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Abstract: Pneumonia remains a critical health concern worldwide, necessitating efficient diagnostic
tools to enhance patient care. This research proposes a concatenated modified LeNet classifier to
classify pneumonia images accurately. The model leverages deep learning techniques to improve
the diagnosis of Pneumonia, leading to more effective and timely treatment. Our modified LeNet
architecture incorporates a revised Rectified Linear Unit (ReLU) activation function. This enhance-
ment aims to boost the discriminative capacity of the features learned by the model. Furthermore,
we integrate batch normalization to stabilize the training process and enhance performance within
smaller, less complex, CNN architectures like LeNet. Batch normalization addresses internal covariate
shift, a phenomenon where the distribution of activations within a network alter during training.
These modifications help to prevent overfitting and decrease computational time. A comprehensive
dataset is used to evaluate the model’s performance, and the model is benchmarked against relevant
deep-learning models. The results demonstrate a high recognition rate, with an accuracy of 96%
in pneumonia image recognition. This research suggests that the Concatenated Modified LeNet
classifier has the potential to be a highly useful tool for medical professionals in the diagnosis of
pneumonia. By offering accurate and efficient image classification, our model could contribute to
improved treatment decisions and patient outcomes.

Keywords: pneumonia; convolution neural network; modified LeNet; classification; ReLU

1. Introduction

Pneumonia, a severe lung infection, can become fatal if left untreated. This wide-
spread illness arises from diverse microorganisms like bacteria, viruses, and fungi. The
word itself originates from the Greek term “Neuman” meaning the lungs, establishing
its close connection to lung-related disorders. In medical terms, pneumonia signifies
inflammation within the lung tissue (parenchyma) [1].

Nevertheless, pneumonia can also result from factors such as inhaling food particles
or exposure to harmful chemicals. Pneumonia typically arises from an infection, and it
is characterized by inflammation induced by pathogens. This inflammation leads to the
growth of pus in the lung’s alveoli, thereby hindering the exchange of carbon dioxide
(CO2) and oxygen (O2) between the blood and the lungs. This, in turn, makes it difficult
for individuals with pneumonia to breathe. Common signs of pneumonia include dys-
pnea, fever, tussis, and thoracic pain, among others. Certain individuals are at a higher
risk of contracting pneumonia, including elderly persons, children, and individuals with
underlying health conditions such as HIV/AIDS, diabetes mellitus, chronic diseases, car-
diovascular ailments, cancer, and hepatic diseases [2–5]. The hybrid optimization algorithm
was proposed by Vidhushavarshini Suresh et al. [6] for feature selection in a thyroid disease

J. Pers. Med. 2024, 14, 328. https://doi.org/10.3390/jpm14030328 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm14030328
https://doi.org/10.3390/jpm14030328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-2955-9831
https://orcid.org/0000-0003-0624-1991
https://doi.org/10.3390/jpm14030328
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm14030328?type=check_update&version=1


J. Pers. Med. 2024, 14, 328 2 of 23

classifier, utilizing rough type-2 fuzzy support vector machine. The hybrid algorithm com-
bined firefly and butterfly optimization algorithms to select top-n features. The proposed
HFBO-RT2FSVM model achieves high accuracy (99.28%), specificity (98%), and sensitivity
(99.2%). Comparative analysis against benchmark methods demonstrated a significant
improvement in disease identification [6].

1.1. Pneumonia Imaging Modalities

Accurate and early detection of pneumonia is crucial for timely medical intervention
and improved patient outcomes. Radiological imaging, such as chest X-rays and computed
tomography (CT) scans, is widely used for diagnosing pneumonia [7]. The interpretation
of these images, however, can be time-consuming and subjective, leading to the need for
automated solutions. A chest X-ray showing an area of lung inflammation indicating the
presence of pneumonia is shown in Figure 1.
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Detecting pneumonia in chest X-ray images poses several challenges, and deep learning-
based models [8] can be instrumental in addressing these challenges. The challenges are:

• Variability in Image Quality: Chest X-ray image quality can vary significantly, making
it challenging to identify subtle abnormalities.

• Overlapping Features: Pneumonia patterns may overlap with other lung conditions,
leading to misinterpretations.

• Subjectivity: Interpretation of X-rays is subjective and relies on radiologist expertise.
• Size and Location of Infection: The size and location of pneumonia can affect its

visibility in X-rays.
• Co-occurring Conditions: Patients with pneumonia may have co-occurring conditions

that complicate interpretation.
• Children and Elderly Patients: Detecting pneumonia in children and the elderly can

be challenging due to anatomical and age-related differences.
• Evolution of Infections: Pneumonia can evolve rapidly, and X-ray findings may change.
• Atypical Presentations: Pneumonia may present atypically, deviating from typical

radiographic patterns.
• Data Imbalance: Imbalanced datasets can lead to biases in model performance.

To address the above-said challenges, deep learning models are appropriate and have
shown promising results in automating pneumonia detection from chest X-ray images.
These models can learn complex image features and patterns, making them valuable tools
for assisting radiologists and improving accuracy in pneumonia detection. However, it is
essential to continuously validate and fine-tune deep learning models using a diverse and
representative dataset to address the challenges specific to pneumonia detection.
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1.2. Artificial Intelligence-Based Models for Disease Diagnosis

Artificial intelligence (AI)-based deep learning models have shown remarkable perfor-
mance in healthcare dataset diagnosis, particularly in medical image classification tasks
such as diagnosing pneumonia, cancer, and other diseases. These models leverage deep
learning techniques, which involve training neural networks with large amounts of labeled
data to automatically learn features and patterns from the input data. In the context of
healthcare dataset diagnosis, deep learning models collect the relevant medical data, such
as images, patient records, or genomic data and preprocess them to ensure consistency and
quality. This may involve tasks such as image normalization, noise reduction, and data
augmentation to increase the diversity of the dataset and improve model generalization.
Researchers select an appropriate deep learning architecture based on the nature of the
medical data and the specific diagnosis task. Convolutional Neural Networks (CNNs) are
commonly used for medical image classification tasks due to their ability to capture spatial
hierarchies of features in images [8,9].

Recurrent Neural Networks (RNNs) or transformer-based models may be used for
sequential data such as patient records or time-series data. The selected deep learning
model is trained on the labeled dataset using an optimization algorithm such as stochastic
gradient descent (SGD) or Adam. During training, the model learns to map input data
to the correct diagnosis labels by adjusting its internal parameters (weights and biases)
iteratively. The trained model is evaluated using a separate validation dataset to assess
its performance metrics such as accuracy, precision, recall, and F1-score. Cross-validation
techniques may also be employed to ensure the robustness of the model. Once the model has
been trained and validated, it can be deployed in clinical settings for real-world diagnosis
tasks. Integration with existing healthcare systems may involve considerations such as
data privacy, regulatory compliance, and user interface design. Continuous monitoring of
the model’s performance is essential to detect any drift or degradation in performance over
time. Periodic updates and retraining may be necessary to adapt to changes in the dataset
distribution or clinical guidelines.

Overall, AI-based deep learning models offer significant promise in healthcare dataset
diagnosis by enabling more accurate, efficient, and scalable solutions for disease detection
and patient care. However, challenges such as data scarcity, model interpretability, and
regulatory approval remain important considerations in the development and deployment
of these models in clinical practice. Deep learning models learn to adapt to variations in
image quality by being exposed to a diverse range of images [9] during training. Data
augmentation techniques can also be used to simulate different image qualities. These
models can be trained on a large and diverse dataset that includes various lung conditions.
They can learn to distinguish between pneumonia and other conditions by capturing
subtle differences in image features. Deep learning models can provide an objective
assessment by consistently analyzing images based on learned patterns. They can serve
as a second opinion or assist radiologists in their diagnoses and models can be trained to
detect pneumonia regardless of its size or location. CNNs are particularly well-suited for
capturing spatial patterns [9].

Deep learning has become a leading approach in various applications, particularly in
representation learning. This methodology employs complex multi-layer neural network
architectures to automatically learn data representations by transforming input information
into hierarchical abstractions. In the realm of image pattern recognition, deep convolu-
tional neural networks (DCNNs) stand out as the most widely utilized deep learning
networks. DCNNs, when provided with a sufficiently large training set, autonomously
extract pertinent features from the samples through iterative weight adjustments using
backpropagation. This iterative learning process allows DCNNs to uncover feature repre-
sentations without the need for manually designed input features. With proper training for
a diverse and representative dataset, the hand-engineered features are outperformed by
the DCNN features in terms of both invariance and selectivity [8]. The automated nature of
deep learning enables the analysis of thousands or even millions of cases, surpassing the
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capacity of human experts to perceive and memorize such a vast amount of information in
their lifetime. This attribute makes deep learning robust to the broad spectrum of feature
variations among different classes, provided the training set is sufficiently large and diverse
for comprehensive analysis [9].

The roots of CNNs can be traced back to non-cognition proposed by Fukushima et al.
in the early 1980s [10]. In 1990, LeCun achieved a milestone by training a CNN using
backpropagation for the classification of handwritten digit patterns [11]. The application
of CNNs expanded to various domains in the early 1990s, including object detection,
character recognition, and facial recognition. Schultheiss et al. [12] proposed a method to
create synthetic thorax radiographs containing realistic nodules derived from CT scans
with perfect ground truth knowledge. They assessed the detection capabilities of nine
radiologists and two convolutional neural networks through a reader study. Nodules
were artificially inserted into CT volumes, and synthetic radiographs were generated
by projecting the volume forward and it comprehensively evaluated computer-aided
diagnosis (CAD) systems, radiologists’ performance, and accurate ground-truth labels
for nodules from synthetic data. Radiographs used for training U-Net and RetinaNet
networks were generated from a public dataset comprising 855 CT scans. For the reader
study, 201 radiographs were created from 21 nodule-free CT scans, with varying nodule
positions, sizes, and counts. The most effective CAD system detected 268 true positives,
with 66 false positives and 102 false negatives. Weighted alternative free response operating
characteristic figure-of-merits (wAFROC FOM) for the radiologists ranged from 0.54 to
0.87, while the best-performing CNN achieved a value of 0.81 (CI 0.75–0.87).

Bengs et al. conducted a systematic comparison of leading object detection algorithms
for lung nodule detection, focusing on addressing the challenge of class imbalance. The
authors have used data augmentation techniques and transfer learning to enhance perfor-
mance. By combining insights from this analysis and leveraging multiple architectures, they
have achieved a better performance in lung nodule detection. This model was validated by
detection track of the Node21 competition [13].

The authors of the research presented in [14] introduced an adaptive transfer learn-
ing Deep Convolutional Neural Network (DCNN) for segmenting breast mammogram
images containing calcifications, aimed at facilitating early breast cancer diagnosis. They
implemented filtering techniques in the region of interest images to enhance image quality
by removing artifacts and noise. Through systematic experimentation, they optimized
key training parameters such as epoch and batch size to maximize performance. Further-
more, the study compared the performance of the proposed fine-tuned hyperparameter
of ResNet50 with other architectures including ResNet34, VGG16, and AlexNet, using
confusion matrices for evaluation. Results indicated that the proposed ResNet50 achieved
the highest accuracy at 97.58%, followed by ResNet34 with 97.35%, VGG16 with 96.97%,
and AlexNet with 83.06%.

An AI model designed by Pesapane, F et al. [15] for localizing and characterizing mi-
crocalcifications, leveraging annotations from three expert radiologists based on histology-
derived ground truth. The dataset was divided into training, validation, and testing sets.
AlexNet, ResNet18, and ResNet34 architectures were trained and assessed using receiver
operating characteristic area under the curve (AUC), sensitivity, and specificity as specific
metrics. An evaluation was conducted on the test set, comprising 10% of the total dataset,
which encompassed mammograms from 1000 patients aged 21–73 years, totaling 1986
images, with 389 malignant and 611 benign groups of microcalcifications. AlexNet demon-
strated a better performance, achieving a sensitivity of 0.98, specificity of 0.89, and AUC of
0.98 for microcalcifications detection, and a sensitivity of 0.85, specificity of 0.89, and AUC
of 0.94 for microcalcifications classification.

The endeavor to detect and diagnose pneumonia encompasses a multifaceted ap-
proach, integrating diverse ML and DL methodologies. These methodologies are systemati-
cally explored using relevant input datasets, yielding valuable insights crucial for informed
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healthcare decision-making. Consequently, they serve as the fundamental building blocks
for the development of robust pneumonia detection and diagnosis strategies [16–19].

An active learning approach employed an example re-weighting strategy. In this
method, machine-annotated samples are weighted based on similarity of their gradient
descent directions to expert-annotated data, and gradient magnitude of the last layer of
the deep model. This active learning strategy incorporated a query function to select
reliable and informative samples from machine-annotated batch data produced by a noisy
data. Validation of clinical COVID-19 CT benchmark data demonstrated that this model
improved performance in pneumonia infection segmentation compared to the conventional
methods [20]. The VGG16 model [21] was utilized for detecting and classifying pneumonia
across two chest X-ray image datasets. The VGG16 model integrated with Neural Networks
achieved an accuracy of 92.15%, recall of 0.9308, precision of 0.9428, and F1-Score of 0.937 on
the first dataset. Subsequently, experiments were conducted on another dataset comprising
6436 images encompassing pneumonia, normal, and COVID-19 cases. Results from the
second dataset yielded an accuracy, recall, precision, and F1-score of 95.4%, 0.954, 0.954,
and 0.954, respectively. Comparative analysis revealed that VGG16 performed better than
the other models across both datasets.

The noteworthy advancements achieved by deep learning in various pattern recogni-
tion applications have sparked considerable enthusiasm and raised hopes for its potential
to transform healthcare. Initial research applying deep learning to tasks such as lesion
detection or classification has shown promising results, often surpassing conventional
methods and, in some instances, even rivaling the performance of radiologists in spe-
cific diagnostic tasks [22]. Consequently, deep-learning-based medical image analysis has
been increasingly integrated into computer-aided diagnosis (CAD) systems, providing
valuable decision support to clinicians and improving the accuracy and efficiency of diag-
nostic and treatment procedures. The authors have extensively investigated the essential
steps required to develop robust deep-learning-based CAD tools and seamlessly integrate
them into clinical workflows, thereby contributing to enhanced patient care in healthcare
settings [23]. Classifiers can incorporate techniques such as oversampling, under sampling,
or using loss functions that weigh rare classes more heavily can mitigate imbalanced data
issues. CNNs have shown promising results in automating pneumonia detection from
chest X-ray images. LeNet, a classic CNN architecture, has been used in various image
classification tasks [24]. In this study, we propose a concatenated modified LeNet classifier
that leverages the power of deep learning to accurately classify pneumonia images. The
concatenated approach aims to advance the model’s performance by concentrating on
different regions of the image, thus reducing the false positive rate and increasing accuracy.

2. Literature Survey

In this section, a literature survey on deep learning models for disease diagnosis is
discussed which reveals a growing interest in leveraging artificial intelligence techniques
to improve medical decision-making. Researchers have explored various deep learning
architectures, such as CNNs, RNNs, and transformer-based models, to analyze medical
data ranging from imaging scans to electronic health records [8–10]. Studies demonstrate
the effectiveness of these models in accurately detecting and classifying diseases, including
cancer, cardiovascular conditions, and infectious diseases like pneumonia. Additionally,
advancements in transfer learning and data augmentation techniques have enabled the
development of robust models even with limited labeled data [25–30].

2.1. Exploring Deep Learning Applications in Medical Imaging

Over the past decade, deep learning has emerged as a potent tool in medical image
analysis. Researchers have successfully applied CNNs to various medical imaging tasks,
such as tumor detection, organ segmentation, and disease classification. Deep learning
models have proven their ability to extract meaningful features from medical images and
enhance diagnostic accuracy.
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The review of deep neural networks in the realm of medical imaging by Kim et al. [25]
utilized Artificial Neural Networks (ANN), and Machine Learning (ML) algorithms. How-
ever, limitations arose due to insufficient computing power and limited available training
data, leading to issues like overfitting and vanishing gradient problems in deep network
training. Advancements in computing power, particularly using graphics processing units
(GPUs), and the availability of extensive datasets have revolutionized the field. Deep neural
networks have emerged as powerful tools that surpass human and other ML capabilities, es-
pecially in tasks related to computer vision and speech recognition. These capabilities have
more recently been applied to address healthcare challenges, encompassing applications
such as computer-aided detection and diagnosis, disease prediction, image segmentation,
and image generation.

While not specific to pneumonia diagnosis, the ResNet architecture introduced in this
paper [26] has been widely adopted in medical image analysis, including breast cancer
detection. Transfer learning using pre-trained ResNet models has shown promising results
in improving classification accuracy.

Although focused on diabetic retinopathy, this paper [27] demonstrated the effective-
ness of transfer learning in the medical image analysis domain. The principles discussed
can be applied to cancer detection, or any other disease prediction and analysis which
highlights the transferability of deep learning models.

This foundational survey [28] has provided a significant insight into the concept
of transfer learning and its applications in image classification. While not specific to
pneumonia detection, it offered a valuable theoretical background for understanding the
principles of transfer learning in medical image analysis.

Researchers designed a novel hybrid optimization algorithm by merging the capabil-
ities of the grasshopper and crow search algorithms [29]. This approach aimed to select
optimal features and classify breast masses utilizing a multilayer perceptron (MLP). The
proposed model’s performance was compared against various existing optimization al-
gorithms. Evaluations using the MIAS dataset demonstrated that the hybrid approach
achieved superior results in several metrics, including classification accuracy (97.1%),
sensitivity (98%), and specificity (95.4%).

Researchers have explored the use of multi-layer perceptron (MLP) neural networks for
cervical cancer diagnosis. Their model involves tuning the number of hidden layer neurons
and utilizing pre-trained deep learning architectures like ResNet-34 and VGG-19 to extract
features from the data. Building upon this work, Tan et al. [30] proposed modifications
to the classification layers within these convolutional neural networks (CNNs). They
then fed the outputs of these modified CNNs, after flattening, into the MLP for final
classification. To enhance performance, they trained the CNNs on relevant images using
the Adam optimizer. Tested by the Herlev benchmark cervical dataset, this combined
approach achieved impressive accuracy, reaching 99.23% and 97.65% for the two classes
under investigation.

The authors [31] have reviewed the deep learning methods for image registration,
anatomical/cell structures detection, tissue segmentation, computer-aided disease diagno-
sis and prognosis. They have concluded and shared that deep learning has shed new light
on medical image analysis by allowing the discovery of morphological and/or textural
patterns in images solely from data. The authors also suggested that ImageNet can find
more generalized features in medical images, to enhance the performance. Deep learning
models can incorporate data-driven feature representations, and devise a new method-
ological architecture to reflect the domain-specific knowledge. These models also need to
develop algorithmic techniques to efficiently handle images acquired with different scan-
ning protocols to alleviate the need of training modality-specific deep models. They also
revealed that it is very difficult to understand and interpret the learned models intuitively.

Balasubramaniam et al. [24] have designed a Modified LeNet architecture (type of
CNN) which has been successfully applied to breast cancer data analysis. It demonstrated
its ability to extract discriminative features and classify malignant and benign tumors
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with high accuracy, thereby supporting early detection and diagnosis of breast cancer.
LeNet with corrected Rectified Linear Unit (ReLU), a modification of the traditional ReLU
activation function, has been found to improve the performance of LeNet in breast cancer
data analysis. This has led to more accurate, reliable breast cancer detection and diagnosis
and improved patient outcomes. Batch normalization improved the performance and
training stability of small and shallow CNN architecture like LeNet. It helped to mitigate
the effects of internal covariate shift, which refers to the change in the distribution of
network activations during training. This classifier will lessen the overfitting problem and
reduce the running time. The designed classifier is evaluated against the benchmarking
deep learning models, proving that this has produced a higher recognition rate. The
accuracy of the breast image recognition rate was 89.91% and achieved better performance
in breast cancer tumor detection [24].

2.2. Pneumonia Diagnosis Using Deep Learning

Several studies have explored the use of deep learning for pneumonia diagnosis. These
studies have demonstrated the potential of CNNs in distinguishing between normal and
pneumonia-infected lungs. Various CNN architectures, including LeNet, VGG, and ResNet,
have been adapted and fine-tuned for this task. However, there is room for improving the
accuracy and efficiency of these models.

Ibrahim et al. [32] investigated the potential of a deep learning approach for clas-
sifying different chest X-ray (CXR) images, including coronavirus disease, non-corona
viral pneumonia, pneumococcal pneumonia, and normal CXR scans. The source imagery
was compiled from multiple publicly available databases. The study explored various
classification scenarios: two-way (e.g., COVID-19 vs. normal), three-way (COVID-19 vs.
bacterial pneumonia vs. normal), and four-way (adding non-COVID-19 viral pneumonia).
The notable results are:

• Non-COVID-19 viral pneumonia vs. normal: The model demonstrated 94.43% accu-
racy, 98.19% sensitivity, and 95.78% specificity.

• Bacterial pneumonia vs. normal: The model achieved 91.43% accuracy, 91.94% sensi-
tivity, and 100% specificity.

• COVID-19 vs. normal: Here, the model’s accuracy reached 99.16%, sensitivity 97.44%,
and specificity 100%.

• COVID-19 vs. non-COVID-19 viral pneumonia: Accuracy was 99.62%, sensitivity
90.63%, and specificity 99.89%.

• Three-way classification: The model displayed 94.00% accuracy, 91.30% sensitivity,
and 84.78% specificity.

• Four-way classification: Accuracy was 93.42%, sensitivity 89.18%, and specificity 98.92%.

Overall, the study’s findings suggest the model’s effectiveness in classifying diverse
chest X-ray images, potentially aiding in the diagnosis of various respiratory ailments [32].

To assist radiologists and healthcare practitioners, an automated Computer Aided
Diagnosis (CAD) system was developed by Kundu et al. [33] for detecting early pneumonia
traces. This CAD system used deep transfer learning-based classification to classify chest
X-ray images into two classes “Pneumonia” and “Normal”. The researchers proposed
an ensemble framework that leverages the outputs from three CNN models: GoogLeNet,
ResNet-18, and DenseNet-121. The framework combines the predictions from these models
by creating a weighted average, effectively harnessing the collective knowledge of all three
networks. The weights assigned to the classifiers are evaluated using various classification
metrics and fused using the hyperbolic tangent function. This CAD model was tested
against two datasets, namely Kermany and RSNA datasets. For Kermany datasets, an
accuracy of 98.81%, sensitivity of 98.8%, 98.82% precision, and f1-score of 98.79% are
obtained. For RSNA datasets, an accuracy of 86.8%, sensitivity of 87.02%, 86.89% precision,
and f1-score of 86.95% are obtained. However, this ensembled CAD framework failed
to produce correct predictions due to an inappropriate feature extraction method and
consumed more computational resources.
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Kong and Cheng [34] proposed a deep learning approach for pneumonia diagnosis
in X-ray images. This method combines an Xception neural network for feature extrac-
tion with Long Short-Term Memory (LSTM) for feature selection and classification. The
Xception network extracts informative features from the X-ray images, which are then fed
into the LSTM. The LSTM analyzes these features and identifies the most relevant ones
for pneumonia detection. The researchers addressed the challenge of imbalanced class
distribution during training by employing a hybrid loss function combining cross-entropy
loss with Pearson’s correlation-based feature selection. This optimized approach achieved
promising results of 96% accuracy and 99% ROC. These results suggest that the model can
potentially assist healthcare professionals in diagnosing childhood pneumonia.

2.3. Concatenated Classifiers in Medical Imaging

The concept of concatenated classifiers has been widely used in medical imaging.
These concatenated models typically consist of multiple stages, each designed to focus on
different aspects or regions of an image. By gradually eliminating non-relevant regions,
concatenated classifiers can improve overall accuracy and reduce false positives. This
approach has been used in tasks like face detection and more recently in medical image
analysis [35].

This thesis [36] explored the application of machine learning and image analysis
techniques to develop accurate and reliable diagnostic models for medical images. The
goal was to assist medical professionals in addressing challenges associated with image
interpretation. Due to the complexity of image data distributions, a classifier ensemble
approach using the random subspace method was introduced for microscopic image classi-
fication. Multi-layer perceptrons served as the foundation for this ensemble model. The
researcher investigated various feature extraction methods to find the most suitable rep-
resentations for microscopic images. To enhance classification reliability in bio-medical
images, a cascade classification system was designed. It employed two serially connected,
random subspace-based classifier ensembles. The first stage utilized support vector ma-
chine base classifiers, while the second incorporated neural networks. Images that did not
meet a confidence threshold in the initial stage were escalated to the next for additional
analysis. The cascade system’s evaluation on breast cancer biopsy images and UCI datasets
demonstrated high classification accuracy and reliability, with minimal image rejections.
To address the common issue of imbalanced medical datasets, another ensemble classifier
was proposed, employing Kernel Principal Components as base units trained on diverse
image features. This method yielded promising results on medical image datasets [36].

Shadi et al. [37] explored various deep learning algorithms for detecting pneumonia
in chest X-ray images. Their work included Enhanced CNN, VGG-19, ResNet-50, and a
fine-tuned ResNet-50 model. These models were trained in a large dataset compiled from
Kaggle and were expanded for this specific study. The dataset encompassed 5863 images
divided into training, testing, and validation sets, reflecting real-world data generation
scenarios. The experiments yielded notable results: ResNet-50 achieved an accuracy of
82.8%, while the Enhanced CNN outperformed, attaining the highest accuracy of 92.4%,
establishing its superiority in this evaluation. The results [37] highlighted the potential
of these models in detecting pneumonia progression. This could lead to more accurate
diagnoses and timely treatment for patients. Enhanced CNN and fine-tuned ResNet-50
identified pneumonia after proper calibration.

Chun-Fu Yeh et al. [38] introduced a comprehensive screening platform for detecting
COVID-19 pneumonia using artificial intelligence. Their AI-based system utilized chest
X-ray (CXR) images to predict COVID-19 infection in patients. However, due to the
relatively small public collection of CXR images, training a deep neural network (DNN) for
accurate predictions posed a challenge. In response, the researchers devised a concatenated
learning strategy to enhance both sensitivity and specificity of the DNN classification model.
This involved leveraging a sizable dataset of non-COVID-19 pneumonia CXR images to
generalize and improve the original model through a concatenated learning approach.
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The resulting screening system demonstrated effective classification performance on an
expanded dataset, which included newly added COVID-19 CXR images.

Karar et al. [39] introduced a novel cascaded deep learning framework aimed at
enhancing the effectiveness of computer-aided diagnosis (CAD) systems in the detection of
COVID-19 and pneumonia within X-ray imagery. Their approach breaks down complex
multi-label X-ray classification into a sequence of binary classifiers tailored to identify
specific health conditions. This mirrors real-world diagnostic practices and facilitates
the identification of potential illnesses. The flexibility of the cascaded structure enables
the concurrent deployment of various fine-tuned deep learning models, maximizing the
accuracy in identifying positive cases. The study employed eleven pre-trained CNN,
encompassing models like Visual Geometry Group Network (VGG) and Residual Neural
Network (ResNet). Comprehensive testing on a public X-ray dataset containing normal
and diseased cases validated the model’s performance. Notably, VGG16, ResNet50V2, and
Dense Neural Network (DenseNet169) exhibited superior detection accuracy for COVID-19,
viral (non-COVID-19) pneumonia, and bacterial pneumonia images, respectively [39].

Optical coherence tomography (OCT) image classification relied on classical CNNs,
which, although effective, are criticized for disregarding positional relations in pooling
layers [40]. To address this limitation, we explored the use of capsule networks for OCT im-
age classification, leveraging their ability to learn positional information from images. Our
study aimed to enhance classification accuracy by replacing CNNs with capsule networks.
We curated a training dataset comprising 83,484 OCT images and a test dataset of 1000
images. The training dataset consisted of 37,205 images with choroidal neovascularization
(CNV), 11,348 with diabetic macular edema (DME), 8616 with drusen, and 26,315 normal
images. The test dataset included 250 images from each category. The model, based on a
capsule network, was developed to improve classification accuracy. It underwent training
using the training dataset and was subsequently evaluated using the test dataset. Our
approach yielded remarkable results, achieving an accuracy of 99.6% in OCT image classifi-
cation. This accuracy surpasses existing methods in the literature by 3.2 percentage points,
highlighting the efficacy of capsule networks in this domain.

The advent of data analytics has revolutionized the healthcare industry, offering
invaluable tools for disease prediction through insightful analysis into patient histories [41].
By leveraging predictive modeling, clinicians can make informed decisions with greater
accuracy when diagnosing diseases. This paper undertakes a comparison between the
J48 and naive Bayes classification techniques, aiming to optimize algorithmic efficiency
and accuracy using Thyroid datasets [41]. The results indicate that the decision tree J48
emerged as the superior classifier, boasting an accuracy of 81.94%. In contrast, the Naive
Bayes classifier achieved an accuracy of 51.77%. These findings underscore the efficacy of
the J48 technique, which outperformed Naive Bayes in terms of classification accuracy.

In the precise diagnosis of interstitial lung disease (ILD), achieving consensus across
radiological, pathological, and clinical observations is essential. Mei et al. [42] have used
RadImageNet pre-trained models which are a combination of Deep Neural Networks
(DNN) and transformer model based approach. RadImageNet models integrate multimodal
data to diagnose five ILD types and forecast a patient’s 3-year survival rate. RadImageNet
model aided clinicians in diagnosing and categorizing ILD patients, while dynamically
predicting disease progression and prognosis. Management of ILD also requires thorough
follow-up with computed tomography (CT) studies and lung function tests to assess
disease progression, severity, and response to treatment. However, accurate classification of
ILD subtypes can be challenging, especially for those not accustomed to reading chest CTs
regularly. Thus, dynamic models to predict patient survival rates based on longitudinal data
are challenging to create due to disease complexity, variation, and irregular visit intervals.
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2.4. Challenges and Opportunities

In this paper, we proposed a concatenated modified LeNet classifier for pneumonia
image classification. Our approach is to address some of the challenges in pneumonia
diagnosis like lack of accuracy, interpretation, and collaboration with HealthCare practi-
tioners. This concatenated model has improved accuracy, and ultimately contributed to
more effective patient care. We present the architecture, training process, and evaluate
the model’s performance using a comprehensive dataset, demonstrating its potential as a
valuable tool in the diagnosis of pneumonia from medical images.

3. Proposed Concatenated Modified LeNet-5 Model

The concatenated LeNet-5 model, shown in Figure 2, consists of three identical LeNet-
5 models, each processing the input data through a series of convolutional and fully
connected layers. The input layer at the bottom of the architecture accepts data with a
shape of (128, 128, 1), representing grayscale images of size 128 × 128 pixels. A line connects
this input layer to each of the concatenated LeNet-5 model, indicating that the same input
is fed into each model.
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Each LeNet-5 model follows a consistent architecture. The model begins with a
convolutional layer with 6 filters, a kernel size of (5, 5), ReLU activation with a same
spatial dimensions as the input ensures that the output feature map has the same spatial
dimensions to propagate gradients efficiently. This is followed by an average pooling layer
with a pooling size of (2, 2). Subsequently, another convolutional layer is applied with
16 filters, a kernel size of (5, 5), and ReLU activation, followed by another average pooling
layer with a pooling size of (2, 2). A flattening layer is then employed to prepare the output
for the subsequent dense layers.

After flattening, the concatenated LeNet-5 model incorporates two fully connected
layers, with the first 120 neurons and ReLU activation, and the second with 84 neurons and
ReLU activation. The final output layer of each LeNet-5 model consists of 2 neurons with
softmax activation, enabling binary classification. This entire sequence of layers is repeated
three times, once for each concatenated model.

The outputs of the three LeNet-5 models are concatenated using a concatenate layer,
creating a unified representation of the intermediate outputs. This concatenated output
is then reshaped using a Reshape layer to have dimensions (nets, 2), where ‘nets’ rep-
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resents the number of concatenated models. Finally, the output layer at the top of the
architecture produces the final output with a shape of (None, 2), indicating the binary
classification outcome.

The sequence of input, processing and output layer details are presented below.

• Input Layer: At the bottom of the diagram, a layer representing the input data with
the shape (128, 128, 1).

• LeNet-5 Model (Repeated Three Times): For each Concatenated model, the following
blocks, repeated three times (because nets = 3 in the proposed model):

➢ Convolutional Layer: 6 filters, kernel size (5, 5), ReLU activation, with Average
Pooling (pool size: 2 × 2).

➢ Convolutional Layer: 16 filters, kernel size (5, 5), ReLU activation, with Average
Pooling (pool size: 2 × 2).

➢ Flatten Layer: Flattens the output.
➢ Fully Connected Layer: 120 neurons, ReLU activation.
➢ Fully Connected Layer: 84 neurons, ReLU activation.
➢ Output Layer: 2 neurons with softmax activation.

• Concatenated Input: A line connects the input layer to each concatenated LeNet-5
model, indicating that the same input is fed into each.

• Concatenate Layer: Above the LeNet-5 blocks, there will be a block representing the
concatenate layer, combining the outputs of the concatenated models.

• Reshape Layer: Above the concatenate layer, there will be a block representing the
Reshape layer, reshaping the concatenated output to have dimensions (nets, 2).

• Output Layer: In the top, there will be the final output layer with shape (None, 2).

Each block in Figure 2 represents a layered architecture with specified configurations,
the lines between them indicate the flow of data, and the connections in the concatenated
LeNet-5 model.

Detailed information about the layers, and the connections of the concatenated LeNet
model is presented in Figure 3a–c.
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The model is compiled using the Adam optimizer and categorical crossentropy loss,
and a summary of the architecture is displayed in Figure 4.
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4. Results
4.1. Dataset Description

The Chest X-ray Images Dataset is publicly available [43]. All the images are in PNG
format and categorized into two classes, which are pneumonia (1), and non-pneumonia
(0) indicating a resolution of 128 × 128 pixels. In the dataset, total number of images are
5856 in which non-pneumonia images are 1583 and pneumonia images 4273. In training,
4684 images of both pneumonia and non-pneumonia are used. For validation and testing,
1152 and 20 images are used, respectively.

4.2. Experimentation Details

In our experiments, we utilize Google Colab, a cloud-based platform offering Jupyter
notebook functionality. This platform grants access to image sources through its connection
to Google Drive. For accelerated training, we leverage T4 class GPUs offered by Google
Colab. The deep learning models are built using Keras 2.6.0, a user-friendly library for
constructing neural networks, which seamlessly integrates with TensorFlow 2.14.0, a pow-
erful open-source framework for machine learning. This combined environment, accessible
through Google Colab, allows for effortless library import and code execution within a
collaborative setting. This integration simplifies model development while ensuring opti-
mal utilization of the available GPU resources. The implementation of the concatenated
model with the input images carried out using Python 3.10.11. The confusion matrix serves
as a vital tool in evaluating the efficacy of a concatenated modified LeNet-5 model for
image recognition, specifically in distinguishing between pneumonia and non-pneumonia
images and the sample classification is shown in Figure 5. This matrix, typically presented
as a 2 × 2 table for binary classification, encapsulates the counts of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) based on the model’s
predictions on a test dataset.

In the domain of pneumonia classification, we employ the concatenated modified
LeNet-5 model. The evaluation of this model includes comprehensive performance metrics,
shedding light on its efficacy in accurately classifying pneumonia cases. These metrics not
only gauge the model’s accuracy but also provide insights into its precision, recall, and F1
score, allowing a nuanced understanding of its classification capabilities. The implications
of these performance metrics extend beyond numerical values, offering crucial insights into
the model’s strengths and areas for improvement. This analytical approach ensures a thor-
ough assessment of the concatenated modified LeNet-5 model’s proficiency in pneumonia
classification, providing valuable information for further refinement and optimization.
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1. Sensitivity (True Positive Rate): This metric highlights the model’s ability to correctly
identify images with pneumonia. It is calculated as TP divided by the sum of TP
and FN. A higher sensitivity indicates a stronger capability to catch actual cases
of pneumonia.

2. Specificity (True Negative Rate): Specificity gauges the model’s proficiency in correctly
identifying non-pneumonia images. It is computed as TN divided by the sum of
TN and FP. A higher specificity implies a reduced likelihood of misclassifying non-
pneumonia instances.

3. Precision: Defined as the ratio of true positive predictions to the total instances pre-
dicted as positive (TP/(TP + FP)), precision measures the model’s ability to accurately
identify pneumonia cases among all instances it predicts as positive. In the medical
diagnosis context, precision becomes crucial as it reflects the proportion of predicted
positive cases that are indeed true positives. High precision indicates that when the
model predicts pneumonia, it is likely to be correct, minimizing the risk of false alarms
in clinical settings.

4. F1-score: The F1-score combines precision and recall, striking a balance between the
two metrics. It is the harmonic mean of precision and recall, providing a compre-
hensive measure of a model’s performance by considering both false positives and
false negatives. The F1-score is particularly valuable in medical diagnosis, where
achieving equilibrium between correctly identifying pneumonia cases (recall) and
ensuring those predictions are accurate (precision) is paramount. A higher F1-score
signifies a model that excels in both precision and recall, crucial for reliable and trust-
worthy pneumonia detection. Additionally, support indicates the number of actual
occurrences of each class, providing context to the precision and recall values and
aiding in the interpretation of the model’s performance across different class sizes.

In a medical diagnosis scenario, understanding the support for pneumonia and non-
pneumonia classes helps to contextualize the model’s generalization to real-world preva-
lence rates, contributing to a more nuanced assessment of its effectiveness in clinical
applications. The confusion matrix offered a detailed insight into how well the concate-
nated modified LeNet-5 architecture performs in classifying pneumonia cases, which is
shown in Figure 6. Table 1 and Figure 7 illustrate the model’s efficacy in image recognition.
It accurately distinguishes between 293 non-pneumonia cases and 824 pneumonia cases,
showcasing high true negative and true positive values, respectively. However, it does
show 22 false positives, indicating instances where non-pneumonia cases were mistak-
enly identified as pneumonia. Additionally, there are 33 false negatives, where the model
incorrectly categorized pneumonia cases as non-pneumonia.
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The confusion matrix is a powerful tool for assessing the performance of a classifier,
offering insights that go beyond simple accuracy metrics and providing a more detailed
picture of the model’s strengths and weaknesses. The concatenated LeNet5 model, as
described, is a unique architecture that involves the combination of three identical LeNet-5
models. Each LeNet-5 model processes the input data independently through a series of
convolutional and fully connected layers. The key features of this model are its use of
three parallel LeNet-5 structures and the concatenation of their outputs. The use of three
identical LeNet-5 models in parallel can be seen as a form of ensemble learning. Ensemble
methods combine multiple models to improve overall performance, and in this case, the
concatenation of outputs may capture diverse representations from the input data.
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• Feature Diversity: Each LeNet-5 model processes the input data independently, captur-
ing different aspects and features. Concatenating these outputs likely results in a more
comprehensive representation of the input data, contributing to improved accuracy.

• Parameter Sharing: Since the LeNet-5 models are identical, they share the same set
of parameters. This can help in reducing the overall model complexity while still
benefiting from the parallel processing of multiple instances.

• Effective Representation Learning: The architecture’s ability to achieve higher accuracy
on both training and testing datasets suggests that it effectively learns and generalizes
representations from the input data, outperforming other architectures like Modified
LeNet, ResNet 50, and AlexNet.

• Insight into Class Imbalances: In situations where there is a class imbalance (significant
difference in the number of instances between classes), a confusion matrix helps
identify how well the model performs for each class.

• Model Comparison: When comparing multiple models, a confusion matrix facilitates a
side-by-side evaluation of their performance, enabling stakeholders to make informed
decisions about which model is better suited for a particular task.

• Diagnostic Information: The confusion matrix is particularly useful in medical and
diagnostic applications, providing information on the model’s ability to correctly
identify positive (disease presence) and negative (disease absence) cases.

The concatenated LeNet-5 model employs a parallel processing approach, leveraging
three identical LeNet-5 structures to capture diverse features from the input data. The
concatenation of these outputs appears to enhance the model’s representation learning,
leading to superior training and testing accuracies of 98% and 95%, respectively, compared
to other specified architectures. Modified concatenated LeNet-5 architecture demonstrated
significant improvements in image recognition tasks, particularly in distinguishing between
pneumonia and non-pneumonia cases, even when dealing with large datasets which can
be inferred from Table 2.

Table 2. Image Recognition for the Pneumonia and Non-Pneumonia cases.

Predicted
0 1

Actual
0 True Negative

293
False Positive

22

1 False Negative
33

True Table 2 Positive
824

Figure 8 shows the implications of a multiclass ROC curve drawn based on a true
positive (TP) versus false positive (FP) for a concatenated M=modified LeNet-5 model
on a pneumonia dataset and its predictive power is depicted in Figure 9. The area under
the ROC curve (AUC) of the multiclass ROC curve can provide an overall measure of
how well the concatenated modified LeNet-5 model discriminated between pneumonia
and non-pneumonia classes. Here, AUC of 0.99 is obtained which is higher AUC value.
From this, it is inferred that the model has shown the better overall performance. The true
positive rate (TPR), or sensitivity metric, indicated the ability of the model to correctly
identify instances of pneumonia. A high sensitivity is crucial for a medical diagnosis task
as it minimized the number of false negatives, ensuring that actual cases of pneumonia are
not missed.
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The false positive rate (FPR), or specificity metric, reflected the rate of misclassification
of non-pneumonia instances as pneumonia. In a medical context, minimizing false positives
is essential to avoid unnecessary treatments or interventions. The model’s performance is
crucial for clinical decision support, particularly in accurately identifying pneumonia cases,
as it directly impacts patient care. It is essential to emphasize that incorporating domain
experts’ knowledge is key when interpreting the model’s results in medical applications.
This collaboration will ensure that the model’s predictions align with clinical expectations,
guiding appropriate patient care, medication decisions, and therapy details. The involve-
ment of healthcare professionals is paramount to the successful integration of the model
into the clinical decision-making process.
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The design of the concatenated LeNet-5 model, which achieved higher training and
testing accuracies compared to classifiers like modified LeNet, ResNet 50, and AlexNet,
suggested several benefits that contribute to its superior performance, which are shown in
Tables 2 and 3 and Figure 10.

• Ensemble Learning: The use of three identical LeNet-5 models in parallel introduced
an ensemble learning strategy. Ensemble methods combine multiple models to im-
prove overall performance by capturing diverse patterns and representations. In the
concatenated LeNet-5 model, the parallel processing of three identical models enabled
the extraction of complementary features from the input data. The subsequent concate-
nation of these diverse features contributes to a more robust and generalized model.

• Comprehensive Feature Extraction: The concatenated LeNet-5 architecture allowed
for a comprehensive extraction of features from the input data. Each LeNet-5 model
processed the input independently, capturing different aspects and details. By con-
catenating these outputs, the model can aggregate a more extensive set of features,
enhancing its ability to discriminate between classes and improving accuracy.

• Parameter Sharing: The three LeNet-5 models in the concatenated LeNet-5 archi-
tecture are identical, meaning they shared the same set of parameters. Parameter
sharing reduced the overall model complexity, making it more efficient and preventing
overfitting on the training data. This shared parameterization also facilitates effective
learning and generalization, contributing to the model’s high accuracy on both training
and testing datasets.

• Reduction of Overfitting: The ensemble nature of the concatenated LeNet-5 model
helped mitigate overfitting. Overfitting occurred when a model learnt to perform well
on the training data but failed to generalize to unseen data. The diversity introduced by
parallel LeNet-5 models and their subsequent combination through concatenation aids
in reducing overfitting, leading to better generalization and higher testing accuracy.

• Parallel Processing and Efficiency: The parallel processing of three LeNet-5 models
allows for efficient computation, enabling faster training times. This can be particularly
advantageous when dealing with large datasets and complex architectures. The
efficiency gained through parallel processing contributes to quicker convergence
during training, resulting in a model that achieves higher accuracy in a shorter amount
of time.

• Effective Learning Representations: The Concatenated LeNet-5 model exceled in
learning effective representations of the input data. The combination of parallel
processing, ensemble learning, and concatenation of outputs results in a model that
captured both low-level and high-level features, contributing to its ability to make
accurate predictions.

Table 3. Comparison of Training and Testing Accuracy values of different models.

Training Accuracy Test Accuracy

Concatenated LeNet 99 96
Modified LeNet 89 87

Resnet50 85 84
Alexnet 81 79

The concatenated LeNet-5 model achieved higher training and testing accuracies
compared to Modified LeNet, ResNet 50, and AlexNet through a combination of ensemble
learning, comprehensive feature extraction, parameter sharing, reduction of overfitting,
and efficient parallel processing. These design choices collectively contributed to a model
that is not only powerful in learning from the training data but also effective in generalizing
to unseen test data, leading to impressive accuracy rates.
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The success of the concatenated LeNet-5 models in achieving higher precision, recall,
F1-score, and support compared to other models signifies its proficiency in both minimizing
false positives and false negatives and maximizing overall predictive performance. The
concatenated LeNet-5 model accomplished this using three identical LeNet-5 models in
parallel, constituting an ensemble learning approach. In the concatenated LeNet-5 model,
the ensemble learning strategy aided in creating a more robust and reliable predictor.
The three models processed the same input data independently and captured the diverse
patterns and representations. The concatenation of the outputs allowed the integration of
these features, providing a richer representation of the data. This comprehensive feature
extraction is crucial for achieved higher precision, recall, F1 score, and support, as it
enabled the model to discern subtle patterns and variations in the input. Parameter sharing
promotes efficient learning and generalization, preventing overfitting of the training data.
The shared parameters contribute to the model’s ability to discriminate between different
classes by capturing common features across instances. This shared knowledge enhanced
precision by reducing false positives and recall by minimizing false negatives.

The diversity introduced by the ensemble models, combined with concatenation,
reduces the risk of overfitting, and improves the model’s capacity to generalize, positively
impacting precision, recall, and the F1 score. The concatenated LeNet-5 model excels in
learning effective representations of the input data. By combining the strengths of three
LeNet-5 models, the architecture captures both low-level and high-level features, enabling
more accurate predictions. This contributes to higher precision and recall, as the model is
adept at identifying relevant patterns in the data.

The higher precision, recall, F1 score, and support indicate that the concatenated
LeNet-5 model offers a more comprehensive and accurate evaluation of its predictive
performance across multiple metrics which is shown in Figure 11 in comparison with
other related benchmarked models. This is particularly valuable in real-world scenarios
where different aspects of model performance are crucial. The higher precision and recall
suggest that the concatenated LeNet-5 model is more confident in its predictions. This
is crucial in applications where the consequences of false positives or false negatives are
significant, such as in medical diagnoses or fraud detection. The model’s ability to achieve
high precision, recall, F1 score, and support implied that it generalized well for unseen
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data. This is a key consideration in deploying machine learning models in real-world
scenarios where robust performance on new, previously unseen instances is essential. In
summary, the concatenated LeNet-5 model’s success in achieving higher precision, recall,
F1 score, and support is attributed to its ensemble learning strategy, comprehensive feature
extraction, parameter sharing, and efficient learning representations. The implications for
model analysis include a holistic evaluation, robustness across various metrics, increased
confidence in predictions, and strong generalization for unseen data [39].
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The advantages of the concatenated deep learning classifiers framework include:

• Improved performance in confirming infected cases
• Flexibility in using different fine-tuned deep learning models
• Ability to handle multi-label classification of X-ray images
• Successful testing and evaluation on a public X-ray image dataset

This framework has the potential to significantly enhanced the accuracy of CAD
systems for diagnosing pneumonia diseases.

5. Conclusions

The concatenated modified LeNet classifier, when incorporated, corrected rectified
linear unit (ReLU) activation functions and batch normalization. A promising solution for
accurate pneumonia image classification is presented. The utilization of deep learning tech-
niques enhanced the diagnostic capabilities, facilitating more efficient and timely patient
care. The concatenated modified LeNet architecture with corrected ReLU contributes to
improved feature extraction, and boosted the model’s discriminative power. The inclusion
of batch normalization further enhanced the stability and performance of the classifier,
particularly in small and shallow convolutional neural network (CNN) architectures like
LeNet. The evaluation of the model on a comprehensive dataset demonstrates a remarkable
recognition rate, achieving an accuracy of 96% in pneumonia image classification. This
performance is competitive with or even surpassed other relevant deep learning models
like those benchmarked in this study. Notably, the classifier addressed common challenges
such as overfitting and reducing running time, suggesting its potential as a valuable di-
agnostic tool in the field of pneumonia diagnosis from medical images. These findings
underscore the significance of leveraging advanced deep learning techniques in medical
image analysis, particularly for critical health concerns like pneumonia. The proposed con-
catenated modified LeNet classifier holds promise for practical implementation, offering a
reliable and effective means to assist healthcare professionals in the accurate diagnosis of
pneumonia, ultimately contributing to improved patient outcomes.
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