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Abstract: Background: Although inhaled corticosteroids (ICS) are the first-line therapy for patients
with persistent asthma, many patients continue to have exacerbations. We developed machine
learning models to predict the ICS response in patients with asthma. Methods: The subjects included
asthma patients of European ancestry (n = 1371; 448 children; 916 adults). A genome-wide association
study was performed to identify the SNPs associated with ICS response. Using the SNPs identified,
two machine learning models were developed to predict ICS response: (1) least absolute shrinkage
and selection operator (LASSO) regression and (2) random forest. Results: The LASSO regression
model achieved an AUC of 0.71 (95% CI 0.67–0.76; sensitivity: 0.57; specificity: 0.75) in an independent
test cohort, and the random forest model achieved an AUC of 0.74 (95% CI 0.70–0.78; sensitivity:
0.70; specificity: 0.68). The genes contributing to the prediction of ICS response included those
associated with ICS responses in asthma (TPSAB1, FBXL16), asthma symptoms and severity (ABCA7,
CNN2, PTRN3, and BSG/CD147), airway remodeling (ELANE, FSTL3), mucin production (GAL3ST),
leukotriene synthesis (GPX4), allergic asthma (ZFPM1, SBNO2), and others. Conclusions: An accurate
risk prediction of ICS response can be obtained using machine learning methods, with the potential
to inform personalized treatment decisions. Further studies are needed to examine if the integration
of richer phenotype data could improve risk prediction.

Keywords: asthma; inhaled corticosteroids; polygenic risk prediction; machine learning; pharmacogenetics

1. Introduction

Inhaled corticosteroids (ICS) are the most commonly used controller medications
for asthma, which affects over 300 million people worldwide [1]. However, a significant
proportion of subjects continue to have exacerbations despite therapy [2,3]. Up to 55%
of children with persistent asthma may not respond to ICS during an 8-week therapy
course [4]. Moreover, the prolonged use of ICS exposes patients to adverse systemic effects,
including decreased bone mineral density, cataracts, and adrenal suppression [5,6].
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There is increasing evidence indicating that genetic variation substantially influences
ICS efficacy [7]. Previously identified single nucleotide polymorphisms (SNPs) associated
with ICS response include variants in FCεR2, ST13, IL1RL1, CRHR1, and TBXT [8–13].
Genomic studies using RNA-Seq to characterize transcriptomes have also identified mul-
tiple genes involved in the inflammatory pathway that influence ICS response. For ex-
ample, CRISPLD2 mRNA has been shown to increase in response to treatment with a
pro-inflammatory cytokine (IL1β) [14]. Despite these early discoveries, most genetic vari-
ants associated with ICS response confer small-to-modest effects and cannot, by themselves,
accurately predict ICS response in individual patients. Many complex traits are highly
polygenic, whereby multiple causal variants simultaneously contribute to the genetic
susceptibility of a trait [15]. Thus, although the risk conferred by individual SNPs may
not be sufficiently large to predict a trait, the combined effect of multiple variants can
achieve a degree of risk discrimination that is useful for risk assessment. However, devel-
oping the optimal methods for selecting and combining SNPs for risk prediction remains a
significant question.

The objective of this study was to develop machine learning models for predicting
ICS response using genome-wide genotype data from multiple cohorts of individuals
with asthma. We developed and compared two machine learning models to predict the
ICS response in patients with asthma: LASSO regression and random forest (a non-linear
model). To date, no published studies have evaluated the use of machine learning models
to predict ICS response in asthma robustly for multiple cohorts. The ability to stratify
individuals based on their likely treatment response will offer the potential to optimize
asthma treatment and to prevent treatment-related adverse effects.

2. Materials and Methods
2.1. Study Subjects and Datasets

This study’s cohort comprised 1371 asthma subjects of European ancestry with a
history of chronic ICS use from seven well-characterized asthma cohorts with genome-wide
genotype data. The pediatric asthma population included ICS treatment arms within
the Childhood Asthma Management Program (CAMP) [16], and two of the five trials in
the Childhood Asthma Research and Education (CARE) network—the Pediatric Asthma
Controller Trial (PACT) and the Characterizing Response to Leukotriene Receptor An-
tagonist and Inhaled Corticosteroid (CLIC) trials [17,18]. The adult asthma cohort com-
prised subjects from the Asthma Clinical Research Network (ACRN), and data from two
biorepositories linked to deidentified electronic health records from the PharmacoGenomic
discovery and replication in very large POPulations (PGPop) cohorts: the Marshfield Clinic
Personalized Medicine Research Project (PMRP) [19] and Vanderbilt University Medical
Center’s BioVu program (BioVu) [20]. CAMP, CARE, and ACRN are part of the Single-
Nucleotide Polymorphism Health Association-Asthma Resource Project (SHARP)—a data
resource funded by the NHLBI that compiles genome-wide SNP data, along with clinical
drug-treatment response data, from a large number of NHLBI-sponsored asthma clinical
trials [21–26]. PGPop is a collaborative research resource of the Pharmacogenomics Re-
search Network (PGRN). The institutions that are part of PGPop investigate drug-response
phenotypes through the genetic testing of EHR-linked biobank data [21]. The combined
datasets provide the larger sample size required for GWAS analyses and have been used in
many published GWAS studies [22–28]. Supplementary Table S1 describes the population
captured in each dataset. The subjects who were present in more than one study population
were removed prior to evaluation. All study procedures were approved by the respective
Institutional Review Boards of each consortium and the Brigham and Women’s Hospital
(the Partners Human Research Committee (PHRC)). Human subjects approval was ob-
tained from the Partners Human Research Internal Review Board, Protocol #: 2002P000331.
Written informed consent was obtained.
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From a total sample size of 1371 subjects, we randomly selected 823 subjects as the
training cohort for model development, and the remaining 548 subjects as the test cohort
for model validation.

2.2. Study Outcomes

The primary outcome was asthma exacerbations occurring while having two or more
fills of ICS in a year, since two or more yearly fills of ICS is associated with a good treatment
response and a significant decrease in hospitalizations from asthma [29]. An asthma
exacerbation was defined as an emergency department (ED) visit or hospitalization due
to asthma, or the need for oral corticosteroids. The high morbidity associated with these
outcomes drives our focus on these areas.

2.3. Genotyping, Imputation, and Quality Control Procedures

Genotyping of DNA samples from the subjects enrolled in the six study populations
has been previously described [4,16,19,20,30,31]. To account for the differences in the
genotyping arrays and platforms used in each individual study, genetic markers across all
five populations were merged using PLINK v.1.9 [32], pre-phased using Shape-IT v2.5 [33],
and imputed to the 1000 Genomes Project (phase 1 integrated release [34]) reference CEU
panels with IMPUTE2 [35].

Standard quality control procedures were applied to the merged, imputed dataset
using PLINK v.1.9 to remove markers with below-threshold genotype call rates (<5%), low
minor allele frequency (<5%), and Hardy–Weinberg Equilibrium deviation (p < 1 × 10−6).
Principal components analysis was performed using PLINKv1.9 to adjust for population
stratification. A final dataset of 5,401,598 variants and 1371 subjects passed all the filters
and quality control measures for analysis.

2.4. Development of Predictive Models

To select the SNPs for inclusion in the predictive models, we first conducted a genome-
wide association study (GWAS) on the training cohort to identify the SNPs associated with
ICS response. The analysis was adjusted by the first 6 principal components. Linkage-
disequilibrium–independent associations were obtained by clumping with an r2 threshold
of 0.50, a physical distance of 250 kb, a significance threshold of 1 × 10−5 for the index
SNPs, and a secondary significance threshold of 1 × 10−2 for the clumped SNPs. Since
the goal of this pre-selection step was to reduce the dimensionality of the predictors to
a manageable set, a less stringent GWAS threshold was applied to select SNPs. Using
the selected SNPs, we then developed and compared two machine learning models to
predict ICS response: (1) LASSO (least absolute shrinkage and selection operator) regression
models and (2) random forest models. LASSO is an extension of ordinary least squares
regression that performs both variable selection and regularization to enhance prediction
accuracy [36]. Random forest is a classifier consisting of a collection of tree-structured
classifiers, where the classifiers are independent, identically distributed random vectors,
and each tree casts a unit vote for the most popular class [37]. Both modeling approaches
involved performing further feature selection while fitting the predictive model. In the
LASSO regression model, the number of SNPs entered into the final model depended
on the LASSO regularization term. To identify the most optimal model, we fit multiple
models using varying values for the LASSO regularization term, and evaluated them
using balanced bootstrap resampling (with 100 iterations) on the training cohort. The final
model was then validated on the hold-out test cohort. A similar process was conducted to
fine-tune and optimize the random forest model, whereby multiple models were developed
with a varying number of variables randomly sampled as candidates at each split, and
the most optimal model was selected. In both approaches, the models were optimized to
maximize the area under the receiver operating characteristic curve (AUC) on the training
data. The SNPs that contributed the most to the prediction of ICS response in each model
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were identified using the measure of variable importance—a ranked variable ranging from
0 to 100 that quantifies the importance of each variable in the prediction models.

To determine whether the combination of genetic and phenotype data more accurately
predicts ICS response than genetic data alone, we further developed separate models
integrating SNPs and phenotype data (including sex, age, and body mass index [BMI])
to predict ICS response. In a traditional GWAS analysis, variability in the phenotypic
characteristics can confound the relationship between genetic variants and the outcome
of interest. The most common approach with which to address confounding effects is
by regressing the covariate on the genetic variant. However, because our goal was to
predict ICS response and not to identify the effect of a particular variant on ICS response,
phenotype data were included as potential predictors in the machine learning models
instead. This allowed for the machine learning models to learn any complex relationships
that may exist between the genetic variants and phenotypic characteristics to predict the
outcome of interest. The AUC was used to compare model performance with differences in
the AUC quantified using an approach described by DeLong et al. [38]. Additionally, we
evaluated the sensitivity and specificity of each model. All the machine learning models
were developed using R statistical software version 4.1.

3. Results

The characteristics of this study’s subjects are shown in Table 1. The training cohort
in our analysis included 823 participants (323 cases, 500 controls), while the test cohort
consisted of 548 participants (199 cases, 349 controls). The subjects in the training and
test cohorts were 60% female and were from various stages across the life course (from
early childhood to late adulthood). The mean ages were similar across the training and test
cohorts. Individuals were overweight on average, and their BMI levels ranged from under-
weight to obese. Approximately one third of the participants experienced exacerbations
while on ICS.

Table 1. Demographics of study population (n = 1371).

Variable Training Cohort
(n = 823)

Test Cohort
(n = 548)

Sex

Female, n (%) 500 (60.1) 331 (60.4)

Male, n (%) 323 (39.2) 217 (39.6)

Age, years, mean (SD) 25.5 (13.0) 25.9 (13.1)

BMI, kg/m2, mean (SD) 26.8 (8.3) 26.2 (7.5)

Exacerbation while on ICS, n (%) 323 (39.2) 199 (36.3)

A total of 271 variants met a suggestive GWAS significance threshold of p < 1 × 10−5

for ICS response, and a secondary significance threshold of 1 × 10−2 for the clumped SNPs.
The GWAS inflation was low (lambda = 1.03). The full list of genetic variants annotated
to 132 genes is shown in Supplemental Table S1. A q-q plot of the GWAS is shown in
Supplementary Figure S1, and a Manhattan plot is shown in Supplementary Figure S2.

We used these sets of variants to train and fine-tune the machine learning models for
predicting ICS response. The most optimal LASSO regression model employed a LASSO
regularization term of 0.0187 and retained 89 of the 271 SNPs. The model achieved an
AUC of 0.71 (95% CI 0.67–0.76) in the test cohort, with 57% sensitivity and 75% specificity
(Table 2; Figure 1). The most optimal random forest model retained 270 SNPs, achieving an
AUC of 0.74 (95% CI 0.70–0.78) in the test cohort, with 70% sensitivity and 68% specificity
(Table 2; Figure 1). Table 3 summarizes the top most important variants identified by
each model. Many of these variants are located near or within genes with known links
to asthma and allergic disease phenotypes. These genes include those associated with
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corticosteroid responses in asthma (TPSAB1, FBXL16), asthma symptoms and severity
(ABCA7, CNN2, PTRN3, and BSG/CD147), airway remodeling (ELANE, FSTL3), mucin
production (GAL3ST), lipid peroxidation and pro-inflammatory leukotriene levels (GPX4),
allergic asthma (ZFPM1, SBNO2), and others.

Table 2. Performance of the most optimal prediction models.

Performance
Measure

LASSO Regression Model Random Forest Model

Training Cohort
(n = 823)

Test Cohort
(n = 548)

Training Cohort
(n = 818)

Test Cohort
(n = 546)

Models including SNPs only

AUC 0.94 (0.93–0.96) 0.71 (0.67–0.76) 1.00 (1.00–1.00) 0.74 (0.70–0.78)

Sensitivity 0.87 0.57 1.00 0.70

Specificity 0.86 0.75 1.00 0.68

Models including SNPs and phenotype data

AUC 0.92 (0.90–0.94) 0.71 (0.67–0.76) * 1.00 (1.00–1.00) 0.73 (0.69–0.78) ˆ

Sensitivity 0.87 0.59 1.00 0.69

Specificity 0.83 0.72 1.00 0.63
* AUC not statistically significant when compared to the model including SNPs only (p = 0.969). ˆ AUC not
statistically significant when compared to the model including SNPs only (p = 0.79).

In addition to constructing predictive models based on SNPs alone, we also incorpo-
rated phenotypic data (sex, age, and BMI) into our predictive models. In the random forest
model, all three phenotype variables were selected for inclusion. In the LASSO regression
model, only BMI was selected for inclusion. In both models, the inclusion of both SNP
data and these phenotypic variables did not show improved predictive accuracy over the
models that included SNPs alone (Table 2).
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Figure 1. Model performance measured by the area under the receiver operating characteristic curve
(AUC). (a) LASSO regression model including SNPs only. (b) LASSO regression model including
SNPs and phenotype data. (c) Random forest model including SNPs only. (d) Random forest model
including SNPs and phenotype data.

Table 3. The top most important variables in model development. (a) LASSO regression model;
(b) Random forest model.

Chr:Postion Rs Number Nearest Gene Reference
Allele Effect Allele Effect Allele

Frequency
Variable

Importance *

(a)

21:20856221 rs4818452 RPL37P4/TMPRSS15 G C 0.44 100

10:37228865 rs1852484 ANKRD30A G A 0.27 91.9

3:196520050 rs79390411 PAK2 C T 0.13 76.8

4:77473026 rs114847105 SHROOM3 T A 0.28 62.1

13:69770987 rs9541819 KLHL1 G A 0.07 61.8

8:51961588 rs10093174 PXDNL G T 0.07 54.4

4:111218700 rs75800589 ZBED1P1 G A 0.14 51.4

19:339675 rs878685 MIER2 C T 0.39 49.9

11:6718704 rs1466977 MRPL17 T G 0.29 48.7

2:215660643 rs6747962 BARD1 C A 0.16 47.9

4:118248606 rs75774008 TRAM1L1 T G 0.05 47.2

19:654968 rs4594371 RNF126 G A 0.05 46.5

16:88731011 rs752843 RNF166 A G 0.14 42.4

9:139502019 rs55892012 EGFL7 G A 0.10 42.1

7:334719 rs36177169 C T 0.09 39.1

17:18584142 rs116808485 ZNF286B A G 0.08 38.1

16:88826073 rs2278053 PIEZO1 G C 0.31 35.1
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Table 3. Cont.

Chr:Postion Rs Number Nearest Gene Reference
Allele Effect Allele Effect Allele

Frequency
Variable

Importance *

16:88555879 rs34319485 ZFPM1 G A 0.25 35.1

16:870711 rs2382764 PRR25 T C 0.07 34.3

15:20587599 rs1846765 GOLGA6L6 G C 0.12 33.1

19:2012477 rs4405674 BTBD2 T G 0.36 29.1

22:17164773 rs361799 TPTEP1 C T 0.05 28.9

1:1065296 rs4072537 C1orf159 T C 0.25 28.4

16:1194047 rs4288998 CACNA1H A G 0.22 26.6

9:140304779 rs9414736 EXD3 A G 0.27 26.6

8:51478714 rs17709272 SNTG1 G T 0.37 26.2

17:80214198 rs12601586 CSNK1D A G 0.19 26.0

(b)

19:1086211 rs1061233 HMHA1 G A 0.31 100

21:20856221 rs4818452 RPL37P4/TMPRSS15 G C 0.44 97.7

19:780209 rs7343137 PTBP1 T C 0.38 95.3

1:1097291 rs61768478 MIR200B C A 0.17 95.2

19:840090 rs351109 PRTN3 T C 0.34 94.5

19:710050 rs8109226 PALM T G 0.22 90.6

16:1184532 rs34056718 CACNA1H C T 0.39 90.3

19:1773999 rs4807140 ONECUT3 C T 0.33 88.0

1:1053385 rs4970408 C1orf159 C T 0.38 85.9

11:6718704 rs1466977 MRPL17 T G 0.29 85.7

8:144987934 rs6999129 MIR661/EPPK1 A T 0.37 85.4

10:37228865 rs1852484 ANKRD30A G A 0.27 84.9

19:1723463 rs10413694 ONECUT3 A G 0.38 84.1

16:798229 rs8050465 NARFL G A 0.34 84.0

8:51478714 rs17709272 SNTG1 G T 0.37 83.1

15:20303075 rs76044586 T C 0.19 83.4

19:702286 rs8106722 PALM G C 0.24 83.3

1:949608 rs1921 ISG15 G A 0.29 81.6

19:1063930 rs4807499 ABCA7 C T 0.26 80.6

19:646891 rs10403235 FGF22 G A 0.28 80.5

19:539279 rs2288956 CDC34 C T 0.19 80.1

16:877334 rs28541981 PRR25 C T 0.34 79.7

19:1766737 rs12978813 ONECUT3 C A 0.26 79.6

16:32603025 rs28887512 A G 0.41 79.2

3:196520050 rs79390411 PAK2 C T 0.13 79.2

19:2012477 rs4405674 BTBD2 T G 0.36 79.2

9:140304779 rs9414736 EXD3 A G 0.27 78.9

* The variable importance is a ranked variable (ranging from 0 to 100) that quantifies the importance of each SNP
in the prediction models for ICS response.
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Our study combined data from different sources and, thus, may be subject to batch
effects (i.e., subgroups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables of a study [39]). To
address the potential confounding by batch effects, we applied a bootstrap resampling
approach to train the predictive models. A qualitative assessment of the relationship
between group membership and the first two principal components defining the association
between SNPs and ICS response further found no evidence of correlation between the
variables (Supplementary Figure S3), suggesting the absence of batch effects.

4. Discussion

Genome-wide association studies of response to asthma medications have identified
multiple genetic variants, but few studies have combined the effects of these individual
SNPs into a single pharmacogenetic model. In this work, we utilized data from multi-
ple cohorts to train and test machine learning models for predicting responsiveness to
ICS, the most common controller medication for asthma. We report three main findings.
First, applying LASSO regression and random forest to the top GWAS hits allowed us
to select the most relevant SNP contributors to ICS treatment response, with a relatively
high predictive accuracy. Second, many of the SNPs selected by our models are located
within the genes associated with corticosteroid response in asthma, asthma severity, and
immune function, suggesting a strong underlying biological plausibility for our models.
Third, the inclusion of genetic variants alone was sufficient to predict the response to ICS
treatment. The addition of phenotypic information did not enhance the performance of our
pharmacogenetic models.

The development of a polygenic model for asthma treatment response presents sev-
eral challenges. The high dimensionality of the GWAS data and the correlation patterns
between SNPs can hinder the process of SNP selection for the pharmacogenetic model.
Polygenic prediction models are also prone to overfitting, which can falsely inflate predic-
tion estimates. To address these issues, we applied two machine learning approaches that
are well suited to performing prediction tasks using high-dimensional data. To optimize
model development, we prioritized associations at a prespecified p-value threshold and
accounted for correlation patterns by LD clumping and filtering. The number of SNPs
selected for inclusion was further reduced by two-thirds by the LASSO regression modeling
approach, while the random forest model retained all but one SNP that met the significance
thresholds for GWAS and LD clumping. Although the random forest model outperformed
the LASSO regression model (AUC of 0.74 vs. 0.71), the difference in the AUC did not reach
statistical significance (p = 0.06). Given the small study sample, we were unable to draw
any reliable conclusions about the relative effectiveness of the two algorithms. However,
it is interesting to note that the LASSO regression modeling approach excluded specific
variants previously shown to be associated with response to corticosteroids. For example,
the SNPs in or near FBXL16 and TPSAB1 were retained in the random forest model but
not in the LASSO regression model, both of which show differential gene expression in
response to corticosteroids either in vitro or in vivo. Mostofa et al. reported that FBXL16 is
part of the “early responder” gene expression profile in human bronchial epithelial cells in
individuals with asthma within 6 hours of treatment with budesonide, an ICS [40]. Mast
cell TPSAB1 expression is associated with a better clinical response to corticosteroids in
individuals with asthma [41], and corticosteroids have been shown to suppress TPSAB1
expression in bronchial epithelial cells [42].

Several other genes included in the models were not connected to the ICS response
mechanisms per se, but have been linked to asthma severity, asthma control, airway remod-
eling, and Th2-mediated responses. ABCA7 gene expression is associated with nocturnal
asthma symptoms in individuals with a polymorphism in NPSR1 [43]. BSG (also called
CD147) is a potential target for asthma treatment therapy. Anti-CD147 treatment sig-
nificantly reduces airway epithelial mucin production and bronchial hyperreactivity to
methacholine challenge in murine models of asthma [44]. CNN2 is associated with the
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development of severe asthma [45]. PRTN3 encodes for an airway biomarker associated
with neutrophil activation and poor asthma control [46]. Piezo-1 regulates the function
of tight junction proteins within the airway epithelial cells of individuals with asthma
following mechanical stress that mimics bronchoconstriction [47]. ELANE, the gene for
neutrophil elastase, is expressed in bronchial epithelial cells and may play a role in airway
remodeling by contributing to smooth muscle hypertrophy [48]. FSTL3 shows a reduced
expression in the bronchial epithelium of individuals with asthma, which impairs the regu-
lation of fibroblasts involved in remodeling [49]. MIER2 is differentially expressed among
obese compared with normal-weight asthmatic children [50]. PTBP1 plays an important
role in the humoral immune response [51] and PTBP1 deletion in dendritic cells has been
shown to enhance asthma exacerbation [52]. The genes associated with mucin production
(GAL3ST2) [53], leukotriene synthesis (GPX4) [54], Th2-mediated allergic asthma (PTBP1,
ZFPM1, SBNO2, and EGFL7) [52,55–57], and IgE mediated allergy (PAK2) [58] were also
represented in our polygenic prediction models of ICS response.

Additionally, several of the top SNPs identified by our models are in/near genes that
have been linked to the epigenetic mechanisms in asthma. PRR25 is associated with utero
smoke exposure (IUS) [59]. In individuals with asthma, a history of IUS exposure has been
shown to reduce the efficacy of ICS for decreasing airway responsiveness [60]. C1orf159,
BTBD2, and HMHA1 are also associated with air pollution variables and lung function
traits [61–65]. For example, the increased expression of C1orf159 appears to exacerbate
susceptibility to air pollution’s effect on pulmonary function, BTBD2 is downregulated in
the small airway epithelium in response to PM2.5 exposure, and HMHA1 is associated with
PM10 exposure and smoking. These findings highlight the need for more research on the
role of environmental and epigenetic factors contributing to the response to asthma therapeutics.

It is interesting to note that the phenotypic characteristics (BMI, sex, and age) did not
improve the predictive accuracy of our pharmacogenetic models of ICS response. While
we did not have detailed asthma phenotypic information to add to our models, the SNP
predictors in the genes described above suggest that a genetic predisposition towards
particular asthma phenotypes (e.g.,Th2-mediated asthma) may be a key factor in predicting
response to ICS.

Our study has several strengths. We used data from multiple cohorts, and across mul-
tiple age ranges to develop our polygenic risk prediction models. The models, composed of
over 132 genetic variants across the genome, achieved a relatively high prediction accuracy
for ICS treatment response in the test cohort. The inclusion of multiple cohorts, with partic-
ipants across a wide range of ages, suggests that the predictive models are generalizable
to pediatric as well as adult populations. However, the generalizability of our study is
limited by the small sample size and the inclusion of Caucasian participants only. Future
studies will be required to determine whether our polygenic prediction models perform
equally well in other racial/ethnic populations. The limited sample size of our dataset also
precluded sex-specific and age group-specific analyses. Additionally, we included BMI as a
predictor, but BMI is an imperfect measure of adiposity, especially in children. The inclu-
sion of richer phenotypic data has the potential to improve risk prediction. Furthermore, a
predictive test with an AUC of 0.74 may not be appropriate for clinical use yet; however,
this study demonstrates the promise of prediction models for ICS use. There is a further
opportunity to improve the prediction by including rare variants that can only be detected
through whole genome sequencing and are, therefore, not captured in our analysis.

In summary, we have developed machine learning prediction models to predict ICS
response in asthma. These findings may ultimately inform decisions about ICS treatment
in individuals with asthma.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jpm14030246/s1, Table S1: Description of study cohorts; Figure S1: Q-Q
plot of GWAS p-values; Figure S2: Manhattan plot of GWAS; Figure S3: Principal components of data
by study group.
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