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Abstract: Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a va-

riety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, ‘fibrinaloid’ 

microclots. We here develop the argument, with accompanying evidence, that fibrinaloid micro-

clots, through their ability to block the flow of blood through microcapillaries and thus cause tissue 

hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary 

cause of POTS, in which tachycardia is simply the body’s exaggerated ‘physiological’ response to 

hypoxia. Similar reasoning accounts for the symptoms bundled under the term ‘fatigue’. Amyloids 

are known to be membrane disruptors, and when their targets are nerve membranes, this can ex-

plain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. 

Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and 

fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear 

implications for the treatment of such diseases. 

Keywords: fibrinaloid microclots; postural orthostatic tachycardia syndrome(POTS); Long COVID; 
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1. Introduction 

Orthostasis, Orthostatic Intolerance, and POTS 

Human beings have evolved to maintain a largely erect posture [1] and can adopt it 

from recumbent poses. Orthostasis describes the (normal) physiological response used to 

counteract the potential fall in blood pressure when a person who has been lying down 

assumes the upright position. This tendency occurs because, in an adult, gravity causes a 

shift of some 300 to 800 mL of blood from the upper to the lower body. This orthostasis 

depends strongly on the autonomic nervous system. 

However, if the system does not respond properly, there can be a significant decrease 

in the central blood pressure; common symptoms of such hypoperfusion are dizziness, 

lightheadedness, and syncope (fainting). The resulting intolerance of the upright posture 
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is known as orthostatic intolerance (OI). When accompanied by a sustained postural drop 

in blood pressure (of more than 20 mmHg systolic or 10 mmHg diastolic [2]), the patient 

is diagnosed with orthostatic hypotension, which is a form of orthostatic intolerance (OI). 

Another variant of OI occurs when there is less of a fall in blood pressure, but the auto-

nomic response leads instead to a rapid increase in heart rate (tachycardia). This is known 

as postural orthostatic tachycardia syndrome (POTS) (e.g., [3–5]). POTS is a manifestation 

of autonomic dysregulation and is clinically characterized as excessive tachycardia upon 

standing in the presence of symptomatic orthostatic intolerance. We recognize that POTS 

may be classified into subtypes such as neuropathic POTS and hyperadrenergic POTS; 

however, most of the papers we cite do not in fact make this distinction, and, for the pre-

sent purposes, we avoid doing so as well, since our chief aim here was simply to suggest 

that there is, in general, significant evidence for the role of fibrinaloid microclots in POTS. 

Although well known in other contexts for at least three decades [6,7] (see Table 1), 

with at least 500,000 cases in the USA alone [8–10], mostly in women (5:1) [5,9,11–14], 

POTS has emerged as a frequent symptom of both acute [15] and long COVID (e.g., [16–

21] as part of the wider cardiovascular dysautonomia spectrum; see Table 1). 

The management of POTS has been the subject of prior reviews and guidelines and 

is beyond the aims of the present study [22,23]. Our focus in this study was mainly on 

microclots as a plausible, mechanistic basis for POTS, especially in relation to long COVID. 

2. The Normal Control of Heart Rate 

Because of the general interest in POTS in long COVID and other affected communi-

ties, we include a very brief and high-level overview. The heart rate is controlled by many 

genetic and lifestyle factors (e.g., [24,25]), and the required kinds of understanding are 

both conceptual (e.g., the need to cater for the time-varying demands of tissue oxygena-

tion) and mechanistic (e.g., the involvement of the endocrine and autonomic nervous sys-

tems). Our overview here is very far from being comprehensive, and our focus is neces-

sarily on short-term control, where the autonomic nervous system is predominant (Figure 

1, after [24]). 

 

Figure 1. Autonomic nervous system regulation of heart function (after [24]). Created with BioRen-

der.com. Access date: 26 November 2023. 
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As summarized in Figure 1 (redrawn from [24]), both the sympathetic and parasym-

pathetic branches of the autonomic nervous system are involved. The former is more in-

volved in stress responses (often called ‘fight-or-flight’) and can release noradrenaline 

(norepinephrine) to increase heart rate, whilst the latter (often called ‘rest-and-digest’) un-

derpins basal activity via the vagus nerve that can release acetylcholine to decrease heart 

rate relative to its base rate. Multiple control steps involve baroceptors that sense pressure 

and other receptors that respond to pH, hypoxia, and hypercapnia. In particular, under 

most conditions, the heart necessarily and appropriately responds to acute hypoxia by 

increasing heart rate (e.g., [26–30]). 

3. Diagnosis of POTS 

Most chronic, inflammatory diseases—as their name suggests—possess multiple 

common symptoms [31], while those such as long COVID characterized by subsets of 

multiple symptoms can easily be subclustered (e.g., [32–35]). The earlier definition of 

POTS comes from a very small study of 16 patients in 1993, of whom, interestingly, 7 were 

thought to have had previous viral infections [6,36]. Nowadays, for instance, the Canadian 

Cardiology Society has published a position paper describing a wider heterogenous range 

of clinical syndromes and a spectrum of orthostatic intolerance; they propose that discrete 

subtypes are identified over time, each with different underlying pathophysiological phe-

notypes that allow for specific targeted treatment [22]. However, for present purposes, in 

the case of POTS, both the high-level definition and the diagnosis are relatively straight-

forward, as they follow virtually from the name: heart rate is monitored for tachycardia 

(an increase in heart rate exceeding 30 beats per minute (bpm) within the initial 10 min of 

standing or head-up tilt (HUT)- or a ‘final’ value exceeding 120 bpm) as the individual 

changes their posture from horizontal to (more) vertical [5]. 

Differences can occur because the transition is commonly affected either by active 

standing or a passive ‘tilt table’ test [37–40]. The latter, which is somewhat more controlled 

and considered more reliable [41], commonly involves a ‘head-up tilt’ in which an indi-

vidual is strapped to a horizonal table and commonly tilted to an angle of 60–80º [39,42], 

and heart rate and other measurements are performed. Transcranial doppler ultrasound 

may be used to detect blood flow [43]. It is recognized that such ‘provocative’ tests are of 

most value when individuals record similar symptoms to those that they normally expe-

rience [44]. For all events, the conceptual recognition of POTS is to be seen as reasonably 

straightforward [45,46]. It is important to recognize that the diagnostic criteria for heart 

rate changes are arbitrary and based on small case series, and that patients can have disa-

bling OI and other symptoms of autonomic dysfunction without meeting the traditional 

cutoffs; this is no different in long COVID patients presenting with symptoms of POTS. 

4. Occurrence and Comorbidities of POTS 

Although we did not cover POTS (nor even autonomic dysfunction) in our earlier 

review of chronic, inflammatory diseases [31], the occurrence of POTS, which is highly 

heterogeneous [47], broadly mirrors the kinds of disease that we did mention there. Table 

1 lists some of them, implying elements of a common origin. Of particular interest is the 

evidence for endothelial microvascular dysfunction [48], which can occur via the micro-

clot-mediated blockage of red cell flow to tissues. 

Table 1. Some diseases and syndromes with which POTS is associated. 

Disease, State, or Syndrome Comments Selected Reference(s) 

Autoimmune disorders and Autoim-

munity 
Some strong associations [16,49–53] 

Cognitive function 
Large amount of literature; improved by 

plasma exchange [54] 
[54–57] 

Fatigue  [58–65] 
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HPV or other antiviral vaccination An example of induction by a viral protein [66–72] but cf. [73] 

Inflammation  [74] 

Irritable bowel disease  [75] 

Long COVID 
A very common occurrence and a focus of 

our interest 
[16–20,32,48,76–93] 

Migraine  [94] 

Multiple sclerosis 

Now recognized as possibly caused by Ep-

stein–Barr virus [95] (albeit much earlier ev-

idence for an infectious origin existed 

[96,97], cf. [98,99]).  

[100] 

Myalgic encephalomyelitis/chronic fa-

tigue syndrome (ME/CFS)  

Is also usually a postviral disease and bears 

a number of similarities to long COVID 

[93,101–104] 

[58,59,77,105–109] 

Platelet delta granule storage pool 

deficiency 
Causal direction unclear [110]  

Pregnancy 

Many cardiovascular stresses accompany 

pregnancy, especially during hypertensive 

disorders [111,112] 

[113,114] 

Reviews  [49] 

5. Dysautonomia 

Autonomic dysfunction (dysautonomia) describes any malfunction in the autonomic 

nervous system, especially the vagus nerve [115,116], which is a key element in (but not 

synonymous with [117]) POTS, and the occurrence of dysautonomia broadly mirrors the 

diseases in which POTS is known to occur (Table 2). 

Table 2. Some diseases and syndromes in which dysautonomia is known to occur. 

Disease, State, or Syndrome Comments Selected Reference(s) 

Familial (monogenic) Lesion in the IKBKAP gene [118] 

Long COVID  [82,85,87,88,92,101,119–124]  

Multiple sclerosis  [125,126] 

Myalgic encephalomyelitis/chronic fa-

tigue syndrome 
 [101,107,119,127–133] 

Parkinson’s disease  [134] 

6. Fatigue and POTS 

Like POTS, fatigue is a common accompaniment of many acute and chronic inflam-

matory diseases. It is usually based on scoring questionnaires and thus lacks a crisp defi-

nition [135–142]. However, fatigue is generally used to cover a debilitating set of symp-

toms in which attempts to carry out what would normally be considered a very mild ex-

ertion are followed immediately by an inability to perform or to continue such exertions 

and a period in which extreme rest is required. In contrast to physiological ‘tiredness’, rest 

and sleep are not physically or mentally rejuvenating in fatigue. As noted in Table 1 [58–

64], fatigue is a common accompaniment of POTS and—as we shall argue—likely has a 

main common cause. 

7. The Role of Fibrinaloid Microclots in POTS 

Although the origins of our discoveries that blood could clot into a very anomalous 

form lie earlier- in observations using the electron microscope (e.g., [143–146])- it was not 

until 2016 [147] that we determined using fluorescence microscopy that these anomalous 

forms were in fact amyloid in nature [148–152], that they could be induced by highly 
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substoichiometric amounts of bacterial lipopolysaccharide [147], and that the electron and 

optical microscopies were congruent [153]. Essentially all the clots visible using fluores-

cence staining were those visible in the bright field [154,155]. The microclots were found 

to be particularly prevalent in diabetes [156–158] and in particular in both acute [158] and 

long COVID [159–166], where they could be induced by miniscule concentrations of the 

spike protein [167,168]. They were also much raised over those in controls in individuals 

with ME/CFS [169,170]. Note that the generation of fibrinaloid microclots is essentially 

instantaneous (on the timescale of normal clotting) (e.g., [147,167]), whereas the time taken 

to develop POTS is slower. This is at least consistent with a causative role of the earlier-

appearing microclots in the generation of the later-appearing POTS. 

Microclots differ from clots mostly by being considerably smaller (broadly in the 

range of 1–200 μm, mostly at the lower end) (see Figure 2) and by virtue both of the adop-

tion of an amyloid form [148,159,161] and their entrapment of molecules such as α2-an-

tiplasmin [163]. These and other properties [171] make them particularly resistant to fibri-

nolysis, so they are removed far less quickly than would normally be the case. 

 

Figure 2. Microclot size distribution as seen with imaging flow cytometry (taken from [166]). Rep-

resentative micrographs of microclots in (A) controls and (B) long COVID patients using an imaging 

flow cytometer. The brightfield images are displayed in Channel 1 (Ch01) and fluorescence intensity 

due to ThT binding in Channel 7 (Ch07). All images were captured using a 20x objective. The event 

Long COVID 

20µm 

Controls 
Ch0 Ch0 Ch0 Ch0 Ch0

7 

Ch0 Ch0

A 

B 
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number is displayed in the top-left corner of each image. NB: In these pictures, the POTS status of 

the individuals was not assessed. 

A straightforward consequence of these insoluble fibrinaloid microclots is that as 

blood flow pushes them along, they can block up microcapillaries, thereby inhibiting the 

flux of oxygen-carrying red blood cells and thus inducing tissue hypoxia. Sensing low 

tissue oxygen concentrations naturally (as when exercising) may induce tachycardia, and 

this would provide a very ready explanation of both POTS and the fatigue that is a com-

mon occurrence in both ME/CFS and long COVID (see Figure 3). 

Other mechanisms for POTS in long COVID may include: 

1. Relative hypovolemia secondary to inadequate peripheral vasoconstriction. This re-

sults in a reduction in stroke volume and cardiac output, causing the inhibition of 

tissue oxygen supply and the consequent compensatory tachycardia. 

2. Small fiber neuropathy (SFN) has been well described in long COVID (e.g., 

[88,90,93,172]) and is a recognized cause of dysautonomia in the condition. SFN in 

long COVID can be driven by autoantibodies (already known to be associated with 

POTS and OH) or, potentially, by ischemia of the small fibres due to microclots. 

 

Figure 3. (A) Representation of healthy blood flow in microcapillaries (B) versus in an individual 

where damaged microcapillaries are (temporarily) blocked by microclots. Created with BioRen-

der.com (accessed on 26 November 2023). 

 

8. The Role of Microclots in Fatigue 

Just as the blocking of microcapillaries by microclots gives a ready explanation for 

POTS, it also gives a ready explanation for fatigue as tissues that rely on aerobic respira-

tion for their normal function are deprived of oxygen. Specifically, the microclots vary 

widely in diameter, so they can migrate to those parts of the capillary bed where they can 

block the flow of red blood cells most effectively. Consequently, the affected tissues 

simply cannot perform their normal functions. While details vary for every individual, 

the existence and capillary-blocking behavior of the microclots also provide a simple and 

mechanistic explanation for the co-occurrence [58–60,62–64] of POTS and fatigue. 
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9. Relationship between Dysautonomia and Microclots 

We know that molecules such as LPS (e.g., [147,149,150]) and the spike protein of 

SARS-CoV-2 (e.g., [154,158,159,163–167,173]) can cause microclots, such that any damage 

such molecules may cause to nerves may be indirect [174–176]. This said, it is reasonable 

that any damage to the membranes of nerves might be mediated via fibrinaloid micro-

clots. 

To this end, although the direct experiments have not been performed with fi-

brinaloid microclots (nor is it easy to conduct them in vivo), it is at least worth repeating 

that it is well established that amyloid forms of proteins (including those binding cations 

[177]) generally can effect damage to all kinds of phospholipid membranes directly (e.g., 

[177–202]). A variety of mechanisms have been proposed, such as those in Figure 4 [201]. 

 

Figure 4. Membrane disruption models (redrawn from [201]). (A) The barrel-stave model suggests 

that proteins perpen-dicularly insert into the phospholipid bilayer plane, with the hydrophobic 

regions of protein oligomers contacting the hydrophobic interior of the membrane. (B) The toroi-

dal pore model suggests that proteins insert perpendicular to the phospholipid bilayer, with the 

protein hydrophilic ends remaining in contact with the lipid head layer. (C) The deter-gent-like 

model, suggests that positively charged residues in the amyloidogenic protein bind to the mem-

brane. (D) The membrane remodeling model suggests that membrane-bound peptides self-assem-

ble into β-sheets that subsequently either form pores on the membrane surface (Pore formation 
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model) or drag lipids out of the bilayer core (Detergent-like model). Created with BioRender.com 

(accessed on 26 November 2023). 

When the membrane in question is a nerve membrane, neurotoxicity (e.g., [198,203–

209] (leading to autonomic nervous system dysfunction) may result. 

10. Systems Overview and Conclusions 

We established that fibrinaloid microclots accompany a variety of diseases in which 

POTS is frequently diagnosed, with fatigue as a frequent feature, as are autoantibodies 

[161], implying a similar kind of cause or at least intermediate. The microclots do seem to 

fulfill this intermediary role, as they also provide a realistic set of mechanisms. This said, 

it should be admitted that detailed temporal studies have not been conducted in animals 

(which may not even provide a decent model), while those studies that did test, e.g., 

SARS-CoV-2 infection, in human volunteers directly [210] did not seek to measure micro-

clots. 

Very recently, Wüst and colleagues showed a variety of defects in the skeletal muscle 

of long COVID patients, including both amyloid deposition and mitochondrial dysfunc-

tion [211]. Coupled with the evidence for lactate overproduction in both COVID-19 [212–

217] and ME/CFS [133,218–222], both of which are associated with POTS (Table 1), this 

provides further evidence for a role of inadequate O2 uptake in these processes. 

The system biology diagram linking these high-level elements is given in Figure 5. 

 

Figure 5. A system approach to defining dysautonomia. (A) Various causes of disease and symp-

toms resulting in vascular damage, microclots, and platelet hyperactivation (B) known to be 
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involved in a variety of diseases (C) and in POTS (D). Similarly, vascular damage pathologies cause 

POTS (E) and other diseases (F), while POTS is found in various diseases (G). Created with BioRen-

der.com (accessed on 26 November 2023). 

We conclude that the presence of fibrinaloid microclots can indeed significantly ac-

count for the symptoms of POTS associated with long COVID (and likely other syn-

dromes), just as they can for other symptoms [159], post-exertional symptom exacerbation 

[160], and the generation of autoantibodies [161]. 
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