey, N.W.; et al. Individual alpha frequency proximity associated with repetitive transcranial magnetic stimulation outcome: An independent replication study from the ICON-DB consortium. Clin. Neurophysiol. 2021, 132, 643–649. [Google Scholar] [CrossRef]
- Arns, M.; Cerquera, A.; Gutiérrez, R.M.; Hasselman, F.; Freund, J.A. Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clin. Neurophysiol. 2014, 125, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Corlier, J.; Carpenter, L.L.; Wilson, A.C.; Tirrell, E.; Gobin, A.P.; Kavanaugh, B.; Leuchter, A.F. The relationship between individual alpha peak frequency and clinical outcome with repetitive transcranial magnetic stimulation treatment of major depressive disorder. Brain Stimul. 2019, 12, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Gordon, E.; Boutros, N.N. EEG abnormalities are associated with poorer depressive symptom outcomes with escitalopram and venlafaxine-XR, but not sertraline: Results from the multicenter randomized iSPOT-D study. Clin. EEG Neurosci. 2017, 48, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Voetterl, H.T.S.; Sack, A.T.; Olbrich, S.; Stuiver, S.; Rouwhorst, R.; Prentice, A.; Pizzagalli, D.A.L.; van der Vinne, N.; van Waarde, J.A.; Brunovsky, M.; et al. Alpha peak frequency-based Brainmarker-I as a method to stratify to pharmacotherapy and brain stimulation treatments in depression. Nat. Ment. Health 2023, 1, 1023–1032. [Google Scholar] [CrossRef]
- Voetterl, H.; Alyagon, U.; Middleton, V.J.; Downar, J.; Zangen, A.; Sack, A.T.; van Dijk, H.; Halloran, A.; Donachie, N.; Arns, M. Does 18 Hz deep TMS benefit a different subgroup of depressed patients relative to 10 Hz rTMS? The role of the individual alpha frequency. Eur. Neuropsychopharmacol. 2024, 89, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Widge, A.S.; Bilge, M.T.; Montana, R.; Chang, W.; Rodriguez, C.I.; Deckersbach, T.; Carpenter, L.L.; Kalin, N.H.; Nemeroff, C.B. Electroencephalographic biomarkers for treatment response prediction in major depressive illness: A meta-analysis. Am. J. Psychiatry 2019, 176, 44–56. [Google Scholar] [CrossRef]
- Watts, D.; Pulice, R.F.; Reilly, J.; Brunoni, A.R.; Kapczinski, F.; Passos, I.C. Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis. Transl. Psychiatry 2022, 12, 332. [Google Scholar] [CrossRef]
- Peng, Y.; Lv, B.; Yang, Q.; Peng, Y.; Jiang, L.; He, M.; Yao, D.; Xu, W.; Li, F.; Xu, P. Evaluating the depression state during perinatal period by non-invasive scalp EEG. Cereb. Cortex 2024, 34, bhae034. [Google Scholar] [CrossRef]
- Peng, Y.; Lv, B.; Liu, F.; Li, Y.; Peng, Y.; Wang, G.; Jiang, L.; Chen, B.; Xu, W.; Yao, D.; et al. Unveiling perinatal depression: A dual-network EEG analysis for diagnosis and severity assessment. Brain Res. Bull. 2024, 217, 111088. [Google Scholar] [CrossRef]
- Santopetro, N.J.; Thompson, B.; Garron, A.; Keith, L.; Brush, C.J.; Schmidt, B.; Hajcak, G. Systematic review and meta-analysis: Impact of unipolar depression on P300 amplitude and latency. Neurosci. Biobehav. Rev. 2025, 175, 106230. [Google Scholar] [CrossRef]
- Vandoolaeghe, E.; van Hunsel, F.; Nuyten, D.; Maes, M. Auditory event-related potentials in major depression: Prolonged P300 latency and increased P200 amplitude. J. Affect. Disord. 1998, 48, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Karaaslan, F.; Gonul, A.S.; Oguz, A.; Erdinc, E.; Esel, E. P300 changes in major depressive disorders with and without psychotic features. J. Affect. Disord. 2003, 73, 283–287. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, D.; He, X.; Peng, X.; Hu, J.; Ma, L.; Liu, X.; Tao, W.; Chen, R.; Jiang, Z.; et al. Changes in P300 amplitude to negative emotional stimuli correlate with treatment responsiveness to sertraline in adolescents with depression. Brain Res. 2024, 1845, 149272. [Google Scholar] [CrossRef] [PubMed]
- Santopetro, N.J.; Luby, J.L.; Barch, D.M.; Luking, K.R.; Hennefield, L.; Gilbert, K.E.; Whalen, D.J.; Hajcak, G. Association between early childhood P300 deficits and risk for preadolescence depressive disorder mediated by responsiveness to PCIT-ED treatment. Res. Child Adolesc. Psychopathol. 2025, 53, 877–890. [Google Scholar] [CrossRef]
- O’Neill, B.V.; Croft, R.J.; Nathan, P.J. The loudness dependence of the auditory evoked potential (LDAEP) as an in vivo biomarker of central serotonergic function in humans: Rationale, evaluation and review of findings. Hum. Psychopharmacol. 2008, 23, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Kim, Y.; Lee, S.H. Does the loudness dependence of auditory evoked potential predict response to selective serotonin reuptake inhibitors? A meta-analysis. Clin. Psychopharmacol. Neurosci. 2021, 19, 254–261. [Google Scholar] [CrossRef]
- Ip, C.T.; Ganz, M.; Ozenne, B.; Olbrich, S.; Beliveau, V.; Dam, V.H.; Köhler-Forsberg, K.; Jørgensen, M.B.; Frøkjær, V.G.; Knudsen, G.M. Association between the loudness dependence of auditory evoked potential, serotonergic neurotransmission and treatment outcome in patients with depression. Eur. Neuropsychopharmacol. 2023, 70, 32–44. [Google Scholar] [CrossRef]
- Juckel, G.; Pogarell, O.; Augustin, H.; Mulert, C.; Müller-Siecheneder, F.; Frodl, T.; Mavrogiorgou, P.; Hegerl, U. Differential prediction of first clinical response to serotonergic and noradrenergic antidepressants using the loudness dependence of auditory evoked potentials in patients with major depressive disorder. J. Clin. Psychiatry 2007, 68, 1206–1212. [Google Scholar] [CrossRef]
- Linka, T.; Müller, B.W.; Bender, S.; Sartory, G.; Gastpar, M. The intensity dependence of auditory evoked ERP components predicts responsiveness to reboxetine treatment in major depression. Pharmacopsychiatry 2005, 38, 139–143. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; Boyle, S.H.; Matson, W.; Sharma, S.; Matson, S.; Zhu, H.; Bogdanov, M.B.; Churchill, E.; Krishnan, R.R.; Rush, A.J.; et al. Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: A proof of concept. Transl. Psychiatry 2011, 1, e26. [Google Scholar] [CrossRef]
- Zhu, H.; Bogdanov, M.B.; Boyle, S.H.; Matson, W.; Sharma, S.; Matson, S.; Churchill, E.; Fiehn, O.; Rush, J.A.; Krishnan, R.R.; et al. Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder: Possible role for methoxyindole pathway. PLoS ONE 2013, 8, e68283. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Ahmed, A.T.; Arnold, M.; Liu, D.; Luo, C.; Zhu, H.; Mahmoudiandehkordi, S.; Neavin, D.; Louie, G.; Dunlop, B.W.; et al. Metabolomic signature of exposure and response to citalopram/escitalopram in depressed outpatients. Transl. Psychiatry 2019, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Erabi, H.; Okada, G.; Shibasaki, C.; Setoyama, D.; Kang, D.; Takamura, M.; Yoshino, A.; Fuchikami, M.; Kurata, A.; Kato, T.A.; et al. Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Sci. Rep. 2020, 10, 16822. [Google Scholar] [CrossRef] [PubMed]
- Rotroff, D.M.; Corum, D.G.; Motsinger-Reif, A.; Fiehn, O.; Bottrel, N.; Drevets, W.C.; Singh, J.; Salvadore, G.; Kaddurah-Daouk, R. Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: New mechanistic insights for rapid acting antidepressants. Transl. Psychiatry 2016, 6, e894. [Google Scholar] [CrossRef] [PubMed]
- Konjevod, M.; Gredicak, M.; Vuic, B.; Tudor, L.; Nikolac Perkovic, M.; Milos, T.; Svob Strac, D.; Pivac, N.; Nedic Erjavec, G. Overview of metabolomic aspects in postpartum depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 127, 110836. [Google Scholar] [CrossRef]
- Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med. 2011, 73, 114–126. [Google Scholar] [CrossRef]
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef]
- Nemeroff, C.B.; Widerlöv, E.; Bissette, G.; Walléus, H.; Karlsson, I.; Eklund, K.; Kilts, C.D.; Loosen, P.T.; Vale, W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984, 226, 1342–1344. [Google Scholar] [CrossRef] [PubMed]
- Nandam, L.S.; Brazel, M.; Zhou, M.; Jhaveri, D.J. Cortisol and major depressive disorder: Translating findings from humans to animal models and back. Front. Psychiatry 2020, 10, 974. [Google Scholar] [CrossRef] [PubMed]
- Jain, F.A.; Connolly, C.G.; Reus, V.I.; Meyerhoff, D.J.; Yang, T.T.; Mellon, S.H.; Mackin, S.; Hough, C.M.; Morford, A.; Wolkowitz, O.M. Cortisol, moderated by age, is associated with antidepressant treatment outcome and memory improvement in major depressive disorder: A retrospective analysis. Psychoneuroendocrinology 2019, 109, 104386. [Google Scholar] [CrossRef]
- McKay, M.S.; Zakzanis, K.K. The impact of treatment on HPA axis activity in unipolar major depression. J. Psychiatr. Res. 2010, 44, 183–192. [Google Scholar] [CrossRef]
- Fischer, S.; Macare, C.; Cleare, A.J. Hypothalamic-pituitary-adrenal axis functioning as predictor of antidepressant response: A meta-analysis. Neurosci. Biobehav. Rev. 2017, 83, 200–211. [Google Scholar] [CrossRef]
- Hergovich, N.; Singer, E.; Agneter, E.; Eichler, H.G.; Graselli, U.; Simhandl, C.; Jilma, B. Comparison of the effects of ketamine and memantine on prolactin and cortisol release in men: A randomized, double-blind, placebo-controlled trial. Neuropsychopharmacology 2001, 24, 590–593. [Google Scholar] [CrossRef]
- Georgiou, P.; Farmer, C.A.; Medeiros, G.C.; Yuan, P.; Johnston, J.; Kadriu, B.; Gould, T.D.; Zarate, C.A. Associations between hypothalamic-pituitary-adrenal axis hormone levels, major depression features, and antidepressant effects of ketamine. J. Affect. Disord. 2025, 373, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Perrin, A.J.; Pariante, C.M. Endocrine and immune effects of non-convulsive neurostimulation in depression: A systematic review. Brain Behav. Immun. 2020, 87, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Lewis, A.J.; Galbally, M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: A systematic literature review. BMC Pregnancy Childbirth 2016, 16, 124. [Google Scholar] [CrossRef]
- Orta, O.R.; Gelaye, B.; Bain, P.A.; Williams, M.A. The association between maternal cortisol and depression during pregnancy: A systematic review. Arch. Women’s Ment. Health 2018, 21, 43–53. [Google Scholar] [CrossRef]
- Fu, C.H.; Steiner, H.; Costafreda, S.G. Predictive neural biomarkers of clinical response in depression: A meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol. Dis. 2013, 52, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, D.A. Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology 2011, 36, 183–206. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Taib, S.; Arbus, C.; Péran, P.; Sauvaget, A.; Schmitt, L.; Yrondi, A. Neuroimaging biomarkers at baseline predict electroconvulsive therapy overall clinical response in depression: A systematic review. J. ECT 2019, 35, 77–83. [Google Scholar] [CrossRef]
- Porta-Casteràs, D.; Cano, M.; Camprodon, J.A.; Loo, C.; Palao, D.; Soriano-Mas, C.; Cardoner, N. A multimetric systematic review of fMRI findings in patients with major depressive disorder receiving ECT. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 108, 110178. [Google Scholar] [CrossRef]
- Graham, J.; Salimi-Khorshidi, G.; Hagan, C.; Walsh, N.; Goodyer, I.; Lennox, B.; Suckling, J. Meta-analytic evidence for neuroimaging models of depression: State or trait? J. Affect. Disord. 2013, 151, 423–431. [Google Scholar] [CrossRef]
- Mao, Y.; Fan, L.; Feng, C.; Dai, Z. Predicting responses of neuromodulation and psychotherapies for major depressive disorder: A coordinate-based meta-analysis of functional magnetic resonance imaging studies. Neurosci. Biobehav. Rev. 2025, 172, 106120. [Google Scholar] [CrossRef] [PubMed]
- Weigand, A.; Gärtner, M.; Scheidegger, M.; Wyss, P.O.; Henning, A.; Seifritz, E.; Stippl, A.; Herrera-Melendez, A.; Bajbouj, M.; Aust, S.; et al. Predicting antidepressant effects of ketamine: The role of the pregenual anterior cingulate cortex as a multimodal neuroimaging biomarker. Int. J. Neuropsychopharmacol. 2022, 25, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, M.M.; Leaver, A.M.; Espinoza, R.T.; Joshi, S.H.; Njau, S.N.; Woods, R.P.; Narr, K.L. Structural connectivity and response to ketamine therapy in major depression: A preliminary study. J. Affect. Disord. 2016, 190, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, C.G.; Averill, L.A.; Collins, K.A.; Geha, P.; Schwartz, J.; Averill, C.; DeWilde, K.E.; Wong, E.; Anticevic, A.; Tang, C.Y.; et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology 2017, 42, 1210–1219. [Google Scholar] [CrossRef]
- Stippl, A.; Scheidegger, M.; Aust, S.; Herrera, A.; Bajbouj, M.; Gärtner, M.; Grimm, S. Ketamine specifically reduces cognitive symptoms in depressed patients: An investigation of associated neural activation patterns. J. Psychiatr. Res. 2021, 136, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, J.R.A.; Sahib, A.K.; Vasavada, M.; Leaver, A.; Kubicki, A.; Wade, B.; Joshi, S.; Hellemann, G.; Congdon, E.; Woods, R.P.; et al. Ketamine’s modulation of cerebro-cerebellar circuitry during response inhibition in major depression. NeuroImage Clin. 2021, 32, 102792. [Google Scholar] [CrossRef] [PubMed]
- Dutton, M.; Boyes, A.; Can, A.T.; Mohamed, A.Z.; Hajishafiee, M.; Shan, Z.Y.; Lagopoulos, J.; Hermens, D.F. Hippocampal subfield volumes predict treatment response to oral ketamine in people with suicidality. J. Psychiatr. Res. 2024, 169, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; He, L.; Li, Z.; Ding, R.; Han, X.; Chen, B.; Cao, G.; Ye, J.H.; Li, T.; Fu, R. Bridging neurobiological insights and clinical biomarkers in postpartum depression: A narrative review. Int. J. Mol. Sci. 2024, 25, 8835. [Google Scholar] [CrossRef]
- Liu, J.J.; Wei, Y.B.; Strawbridge, R.; Bao, Y.; Chang, S.; Shi, L.; Que, J.; Gadad, B.S.; Trivedi, M.H.; Kelsoe, J.R.; et al. Peripheral cytokine levels and response to antidepressant treatment in depression: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, A.; Callegari, C.; Lucca, G.; Bellini, A.; Caselli, I.; Ielmini, M. Inflammatory biomarker and response to antidepressant in major depressive disorder: A systematic review and meta-analysis. Psychopharmacol. Bull. 2022, 52, 36–52. [Google Scholar] [CrossRef]
- Hannestad, J.; DellaGioia, N.; Bloch, M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis. Neuropsychopharmacology 2011, 36, 2452–2459. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Liu, L.; Qiao, D.; Baldwin, D.S.; Hou, R. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav. Immun. 2019, 79, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Więdłocha, M.; Marcinowicz, P.; Krupa, R.; Janoska-Jaździk, M.; Janus, M.; Dębowska, W.; Mosiołek, A.; Waszkiewicz, N.; Szulc, A. Effect of antidepressant treatment on peripheral inflammation markers: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Dellink, A.; Vanderhaegen, G.; Coppens, V.; Ryan, K.M.; McLoughlin, D.M.; Kruse, J.; van Exel, E.; van Diermen, L.; Belge, J.B.; Aarsland, T.I.M.; et al. Inflammatory markers associated with electroconvulsive therapy response in patients with depression: A meta-analysis. Neurosci. Biobehav. Rev. 2025, 170, 106060. [Google Scholar] [CrossRef]
- Medeiros, G.C.; Gould, T.D.; Prueitt, W.L.; Nanavati, J.; Grunebaum, M.F.; Farber, N.B.; Singh, B.; Selvaraj, S.; Machado-Vieira, R.; Achtyes, E.D.; et al. Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis. Mol. Psychiatry 2022, 27, 3658–3669. [Google Scholar] [CrossRef]
- Chou, P.H.; Lu, M.K.; Tsai, C.H.; Hsieh, W.T.; Lai, H.C.; Shityakov, S.; Su, K.P. Antidepressant efficacy and immune effects of bilateral theta burst stimulation monotherapy in major depression: A randomized, double-blind, sham-controlled study. Brain Behav. Immun. 2020, 88, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Osborne, L.M.; Monk, C. Perinatal depression—The fourth inflammatory morbidity of pregnancy? Theory and literature review. Psychoneuroendocrinology 2013, 38, 1929–1952. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.S.; Grobman, W.A.; Culhane, J.; Adam, E.; Buss, C.; Entringer, S.; Miller, G.; Wadhwa, P.D.; Keenan-Devlin, L.; Borders, A. Antenatal depression, psychotropic medication use, and inflammation among pregnant women. Arch. Women’s Ment. Health 2018, 21, 785–790. [Google Scholar] [CrossRef]
- Latendresse, G.; Ruiz, R.J.; Wong, B. Psychological distress and SSRI use predict variation in inflammatory cytokines during pregnancy. Open J. Obstet. Gynecol. 2013, 3, 184–191. [Google Scholar] [CrossRef]
- Bloch, M.; Schmidt, P.J.; Danaceau, M.; Murphy, J.; Nieman, L.; Rubinow, D.R. Effects of gonadal steroids in women with a history of postpartum depression. Am. J. Psychiatry 2000, 157, 924–930. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; Osborne, L.M.; Sundström-Poromaa, I.; Wenzel, E.S.; Payne, J.L.; Barbui, C.; Gastaldon, C.; Deligiannidis, K.M. Peripartum allopregnanolone blood concentrations and depressive symptoms: A systematic review and individual participant data meta-analysis. Mol. Psychiatry 2025, 30, 1148–1160. [Google Scholar] [CrossRef]
- Kanes, S.; Colquhoun, H.; Gunduz-Bruce, H.; Raines, S.; Arnold, R.; Schacterle, A.; Doherty, J.; Epperson, C.N.; Deligiannidis, K.M.; Riesenberg, R.; et al. Brexanolone (SAGE-547 injection) in postpartum depression: A randomized controlled trial. Lancet 2017, 390, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; et al. Brexanolone injection in postpartum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 2018, 392, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, E.S.; Pinna, G.; Eisenlohr-Moul, T.; Bernabe, B.P.; Tallon, R.R.; Nagelli, U.; Davis, J.; Maki, P.M. Neuroactive steroids and depression in early pregnancy. Psychoneuroendocrinology 2021, 134, 105424. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J.; Mody, I. GABA(A)R plasticity during pregnancy: Relevance to postpartum depression. Neuron 2008, 59, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Pinna, G.; Agis-Balboa, R.C.; Zhubi, A.; Matsumoto, K.; Grayson, D.R.; Costa, E.; Guidotti, A. Imidazenil and diazepam increase locomotor activity in mice exposed to protracted social isolation. Proc. Natl. Acad. Sci. USA 2006, 103, 4275–4280. [Google Scholar] [CrossRef] [PubMed]
- Locci, A.; Pinna, G. Neurosteroid biosynthesis down-regulation and changes in GABAA receptor subunit composition: A biomarker axis in stress-induced cognitive and emotional impairment. Br. J. Pharmacol. 2017, 174, 3226–3241. [Google Scholar] [CrossRef]
- Griffiths, J.; Lovick, T. Withdrawal from progesterone increases expression of α4, β1, and δ GABA(A) receptor subunits in neurons in the periaqueductal gray matter in female Wistar rats. J. Comp. Neurol. 2005, 486, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J.L.; Stell, B.M.; Rafizadeh, M.; Mody, I. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat. Neurosci. 2005, 8, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Concas, A.; Mostallino, M.C.; Porcu, P.; Follesa, P.; Barbaccia, M.L.; Trabucchi, M.; Purdy, R.H.; Grisenti, P.; Biggio, G. Role of brain allopregnanolone in the plasticity of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc. Natl. Acad. Sci. USA 1998, 95, 13284–13289. [Google Scholar] [CrossRef]
- Uzunova, V.; Sheline, Y.; Davis, J.M.; Rasmusson, A.; Uzunov, D.P.; Costa, E.; Guidotti, A. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc. Natl. Acad. Sci. USA 1998, 95, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Romeo, E.; Ströhle, A.; Spalletta, G.; di Michele, F.; Hermann, B.; Holsboer, F.; Pasini, A.; Rupprecht, R. Effects of antidepressant treatment on neuroactive steroids in major depression. Am. J. Psychiatry 1998, 155, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Hardoy, M.C.; Serra, M.; Carta, M.G.; Contu, P.; Pisu, M.G.; Biggio, G. Increased neuroactive steroid concentrations in women with bipolar disorder or major depressive disorder. J. Clin. Psychopharmacol. 2006, 26, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Boylu, M.E.; Turan, Ş.; Güler, E.M.; Boylu, F.B.; Kılıç, Ö.; Koçyiğit, A.; Kırpınar, İ. Changes in neuroactive steroids, neurotrophins, and immunological biomarkers after monotherapy 8-week rTMS treatment and their relationship with neurocognitive functions in depression. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 849–865. [Google Scholar] [CrossRef]
- Clayton, A.H.; Lasser, R.; Parikh, S.V.; Iosifescu, D.V.; Jung, J.; Kotecha, M.; Forrestal, F.; Jonas, J.; Kanes, S.J.; Doherty, J. Zuranolone for the treatment of adults with major depressive disorder: A randomized, placebo-controlled phase 3 trial. Am. J. Psychiatry 2023, 180, 676–684. [Google Scholar] [CrossRef]
- Clayton, A.H.; Lasser, R.; Nandy, I.; Sankoh, A.J.; Jonas, J.; Kanes, S.J. Zuranolone in major depressive disorder: Results from MOUNTAIN—A phase 3, multicenter, double-blind, randomized, placebo-controlled trial. J. Clin. Psychiatry 2023, 84, 22m14445. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, S.Y.; Liu, F.; Zhang, Y.L.; Zhu, D.M.; Zang, Y.Y. Clinical significance of decreased protein expression of dehydroepiandrosterone sulfate in the development of depression: A meta-analysis. J. Affect. Disord. 2015, 174, 416–423. [Google Scholar] [CrossRef]
- Zhu, G.; Yin, Y.; Xiao, C.L.; Mao, R.J.; Shi, B.H.; Jie, Y.; Wang, Z.W. Serum DHEAS levels are associated with the development of depression. Psychiatry Res. 2015, 229, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Amiel Castro, R.T.; Ehlert, U.; Fischer, S. Variation in genes and hormones of the hypothalamic-pituitary-ovarian axis in female mood disorders: A systematic review and meta-analysis. Front. Neuroendocrinol. 2021, 62, 100929. [Google Scholar] [CrossRef]
- Agorastos, A.; Heinig, A.; Sommer, A.; Wiedemann, K.; Demiralay, C. Morning salivary dehydroepiandrosterone (DHEA) qualifies as the only neuroendocrine biomarker separating depressed patients with and without prior history of depression: An HPA axis challenge study. J. Psychiatr. Res. 2023, 161, 449–454. [Google Scholar] [CrossRef]
- Fabian, T.J.; Dew, M.A.; Pollock, B.G.; Reynolds, C.F.; Mulsant, B.H.; Butters, M.A.; Zmuda, M.D.; Linares, A.M.; Trottini, M.; Kroboth, P.D. Endogenous concentrations of DHEA and DHEA-S decrease with remission of depression in older adults. Biol. Psychiatry 2001, 50, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.C. Difference in pre- and post-treatment plasma DHEA levels were significantly and positively correlated with difference in pre- and post-treatment Hamilton depression scores following successful therapy for major depression. Psychoneuroendocrinology 2006, 31, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Hough, C.M.; Lindqvist, D.; Epel, E.S.; Denis, M.S.; Reus, V.I.; Bersani, F.S.; Rosser, R.; Mahan, L.; Burke, H.M.; Wolkowitz, O.M.; et al. Higher serum DHEA concentrations before and after SSRI treatment are associated with remission of major depression. Psychoneuroendocrinology 2017, 77, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Markopoulou, K.; Papadopoulos, A.; Juruena, M.F.; Poon, L.; Pariante, C.M.; Cleare, A.J. The ratio of cortisol/DHEA in treatment-resistant depression. Psychoneuroendocrinology 2009, 34, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, C.; José Grande, A.; Gomes Carrilho, C.; Nardi, A.E.; Cardoso, A.; Barciela Veras, A. Dehydroepiandrosterone for depressive symptoms: A systematic review and meta-analysis of randomized controlled trials. J. Neurosci. Res. 2020, 98, 2510–2528. [Google Scholar] [CrossRef] [PubMed]
- Apter-Levy, Y.; Zagoory-Sharon, O.; Feldman, R. Chronic depression alters mothers’ DHEA and DHEA-to-cortisol ratio: Implications for maternal behavior and child outcomes. Front. Psychiatry 2020, 11, 728. [Google Scholar] [CrossRef]
- Lommatzsch, M.; Hornych, K.; Zingler, C.; Schuff-Werner, P.; Höppner, J.; Virchow, J.C. Maternal serum concentrations of BDNF and depression in the perinatal period. Psychoneuroendocrinology 2006, 31, 388–394. [Google Scholar] [CrossRef]
- Jahangard, L.; Mikoteit, T.; Bahiraei, S.; Zamanibonab, M.; Haghighi, M.; Sadeghi Bahmani, D.; Brand, S. Prenatal and postnatal hair steroid levels predict postpartum depression 12 weeks after delivery. J. Clin. Med. 2019, 8, 1290. [Google Scholar] [CrossRef]
| Domain | Biomarker | Direction of Change in MDD Responders | Strength of Evidence | Evidence in Perinatal Depression |
|---|---|---|---|---|
| Neurotrophic Factors | BDNF | Increased levels after treatment | Strong in antidepressants. Limited in neuromodulation and ketamine | No studies on treatment response. Two studies linked treatment to increased BDNF. |
| S100B | Higher baseline levels | Strong in antidepressants. Limited evidence against in ketamine. | No studies on treatment response. A study linked SSRI use to increased S100B. | |
| EEG | FAA | Left-sided | Limited in antidepressants | No studies found. |
| Theta band density | Elevated baseline levels in rostral ACC and mOFC | Strong in antidepressants | No studies found. | |
| Theta cordance | Decreased after treatment | Strong in antidepressants Moderate in TMS | No studies found. | |
| iAPF | Mid to fast frequency for TMS, slow frequency for sertraline and ECT | Moderate in TMS, sertraline, and ECT | No studies found. | |
| ERP | P300 | Reduced amplitude and increased latency | Moderate in antidepressants | No studies found. |
| LDAEP | Higher baseline | Moderate in SSRIs | No studies found. | |
| Metabolomics | Altered metabolic signatures | Preliminary for SSRIs | No studies on treatment response. Altered metabolites in postpartum depression. | |
| HPA Axis | Cortisol | No consistent relationship | Strong evidence against in antidepressants, ketamine, or neuromodulation | No studies on treatment response. Inconsistent data on cortisol association. |
| ACTH | No consistent relationship | Strong evidence against in antidepressants, ketamine, or neuromodulation | No studies found. | |
| Neuroimaging | MRI | Strongest association for increased baseline activity in ACC | Strong in antidepressants and neuromodulation. | No studies found in treatment response. Implicated alterations in the ACC and other areas. |
| Inflammatory Markers | CRP | Decreased baseline levels | Strong in antidepressants and ECT | Limited evidence against |
| TNF-α | Decreased levels after treatment | Strong in antidepressants | Limited evidence for decreased levels in responders | |
| IL-8 | Decreased baseline IL-8 | Strong in antidepressants | Limited evidence against | |
| IL-6 | Decreased levels after treatment | Limited in antidepressants Strong evidence for ECT | Limited evidence against | |
| IL-4 | Decreased levels after treatment | Limited in antidepressants | No studies found. | |
| IL-10 | Decreased levels after treatment | Limited in antidepressants | No studies found. A study linked SSRI use is to lower IL-10. | |
| IL-1β | Decreased levels after treatment | Limited in antidepressants | No studies found. A study linked SSRI use to lower IL-1β. | |
| Neuroactive steroids | ALLO | Increased levels after treatment with antidepressants | Moderate in antidepressants. However, zuranolone trials with mixed results. | Strong evidence for decreases in ALLO signaling. |
| DHEA/ DHEA-S | Decreased levels after treatment | Limited in antidepressants | No studies found in treatment response. Mixed on association with perinatal depression. | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwok, W.; Wagner-Schuman, M.; Eisenlohr-Moul, T.; Hage, B. Application of Treatment Response Biomarkers from Major Depression to Perinatal Depression. J. Pers. Med. 2025, 15, 607. https://doi.org/10.3390/jpm15120607
Kwok W, Wagner-Schuman M, Eisenlohr-Moul T, Hage B. Application of Treatment Response Biomarkers from Major Depression to Perinatal Depression. Journal of Personalized Medicine. 2025; 15(12):607. https://doi.org/10.3390/jpm15120607
Chicago/Turabian StyleKwok, Wan, Melissa Wagner-Schuman, Tory Eisenlohr-Moul, and Brandon Hage. 2025. "Application of Treatment Response Biomarkers from Major Depression to Perinatal Depression" Journal of Personalized Medicine 15, no. 12: 607. https://doi.org/10.3390/jpm15120607
APA StyleKwok, W., Wagner-Schuman, M., Eisenlohr-Moul, T., & Hage, B. (2025). Application of Treatment Response Biomarkers from Major Depression to Perinatal Depression. Journal of Personalized Medicine, 15(12), 607. https://doi.org/10.3390/jpm15120607

