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Abstract: The identification of the genetic causes of inherited disorders from next-generation sequenc-
ing (NGS) data remains a complicated process, in particular due to challenges in interpretation of
the vast amount of generated data and hundreds of candidate variants identified. Inconsistencies in
variant classification, where genetic centers classify the same variant differently, can hinder accurate
diagnoses for rare diseases. Publicly available databases that collect data on human genetic variations
and their association with diseases provide ample opportunities to discover conflicts in variant
interpretation worldwide. In this study, we explored patterns of variant classification discrepancies
using data from ClinVar, a public archive of variant interpretations. We found that 5.7% of variants
have conflicting interpretations (COls) reported, and the vast majority of interpretation conflicts
arise for variants of uncertain significance (VUS). As many as 78% of clinically relevant genes harbor
variants with COIs, and genes with high COI rates tended to have more exons and longer transcripts,
with a greater proportion of genes linked to several distinct conditions. The enrichment analysis
of COlI-enriched genes revealed that the products of these genes are involved in cardiac disorders,
muscle development, and function. To improve diagnoses, we believe that specific variant interpreta-
tion rules could be developed for such genes. Additionally, our findings underscore the need for the
publication of variant pathogenicity evidence and the importance of considering every variant as
VUS unless proven otherwise.

Keywords: genetic variants; variant interpretation; conflicting interpretations of pathogenicity;
ClinVar

1. Introduction

The utilization of data from next-generation sequencing (NGS) has revolutionized
medical genetics and genomics. With the increasing adoption of whole exome sequencing
(WES) and whole genome sequencing (WGS), new challenges have been raised due to the
fact that the large volume of data generated by NGS can be overwhelming. Due to the
necessity of sifting through this vast amount of information to identify the specific variants
truly responsible for a patient’s unique clinical presentation, bioinformatic analysis and in-
terpretation have emerged as critical steps for accurate diagnosis. To streamline the variant
interpretation process, the American College of Medical Genetics and Genomics (ACMG)
has developed a standardized classification system. This classification categorizes genetic
variants into five classes based on the strength of evidence supporting their association
with diseases. These classes include pathogenic (P) (disease-causing), likely pathogenic
(LP), variant of uncertain significance (VUS), likely benign (LB), and benign (B) [1]. The
bioinformatic analysis of NGS data in medical genetics focuses on the comprehensive
identification of the vast number of genetic variants present in each individual. Variant
detection is followed by complex filtering and prioritization of the variants to identify the
genuine cause of rare diseases. Prioritization is commonly done through the integration
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of variant features like the type, allele frequency (AF), and predicted consequence with
the patient’s phenotype so as to identify the variants that most likely to contribute to the
disease [2].

Despite the positive impact of the standardized ACMG classification framework
and the development of sophisticated bioinformatic tools, significant challenges persist
in interpreting genetic test results. One major obstacle lies in the limited number of
patients with rare diseases. This makes it difficult to definitively classify and confirm
the pathogenicity of rare variants, hindering our ability to identify mutations that could
be targeted for therapeutic development [3]. Furthermore, the rapid adoption of NGS
in clinical settings has outpaced our understanding of the relationships between genetic
variations and specific phenotypes. This knowledge gap complicates pinpointing causal
variants and contributes to the accumulation of VUSs. Additionally, discrepancies in variant
classification arise between different laboratories and even between genetic laboratories
and clinicians [4,5].

Biological factors contributing to a discordance of variant interpretations might include
complex relationships between genotype and phenotype. Some genetic variants may not
always cause disease (termed as low penetrance), and the severity of symptoms can vary
greatly even among individuals with the same variant (termed as variable expressivity).
Certain genetic diseases may not present symptoms until later in life or age of onset might
vary, making it difficult to definitively link a variant to a specific clinical picture. A single ge-
netic variant can sometimes lead to a wide range of phenotypes (a phenomenon termed phe-
notypic heterogeneity), further provoking different clinical interpretations of a single vari-
ant. The AF of disease-causing alleles might vary between different regions. For instance,
cystic fibrosis (CF, OMIM #219700) is an autosomal recessive monogenic disorder caused by
mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) for which a
significant diversity of pathogenic variants was found in patients of different ancestry [6-9].
Furthermore, studies have revealed ancestry-specific CF-causing variants. Notably, the
F508del mutation, responsible for approximately 90% of CF cases in European popula-
tions, exhibits lower prevalence in other ancestries. In East Asians, for example, V520F
is the most common variant, while G970D is particularly prevalent within the Chinese
population [9,10]. These findings emphasize the critical role of collecting ethnicity-specific
data and incorporating ancestry when interpreting genetic variants.

Technical limitations inherent to WES/WGS can contribute to variant classification in-
consistencies. While WES/WGS has become widely used, the laboratory procedures remain
complex and sensitive. The lack of fully standardized protocols can lead to inconsistencies,
particularly in capturing challenging regions of the exome. These difficult-to-sequence
regions, encompassing around 400 kbp for WGS and 1 Mbp for the best WES, include
areas with low mappability due to features like pseudogenes, tandem repeats, and ho-
mopolymers [11,12]. The performance of variant callers and their sensitivity to adapter
trimming can influence variant discovery [13]. Variant prioritization as a final step of bioin-
formatic analysis might also impact diagnosis through different prioritization strategies like
phenotype-driven and network-driven approaches [14,15]. Some custom features might
be implemented for variant scoring, such as local AF collection, and reports of solved
cases available within the genetic center only. These can influence the WES/WGS clinical
interpretation and contribute to discrepancies in variant classification. These discrepancies
can have significant downstream consequences. Confusion may arise for both patients
and healthcare providers, potentially leading to misinterpretations of genetic variants. For
example, misinterpreting a variant associated with hereditary long QT syndrome could
lead to unnecessary defibrillator implantation. This procedure, while potentially life-saving
in some cases, can also have significant side effects [16,17].

A deeper understanding of the common factors that contribute to inconsistencies in
clinical variant classifications is crucial for establishing greater confidence and standard-
ization in clinical variant classifications. Publicly available databases, which aggregate
and curate genetic variant information from various sources, are an excellent tool for this
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purpose. In our study we leverage a publicly available variant classification dataset from
the NCBI ClinVar [18] resource to identify patterns and trends that contribute to genetic
variant classification discrepancies. The analysis is aimed to identify both genetic variants
and gene properties that are typical for cases of variant classification discordance.

2. Materials and Methods
2.1. Genetic Variant Data

ClinVar variant classification data were obtained from ClinVar VCF files between April
2018 and April 2024 (https:/ /ftp.ncbinlm.nih.gov/pub/clinvar/) (accessed on 15 April
2024). The period was chosen according to the ClinVar website, which states that, before
2018, any discrepancy within the five ACMG/AMP pathogenicity terms was considered a
conflict. Since 2018, conflicts are reported only for specific classifications (B/LB vs. VUS vs.
P/LP). These changes could significantly impact our analysis. Furthermore, ClinVar did not
provide data on the proportions of interpretations for variants with conflicting pathogenic-
ity assessments prior to 2018. We further restricted the dataset to those genes annotated
as having a robust association with rare diseases reported in OMIM (https://omim.org/).
To assess the dynamic of conflicting interpretations of pathogenicity (COls), records were
subsequently filtered to include only those that were annotated with the status of COIs at
least once up to April 2024 (a “conflicting_interpretations_of_pathogenicity” value of the
CLNSIG field was used to retrieve the variants). An initial clinical interpretation (i.e., the
last interpretation before conflict emerged) was ascertained based on the CLNSIG field for
each variant for the latest ClinVar release before the emergence of COls. Heterogeneity of
interpretations was assesed by collecting and parsing all submitted classifications reported
in the CLNSIGCONF column. ClinVar VCF files were annotated using Ensembl Variant
Effect Predictor (VEP) to obtain information on variants’ predicted consequence severity
(IMPACT rating) and AF from the gnomAD genomes dataset [19].

2.2. Analysis of Genes for Enrichment of Genetic Variants with COls

A high frequency of conflicting interpretations for variants in a particular gene indi-
cates the presence of systematic errors in the ascertainment of variant-disease associations.
Hence, the identification of genes in which the frequency of COls is significantly higher
compared to an average gene in the genome is a task of pivotal importance. To assess
whether a gene has a statistically significant enrichment of genetic variants with COIs com-
pared to the average number of such variants found across the genome, a hyper-geometric
p-value (P (X = k) ~Hypergeometric(N, K, n)) was computed for each gene. The total number
of variants in a set of clinically relevant genes (as defined above) was taken as the universe
size N, with K representing the total number of COI variants. Then, the total number of
ClinVar records in each gene was taken as a sample size (1), and k corresponded to the
number of COI variants in this gene. To control the type I error of multiple comparisons,
the Benjamini-Hochberg false discovery rate (FDR) p-value adjustment was used. Biologi-
cal functions and phenotypic characteristics shared by genes with many associated COI
records were analyzed using the Gene Ontology (GO) gene set dataset from clusterProfiler
4.12.0 package for R v. 4.3.1 (https:/ /r-project.org) [20] and the msigdbr package v.7.5.1
for acquiring Human Phenotype Ontology (HPO) gene set dataset from the Molecular
Signatures Database (MSigDB) for Homo sapiens [21].

To analyze the power of the enrichment testing, we calculated the expected p-value for
all combinations of the total number of variants (1, between 1 and 1000) and the percentages
of variants with COls (between 0 and 50). As shown in Figure S7, the method is expected
to detect a significant enrichment for a modest (>15%) percentage of COI variants when
the total number of variants in a gene exceeds 250 (a condition that is met for the majority
of genes tested). For genes with 1000 variants or above, a COI rate of more than 10% is
sufficient to be considered significant.
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2.3. Analysis of Functional Properties of Genes Bearing COI Variants

To investigate the evolutionary constraint of genes, we utilized Loss-of-function Ob-
served /Expected Upper Fraction (LOEUF) scores retrieved from the gene-level summary
statistics provided by the Genome Aggregation Database (gnomAD) (https://gnomad.
broadinstitute.org/downloads#v2-constraint) (accessed on 17 April 2024) [22]. These scores
were pre-ranked and subsequently categorized into ten bins (deciles), with 0 representing
the most depleted in protein-truncating variants (pLoF) and thus the most evolutionarily
constrained genes, and 9 signifying no pLoF depletion and hence minimal constraint.

For genes reported in ClinVar, we obtained a canonical transcript and its length
including UTR regions from Ensembl BioMart (ensembl.org/biomart/martview/) [23]. The
number of exons annotated for each canonical transcript was counted based on GENCODE
v. 45 genome annotation (https://gencodegenes.org/human/release_45.html) (accessed
on 20 April 2024) [24]. For the investigation of isoform expression, transcript-wise data
from the Genotype Tissue Expression (GTEx) V8 project was obtained via the GTEx portal
(https:/ /gtexportal.org) (accessed on 20 April 2024). The median expression level for each
gene was used to determine the number of expressed isoforms. A transcript was considered
expressed if its Transcripts Per Million (TPM) value exceeded 5 in at least one tissue type.

Data about the number and mode of inheritance of a rare disease were collected from
the Human Phenotype Ontology (HPO) [25,26]. The relationship between gene and disease
was ascertained using the OMIM identifier based on data provided by Ensembl BioMart.

2.4. Statistical Analysis

All statistical tests were conducted using R v.4.3.1 (https:/ /r-project.org/) (accessed
on 12 April 2024). Data visualization employed the following R packages: ggplot2 v.3.5.0
(https:/ /ggplot2.tidyverse.org/) (accessed on 12 April 2024), scales v.1.3.0 (https:/ /scales.
r-lib.org) (accessed on 12 April 2024), and cowplot v.1.1.2 (https:/ /wilkelab.org/cowplot/)
(accessed on 12 April 2024). For continuous variables, we used the unpaired Wilcoxon
test. For categorical variables, a chi-squared test with the appropriate number of degrees
of freedom was used. In all cases, a significance threshold of & = 0.05 was used for
hypothesis testing.

3. Results
3.1. Common Properties of Variants with Conflicting Interpretations of Pathogenicity

The first goal of our work was to evaluate the overall prevalence of conflicting inter-
pretations of variant pathogenicity in publicly available data. Hence, as a starting point
of our analysis, we collected information about all genetic variants in genes associated
with Mendelian disorders recorded in ClinVar between April 2018 and April 2024. In total,
2,296,245 variants in 4731 genes have been identified. Among them, 131,092 variants in
3703 genes had been assigned a COI tag at least once during the studied time period. A
comparison of the number of COI variants as a function of time showed a steady increase in
the number of such records, with an unexpected drop in both the total number of variants
and COI variant count occurring in mid 2022 (Figure 1a). However, despite the rapid
increase in the total number of variants recorded in ClinVar, the proportion of COI records
did not change substantially over time, indicating that the accumulation of COls did not
outpace the overall rate of data generation (Figure 1a).

We next questioned what groups of variants tend to raise interpretation conflicts. To
answer this question, following the initial collection of COI variants and the analysis of
their accumulation rates, the variants were split based on the initial clinical significance
interpretation (based on ACMG classification) before the emergence of the conflict. Interest-
ingly, VUSs were the most common variants to enter into a conflict of interpretation, and
the second-largest group of variants with COlIs were initially classified as LB (Figure 1b).
Notably, variants initially classified as pathogenic and likely pathogenic rarely entered into
conflict (only 6.44% of all COI variants were initially interpreted as P/LP; see Figure 1b).
We next questioned which combinations of interpretations are common for COI variants.
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To this end, we split all COlIs into four major groups—B/VUS (including variants with a
conflict between B/LB and VUS interpretation), P/VUS (variants with a conflict between
P/LP and VUS), B/P (a conflict between P/LP and B/LB), and B/P/VUS (all three inter-
pretations present). The conflicts commonly emerged between VUS vs. B/LB and VUS vs.
P/LP groups (Figure 1c).

Next, we investigated the gnomAD data to see how the AF of genetic variations
with COIs compared to the AF of variants from variants in different pathogenicity classes
without conflicting interpretations. Both globally and when considering the maximum
population frequency (popmax), the AF of COI variants was higher than observed for VUS,
but lower than for B/LB variants. The distribution of the minimum AF (popmin, calculated
across gnomAD ancestry groups) of variants with COlIs is consistent with popmin AF of
B/LB variations (see Figure S1).

The assessment of the predicted variant consequence severity (“IMPACT rating”)
provided by Ensembl VEP corroborated previous observations. Thus, the proportions of
variants classified as high-impact variants (e.g., frameshift variants, stop gained, splice-
site variations) and moderate-impact variants (non-disruptive but potentially harmful,
for example, inframe indels, missense variants) within the COI group were consistent
with those observed in VUS and B/LB variants, but not with P/LP variants. The allele
frequencies of variants with COI were thus consistent with the classes of variants that
commonly entered into an interpretation conflict. Furthermore, when stratified by the
initial interpretation before the COI designation, the distribution of predicted impact within
the COI group closely resembled the classification categories before the emerged conflict.
However, a greater prevalence of high- and moderate-impact variants was observed for COI
variants that were initially classified as B/LB (compared to B/LB variants without conflicts).
In contrast, for COI variants initially reported as VUS or P/LP, a greater proportion of
milder variants was observed. These results suggest that interpretation conflicts are, at
least in part, driven by the variant consequence at the protein level (Figure S2).
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Figure 1. Dynamics of conflicting interpretations of variant pathogenicity. (a) A barplot showing the
total number of ClinVar records (top), as well as the number (middle) and percentage (bottom) of
variants marked as COI for the indicated releases of ClinVar data; (b) a barplot showing the number
of COI variants with the indicated initial interpretation as of April 2018; (c) proportions of different
combinations of submitted clinical significance records—B/VUS (variants with conflict between
B/LB and VUS interpretation), P/VUS (variants with conflict between P/LP and VUS), B/P (conflict
between P/LP and B/LB), and B/P/VUS (all three interpretations present).

According to the ClinVar release from 7 April 2024, conflicts have been resolved
for 13,528 of COI variants, which have been thus reclassified into one of the ACMG
classification groups (Figure S3). The vast majority of such variants were reclassified
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into the B/LB (n = 4202 ) or LB (n = 3678) classes, in good concordance with the overall
proportions of different interpretations for COI variants shown on Figure 1b,c.

3.2. Properties of Genes with a High Proportion of COI Variants

Having considered the properties of genetic variants that have conflicting interpre-
tations of pathogenicity, we next asked if certain genes contain a higher proportion of
such variants compared to an average gene in the genome. To test this hypothesis, we
performed gene-based association analysis to identify genes harboring an enrichment of
COl variants. Out of 3703 genes bearing at least 1 COI variant, as many as 285 (7.7%) genes
displayed a statistically significant enrichment of COI variants (see the Methods section for
a description of the enrichment testing procedure).

To identify common features of genes with COI variants, we compared various gene-
level properties, such as evolutionary constraint metrics, gene length, and structural com-
plexity, between COl-enriched genes, genes with at least one COI, and genes lacking such
variants. According to the results of this analysis, genes with COI variants are more con-
strained (Wilcoxon test, p-value = 7.4 x 10~%) (Figure S4) and exhibit significantly greater
transcript length and number of exons (Wilcoxon test, p-value < 2.2 x 10~16) compared to
genes with no reported COIs. Notably, COI-enriched genes had even longer canonical tran-
scripts (Wilcoxon test, p-value = 6.1 x 1071?) and a higher number of exons (Wilcoxon test,
p-value = 3.1 x 10712?) compared to genes without COI enrichment (Figure 2a,b). Further-
more, genes harboring COI variants displayed a significantly higher number of associated
diseases compared to those lacking such variants (Wilcoxon test, p-value < 2.2 x 10~16).
Similarly, COI-enriched genes had a higher number of associated diseases compared to
non-enriched genes (Wilcoxon test, p-value < 5.2 x 10~7) (Figure 2c). Interestingly, the COI
variant-bearing genes were also enriched for disorders with autosomal dominant inheri-
tance (chi-squared test, p-value = 3.78 x 10~%). Again, the association between COI variants
and autosomal dominant inheritance was further strengthened when considering only
COl-enriched genes compared to non-enriched ones (chi-squared test, p-value = 9.4 x 10~13)
(see Figure 2d). Finally, COl-enriched ones displayed a higher number of highly expressed
isoforms (Wilcoxon test, p-value = 0.011) (Figure S5).

To elucidate which functions are typical for genes with a high frequency of variant
interpretation conflicts, we employed gene set enrichment analysis to investigate the
biological processes regulated by genes enriched with such variants (see Figure 3a). This
analysis revealed a striking enrichment for genes involved in muscle tissue morphogenesis
and function, cardiac structures” development, and heart contraction. Notably, genes
essential for sensory organ development are also significantly overrepresented within the
COl-enriched set.

We further delved into the molecular functions and canonical pathways associated
with COl-enriched genes (Figure 3b,c). Interestingly, we observed a significant enrichment
for genes with terms related to muscle contraction (e.g., TTN (12% of COls; FDR-adjusted
p-value = 1.48 x 10720%), KCNJ11 (27% of COls; FDR-adjusted p-value = 1.03 x 10~4%),
DYSF (11% of COls; FDR-adjusted p-value = 1.02 x 10~%), ACTN2 (14% of COlIs; FDR-
adjusted p-value = 5.48 x 10~%7), MYBPC3 (10% of COIs; FDR-adjusted p-value = 5.8
x 10~24), NEB (8% of COls; FDR-adjusted p-value = 7.9 x 10-2%)), including actin (e.g.,
ACTN2, DMD (7.8% of COls; FDR-adjusted p-value = 2.3 x 10_13), SYNET1 (9% of COls;
FDR-adjusted p-value = 3.35 x 10~22)), calmodulin binding (e.g., CACNA1S (10.6% of COls;
FDR-adjusted p-value = 1.2 x 10~1”), MYO3A (9.5% of COIs; FDR-adjusted p-value = 6.4 x
10~%), RYR2 (8% of COls; FDR-adjusted p-value = 1.8 x 10717, and SCN5A (10% of COls;
FDR-adjusted p-value = 1.1 x 10-23). Actin filaments are core components of the sarcomere,
and calmodulin plays a crucial role in regulating muscle contraction through calcium
signaling. Additionally, enrichment for genes involved in the transmembrane transfer of
ions by voltage-gated channels was identified (e.g., KCNE1 (12% of COls; FDR-adjusted
p-value = 1.5 x 10~%), KCNE2 (16% of COIs; FDR-adjusted p-value = 2.4 x 10~%), SCN4A
(8.9% of COls; FDR-adjusted p-value = 3.2 x 10~7), and SCN1B (10% of COIs; FDR-adjusted
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p-value = 7 x 10~%)). These channels are essential for maintaining the electrical gradients
necessary for muscle excitation—contraction coupling. Pathogenic variants of KCNQ1 (9%
of COIs; FDR-adjusted p-value = 2.2 x 10~Y) and KCNET1 that encode the subunits of
potassium channels are causing factors of cardiac rhythm disturbance (OMIM #192500,
#609621, #220400, #607554, #612347, #613695), which sometimes results in sudden death. A
total of 25 genes (8.77%) from the 285 COl-enriched candidates were identified as having
associations with various cardiomyopathy subtypes, including hypertrophic, dilated, and
arrhythmogenic cardiomyopathy (e.g., DSC2 (9% of COls; FDR-adjusted p-value = 8.2
x 107%), DSG2 (10% of COIs; FDR-adjusted p-value = 1.6 x 107'9), DSP (15% of COls;
FDR-adjusted p-value = 9.2 x 107191), MYL2 (9.4% of COIs; FDR-adjusted p-value = 8.5
x 1073), PKP2 (8.7% of COls; FDR-adjusted p-value = 1.6 x 10~°), and JUP (12% of COls;
FDR-adjusted p-value = 3 x 10713)).
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Figure 2. Common features of genes bearing COI variants. On all panels, no COl—genes without
COlI variants, >1 COI—genes bearing at least one COI variant, enriched with COI—genes displaying
a significant enrichment with COI records. (a,b) Violin plots showing the canonical transcript length
(a) or the number of exons (b) for different groups of genes (*** -p-value < 0.001); (c) histograms
showing the number of associated disorders for indicated gene groups (no COI vs. >1 COI group:
Wilcoxon test, p-value <2.2 x 10-16; >1 COI vs. genes enriched with COI: Wilcoxon test, p-value =
5.2 x 1077); (d) barplots representing proportions of inheritance modes of disorders linked to genes
from indicated groups (no COI vs. <1 COI group: chi-squared test, p-value = 3.78 x 10~9; >1 COIl vs.
genes enriched with COIL: chi-squared test, p-value = 9.4 x 10713,

HPO terms’ enrichment analysis of genes with high COI rates corroborated the afore-
mentioned findings, identifying 83 genes associated with abnormal cardiovascular elec-
trophysiology. Furthermore, 39 genes were implicated in sudden death. Notably, the
enriched terms primarily encompassed muscle weaknesses, amyotrophy, and abnormal
cardiac function (Figure 3d). Collectively, these findings suggest that the cases of conflicting
interpretations of variant pathogenicity might be overrepresented in genes associated with
muscle and cardiovascular diseases.

Alternatively, genes with no reported COI are enriched in gene sets associated with
germ cell development and implicated in infertility mainly caused by spermatogenic failure
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(e.g., CATIP, CEAP65, CEP19) and oocyte/zygote/embryo maturation arrest (e.g., PADI®,
REC114, WEE2). These genes are also linked to mononuclear cell proliferation and abnormal
bronchus physiology results, for instance to bronchoconstriction (Figure S6).
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Figure 3. Barplots showing gene set enrichment analysis results for COI-enriched genes: (a) GO
biological processes, (b) GO molecular functions, (c) canonical pathways, and (d) HPO gene sets from
MSigDB. The color gradient represents the adjusted significance level.

4. Discussion

The analysis of ClinVar, a public archive for variant interpretations, revealed over
2.2 million variants with about 5.7% of variants with COlIs reported in the database. The
data show a significant increase in the number of genetic variants identified in Mendelian
disease genes over the past six years. Interestingly, the proportion of variants with COIs
slightly decreased over time. This suggests that the field is rapidly generating new variant
data, but the process of assigning clinical significance to variants is more consistent. The
rise in variant classification consistency likely stems from a combination of factors. First,
standardized guidelines from the ACMG and European societies of medical genetics
have provided a foundational framework. Second, initiatives like ClinGen and Sherloc
have further refined these guidelines by establishing additional rules and promoting their
implementation. Despite advancements, hereditary cancer and cardiac disorders continue
to exhibit high rates of variant interpretation discordance, particularly at the border between
VUS and B/LB [27]. This aligns with our findings of discordance frequently arising between
VUS and B/LB.

We found that the largest group of variants entering a conflict of interpretation are
VUSs. VUSs are known to complicate the clinical decision in around 10% to 41% of cases
being analyzed by multigene panels, leaving clinicians unsure about a patient’s disease risk,
and making it difficult to recommend appropriate preventive measures or treatment [28].
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VUSs may trigger additional unnecessary testing and potentially delay the diagnosis of
confirmed conditions. The reevaluation of VUS status requires additional evidence, such as
population-specific allele frequency, functional studies, or RNA-seq analysis. Establishing
evidence-based guidelines for managing VUSs can help reduce disparate assessments by
academics and doctors and provide consistent recommendations to patients. However, it
is extremely important to emphasize that novel genetic variants should not be assigned
to a class other than VUS without strong evidence of their benign/pathogenic nature [29].
Indeed, the automated ACMG criteria-based classification of variants with reported COlIs
indicates that for the vast majority (129,953 out of 131,092, 99.1%) of these variants there is
no publicly available evidence to classify them as benign or pathogenic (Table S1).

Furthermore, we explored the properties of genes harboring variants with COI to
identify factors associated with variants’ interpretation discordance. The study revealed
that 78% of clinically relevant genes harbor variants with COlIs. Interestingly, these genes
exhibit a trend towards increased complexity compared to genes lacking reported discor-
dance. This complexity manifests in two key aspects: clinically relevant genes with COls
tend to have longer canonical transcripts and more exons compared to ones without variant
interpretation discordance. Complex gene structures often translate to a greater number of
transcript isoforms. The presence of multiple isoforms potentially leads to a wider range
of variant effects on gene products, further complicating the interpretation of variants’
clinical significance and being the possible source of interpretation discordance. In 2022,
the Matched Annotation from NCBI and EMBL-EBI (MANE) transcript set was proposed,
offering a standardized set of transcripts specifically designed for clinical genetics [30].
The widespread adoption of MANE has the potential to significantly reduce the discor-
dance of interpretation associated with discrepancies arising from transcript annotation
differences [2]. However, a recent study supposed that the underrepresentation of dif-
ferent ancestries in medical genetic studies also plays an important role in the instability
of the pathogenicity classification of variants, as exemplified by a recent report for a set
of 16 autosomal dominant cardiomyopathy-associated genes, over 7% of which undergo
reclassification [31].

Next, we discovered 285 genes that are significantly enriched with variants with
COIL. These genes have a tendency to have more associated diseases per gene compared
to non-COI-abundant ones. The enrichment analysis revealed the prevalence of a broad
range of terms related to muscle development and function, from actin-binding to cardiac
electrophysiology (Figure 3). Our findings align with previous studies on phenotypic
heterogeneity (whereby individuals harboring pathogenic variants within the same gene
can exhibit a spectrum of disease severity, or even develop entirely different disorders).
Earlier studies by our group and other laboratories showed that phenotypic heterogeneity
is common in genes linked to cardiovascular pathology [32-35]. Furthermore, the features
of COl-enriched genes are strikingly similar to features of genes associated with multiple
rare diseases, which are also enriched for constrained genes with multiple transcript
isoforms and autosomal dominant inheritance [36]. Indeed, a high degree of phenotypic
heterogeneity might explain the observed accumulation of COI variants within genes
linked to multiple diseases, often exhibiting autosomal dominant inheritance, particularly
those related to neuromuscular and cardiovascular pathologies.

While our study demonstrates several important trends of variant interpretation con-
flicts, there are several important limitations that have to be considered. First, our study
was focused on gene—disease associations already reported in public databases such as
OMIM and ClinVar. This limited our ability to discover novel gene-disease relationships.
Second, we only retrieved data on variant interpretation conflicts from ClinVar, as a single
public resource that contains variant classification data across the spectrum of inherited
diseases. However, other publicly funded and commercial variant databases like COS-
MIC [37] containing somatic mutation data, or HGMD [38], a comprehensive collection of
genetic variants with well-established pathogenicity, may be leveraged to provide more
information for specific disease groups. It is also important to note that the lack of ethnicity
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data for each submitted record in ClinVar could contribute to false-positive emergencies
of pathogenicity discrepancies. This is because population-specific genetic variations can
influence variant interpretation. Finally, while most genes with over 15% of COI vari-
ants contained sufficient data for detecting statistically significant enrichment, a subset of
genes exhibited relatively low variant counts, limiting our ability to identify significant
COl-associated enrichment (Figure S7).

5. Conclusions

Overall, our study highlights the complex interplay between COI variants, gene char-
acteristics, and disease phenotypes. The observed associations suggest that the phenotypic
heterogeneity might contribute to the accumulation of discordance of variant interpre-
tations and provide valuable insights for refining variant annotation and prioritization
strategies, particularly in the context of genes with a high burden of COI variants and links
to multiple diseases.

To further improve rare disease diagnosis, more attention could be paid to two key
areas: variant interpretation and public database enrichment. Developing specialized rules
for variant annotation and prioritization would be particularly impactful for genes linked
to functions like cardiac conduction and muscular development and function. Expanding
variant metadata in public genetic databases by including information like ethnicity and
deeper phenotyping data would improve our ability to resolve conflicting interpretations
of variants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm14080864/s1: Figure S1: AF of variants reported in ClinVar based
on gnomAD v.2.1; Figure S2: IMPACT rating of all variants and COI variants splitted by initial
interpretation; Figure S3: A barplot showing the number of variants for which COIs were reported
with the indicated final interpretation as of April 2023; Figure S4: Genes associated with rare diseases,
categorized by the presence of conflicting variants of interpretation—no conflicting evidence (no
COIs), and at least one COI (>1 COI), further stratified by LOEUF deciles; Figure S5: Histogram
showing the distribution of the number of expressed transcripts (>5 TPM in at least one tissue
according to the Genotype-Tissue Expression (GTEx) data) for COlI-enriched genes (enriched with
COlIs) and genes with at least one COI and no enrichment (>1 COI); Figure S6: Barplots showing gene
set enrichment analysis results for no-COI genes; Figure S7: Heatmaps displaying hypergeometric
test p-values. Table S1: Results of automated ACMG criteria-based classification of variants with
reported COls.

Author Contributions: Conceptualization, TE.L., YA.B., Y AN. and A.S.G.; Data curation, T.E.L.;
Formal analysis, T.E.L. and Y.A.B.; Supervision, Y.A.B., Y A.N. and A.S.G.; Visualization, TE.L.;
Writing—original draft, TE.L. and Y.A.B.; Writing—review and editing, Y.A.B., YAN. and A.S.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (project “Multicenter research bioresource collection” “Human Reproductive Health”
contract No. 075-15-2021-1058 from 28 September 2021).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: All data and code pertinent to the analysis presented in this work are
available at https://github.com/tanya-lazareva/coi.git (accessed on 15 July 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CaOI conflicting interpretations of pathogenicity
HPO Human Phenotype Ontology


https://www.mdpi.com/article/10.3390/jpm14080864/s1
https://www.mdpi.com/article/10.3390/jpm14080864/s1
https://github.com/tanya-lazareva/coi.git

J. Pers. Med. 2024, 14, 864 11 of 12

NGS next-generation sequencing
OMIM  Online Mendelian Inheritance in Man

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards
and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405-423. [CrossRef]

Barbitoff, Y.A.; Ushakov, M.O.; Lazareva, T.E.; Nasykhova, Y.A.; Glotov, A.S.; Predeus, A.V. Bioinformatics of germline variant
discovery for rare disease diagnostics: Current approaches and remaining challenges. Briefings Bioinform. 2024, 25, bbad508.
[CrossRef]

Federici, G.; Soddu, S. Variants of uncertain significance in the era of high-throughput genome sequencing: A lesson from breast
and ovary cancers. J. Exp. Clin. Cancer Res. 2020, 39, 46. [CrossRef] [PubMed]

Harrison, S.M.; Dolinsky, J.S.; Knight Johnson, A.E.; Pesaran, T.; Azzariti, D.R,; Bale, S.; Chao, E.C.; Das, S.; Vincent, L.; Rehm,
H.L. Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar. Genet. Med. 2017,
19, 1096-1104. [CrossRef]

Bland, A.; Harrington, E.A.; Dunn, K; Pariani, M.; Platt, ].C.; Grove, M.E.; Caleshu, C. Clinically impactful differences in variant
interpretation between clinicians and testing laboratories: A single-center experience. Genet. Med. 2018, 20, 369-373. [CrossRef]
Smirnova, O.; Lagutinskaya, D. The role of polymorphisms of PNPLA3, MBOAT?7, and TM6SF2 in the development of non-
alcoholic fatty liver disease in metabolic syndrome. Obes. Metab. 2022, 19, 166-170. [CrossRef]

Stepanova, A.; Abrukova, A.; Savaskina, E.; Polyakov, A. Mutation p. E92K is the primary cause of cystic fibrosis in Chuvashes.
Russ. |. Genet. 2012, 48, 731-737. [CrossRef]

Petrova, N.; Balinova, N.; Marakhonov, A.; Vasilyeva, T.; Kashirskaya, N.; Galkina, V.; Ginter, E.; Kutsev, S.; Zinchenko, R. Ethnic
differences in the frequency of CFTR gene mutations in populations of the European and North Caucasian Part of the Russian
Federation. Front. Genet. 2021, 12, 678374. [CrossRef]

Ideozu, J.E.; Liu, M.; Riley-Gillis, B.M.; Paladugu, S.R.; Rahimov, F; Krishnan, P; Tripathi, R.; Dorr, P.; Levy, H.; Singh, A.; et al.
Diversity of CFTR variants across ancestries characterized using 454,727 UK biobank whole exome sequences. Genome Med. 2024,
16, 43. [CrossRef]

Tian, X,; Liu, Y,; Yang, J.; Wang, H.; Liu, T.; Xu, W,; Li, X.; Zhu, Y.; Xu, K.E; Zhang, X. p. G970D is the most frequent CFTR
mutation in Chinese patients with cystic fibrosis. Hum. Genome Var. 2016, 3, 1-6. [CrossRef] [PubMed]

Barbitoff, Y.A.; Polev, D.E.; Glotov, A.S.; Serebryakova, E.A.; Shcherbakova, I.V.; Kiselev, A.M.; Kostareva, A.A.; Glotov, O.S;
Predeus, A.V. Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of
coding sequence coverage. Sci. Rep. 2020, 10, 2057. [CrossRef]

Belova, V,; Vasiliadis, I.; Repinskaia, Z.; Samitova, A.; Shmitko, A.; Ponikarovskaya, N.; Suchalko, O.; Cheranev, V.; Shatalov, P;
Shegai, P; et al. Comparative evaluation of four exome enrichment solutions in 2024: Agilent, Roche, Vazyme and Nanodigmbio.
bioRxiv 2024 . [CrossRef]

Barbitoff, Y.A.; Abasov, R.; Tvorogova, V.E.; Glotov, A.S.; Predeus, A.V. Systematic benchmark of state-of-the-art variant calling
pipelines identifies major factors affecting accuracy of coding sequence variant discovery. BMC Genom. 2022, 23, 155. [CrossRef]
[PubMed]

Schliiter, A.; Vélez-Santamaria, V.; Verdura, E.; Rodriguez-Palmero, A.; Ruiz, M.; Fourcade, S.; Planas-Serra, L.; Launay, N.;
Guilera, C.; Martinez, ].J.; et al. ClinPrior: An algorithm for diagnosis and novel gene discovery by network-based prioritization.
Genome Med. 2023, 15, 68. [CrossRef]

Jacobsen, ].O.; Kelly, C.; Cipriani, V.; Research Consortium, G.E.; Mungall, C.J.; Reese, ].; Danis, D.; Robinson, P.N.; Smedley, D.
Phenotype-driven approaches to enhance variant prioritization and diagnosis of rare disease. Hum. Mutat. 2022, 43, 1071-1081.
[CrossRef] [PubMed]

Ackerman, J.P; Bartos, D.C.; Kapplinger, ].D.; Tester, D.].; Delisle, B.P.; Ackerman, M.]. The promise and peril of precision
medicine: Phenotyping still matters most. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2016; Volume 91,
pp- 1606-1616.

Gaba, P; Bos, ].M.; Cannon, B.C.; Cha, YM.; Friedman, P.A.; Asirvatham, S.J.; Ackerman, M.]. Implantable cardioverter-
defibrillator explantation for overdiagnosed or overtreated congenital long QT syndrome. Heart Rhythm 2016, 13, 879-885.
[CrossRef]

Landrum, M.].; Lee, ].M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar:
Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062-D1067. [CrossRef]
[PubMed]

McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S,; Ritchie, G.R.; Thormann, A ; Flicek, P.; Cunningham, F. The ensembl variant effect
predictor. Genome Biol. 2016, 17, 122. [CrossRef]

Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics ].
Integr. Biol. 2012, 16, 284-287. [CrossRef] [PubMed]


http://doi.org/10.1038/gim.2015.30
http://dx.doi.org/10.1093/bib/bbad508
http://dx.doi.org/10.1186/s13046-020-01554-6
http://www.ncbi.nlm.nih.gov/pubmed/32127026
http://dx.doi.org/10.1038/gim.2017.14
http://dx.doi.org/10.1038/gim.2017.212
http://dx.doi.org/10.14341/omet12855
http://dx.doi.org/10.1134/S1022795412060166
http://dx.doi.org/10.3389/fgene.2021.678374
http://dx.doi.org/10.1186/s13073-024-01316-5
http://dx.doi.org/10.1038/hgv.2015.63
http://www.ncbi.nlm.nih.gov/pubmed/27081564
http://dx.doi.org/10.1038/s41598-020-59026-y
http://dx.doi.org/10.1101/2024.07.11.602872
http://dx.doi.org/10.1186/s12864-022-08365-3
http://www.ncbi.nlm.nih.gov/pubmed/35193511
http://dx.doi.org/10.1186/s13073-023-01214-2
http://dx.doi.org/10.1002/humu.24380
http://www.ncbi.nlm.nih.gov/pubmed/35391505
http://dx.doi.org/10.1016/j.hrthm.2015.12.008
http://dx.doi.org/10.1093/nar/gkx1153
http://www.ncbi.nlm.nih.gov/pubmed/29165669
http://dx.doi.org/10.1186/s13059-016-0974-4
http://dx.doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463

J. Pers. Med. 2024, 14, 864 12 of 12

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Liberzon, A.; Birger, C.; Thorvaldsdéttir, H.; Ghandi, M.; Mesirov, ].P.; Tamayo, P. The molecular signatures database hallmark
gene set collection. Cell Syst. 2015, 1, 417-425. [CrossRef]

Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, KM.; Ganna, A;
Birnbaum, D.P; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434—443.
[CrossRef]

Cunningham, F; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes,
I; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988-D995. [CrossRef] [PubMed]

Frankish, A.; Diekhans, M.; Jungreis, I.; Lagarde, J.; Loveland, ].E.; Mudge, ] M.; Sisu, C.; Wright, ].C.; Armstrong, J.; Barnes, L;
et al. GENCODE 2021. Nucleic Acids Res. 2021, 49, D916-D923. [CrossRef]

Kohler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.;
Brower, A.M.; et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021, 49, D1207-D1217. [CrossRef] [PubMed]
Robinson, P.N.; Kohler, S.; Bauer, S.; Seelow, D.; Horn, D.; Mundlos, S. The Human Phenotype Ontology: A tool for annotating
and analyzing human hereditary disease. Am. . Hum. Genet. 2008, 83, 610-615. [CrossRef] [PubMed]

Yang, S.; Lincoln, S.E.; Kobayashi, Y.; Nykamp, K.; Nussbaum, R.L.; Topper, S. Sources of discordance among germ-line variant
classifications in ClinVar. Genet. Med. 2017, 19, 1118-1126. [CrossRef]

Makhnoon, S.; Levin, B.; Ensinger, M.; Mattie, K.; Volk, R.].; Zhao, Z.; Mendoza, T.; Shete, S.; Samiian, L.; Grana, G.; et al. A
multicenter study of clinical impact of variant of uncertain significance reclassification in breast, ovarian and colorectal cancer
susceptibility genes. Cancer Med. 2023, 12, 2875-2884. [CrossRef] [PubMed]

Weck, K.E. Interpretation of genomic sequencing: Variants should be considered uncertain until proven guilty. Genet. Med. 2018,
20, 291-293. [CrossRef]

Morales, J.; Pujar, S.; Loveland, J.E.; Astashyn, A.; Bennett, R.; Berry, A.; Cox, E.; Davidson, C.; Ermolaeva, O.; Farrell, C.M.; et al.
A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature 2022, 604, 310-315. [CrossRef]

Rosamilia, M.B.; Markunas, A.M.; Kishnani, P.S.; Landstrom, A.P. Underrepresentation of Diverse Ancestries Drives Uncertainty
in Genetic Variants Found in Cardiomyopathy-Associated Genes. JACC Adv. 2024, 3, 100767. [CrossRef]

Cerrone, M.; Remme, C.A; Tadros, R.; Bezzina, C.R.; Delmar, M. Beyond the one gene-one disease paradigm: Complex genetics
and pleiotropy in inheritable cardiac disorders. Circulation 2019, 140, 595-610. [CrossRef]

Mestroni, L. Phenotypic heterogeneity of sarcomeric gene mutations: A matter of gain and loss? J. Am. Coll. Cardiol. 2009, 54,
343-345. [CrossRef] [PubMed]

Remme, C.A. SCN5A channelopathy: Arrhythmia, cardiomyopathy, epilepsy and beyond. Philos. Trans. R. Soc. 2023,
378, 20220164. [CrossRef] [PubMed]

Ciconte, G.; Monasky, M.M.; Santinelli, V.; Micaglio, E.; Vicedomini, G.; Anastasia, L.; Negro, G.; Borrelli, V.; Giannelli, L.; Santini,
F; et al. Brugada syndrome genetics is associated with phenotype severity. Eur. Heart J. 2020, 42, 1082-1090. [CrossRef] [PubMed]
Lazareva, T.E.; Barbitoff, Y.A.; Nasykhova, Y.A ; Pavlova, N.S.; Bogaychuk, PM.; Glotov, A.S. Statistical Dissection of the Genetic
Determinants of Phenotypic Heterogeneity in Genes with Multiple Associated Rare Diseases. Genes 2023, 14, 2100. [CrossRef]
[PubMed]

Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al.
COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019, 47, D941-D947. [CrossRef]

Stenson, P.D.; Mort, M.; Ball, E.V.; Chapman, M.; Evans, K.; Azevedo, L.; Hayden, M.; Heywood, S.; Millar, D.S.; Phillips, A.D.;
et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet.
2020, 139, 1197-1207. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.cels.2015.12.004
http://dx.doi.org/10.1038/s41586-020-2308-7
http://dx.doi.org/10.1093/nar/gkab1049
http://www.ncbi.nlm.nih.gov/pubmed/34791404
http://dx.doi.org/10.1093/nar/gkaa1087
http://dx.doi.org/10.1093/nar/gkaa1043
http://www.ncbi.nlm.nih.gov/pubmed/33264411
http://dx.doi.org/10.1016/j.ajhg.2008.09.017
http://www.ncbi.nlm.nih.gov/pubmed/18950739
http://dx.doi.org/10.1038/gim.2017.60
http://dx.doi.org/10.1002/cam4.5202
http://www.ncbi.nlm.nih.gov/pubmed/36426404
http://dx.doi.org/10.1038/gim.2017.269
http://dx.doi.org/10.1038/s41586-022-04558-8
http://dx.doi.org/10.1016/j.jacadv.2023.100767
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035954
http://dx.doi.org/10.1016/j.jacc.2009.04.029
http://www.ncbi.nlm.nih.gov/pubmed/19608032
http://dx.doi.org/10.1098/rstb.2022.0164
http://www.ncbi.nlm.nih.gov/pubmed/37122208
http://dx.doi.org/10.1093/eurheartj/ehaa942
http://www.ncbi.nlm.nih.gov/pubmed/33221895
http://dx.doi.org/10.3390/genes14112100
http://www.ncbi.nlm.nih.gov/pubmed/38003043
http://dx.doi.org/10.1093/nar/gky1015
http://dx.doi.org/10.1007/s00439-020-02199-3

	Introduction
	Materials and Methods
	Genetic Variant Data
	Analysis of Genes for Enrichment of Genetic Variants with COIs
	Analysis of Functional Properties of Genes Bearing COI Variants
	Statistical Analysis 

	Results
	Common Properties of Variants with Conflicting Interpretations of Pathogenicity
	Properties of Genes with a High Proportion of COI Variants

	Discussion
	Conclusions
	References

