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Abstract: This article explores the complex relationship between genetics and cognition, specifically
examining the impact of genetic variants, particularly single nucleotide polymorphisms (SNPs), on
cognitive functions and the development of neuropsychiatric disorders. Focusing on neurotransmitter
regulation within the prefrontal cortex’s dopaminergic circuits, this study emphasizes the role of
genes like COMT, PRODH, and DRD in shaping executive functions and influencing conditions such
as ADHD and schizophrenia. Additionally, it explores the significance of genetic factors in neurode-
velopmental disorders, emphasizing the need for early identification to guide appropriate therapeutic
interventions. This article also investigates polymorphisms in the transsulfuration pathway, revealing
their association with cognitive impairment diseases. Computational analyses, including machine
learning algorithms, are highlighted for their potential in predicting symptom severity in ADHD
based on genetic variations. In conclusion, this article underscores the intricate interplay of genetic
and environmental factors in shaping cognitive outcomes, providing valuable insights for tailored
treatments and a more comprehensive understanding of neuropsychiatric conditions.
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1. Introduction

Cognition is a higher function of the human brain that includes the processes (i.e., lan-
guage, memory, attention, executive functions, complex reasoning, social abilities) involved
in acquiring knowledge that has to be inferred from behavior [1–3]. A cognitive system
dysfunction is described in most neuropsychiatric disorders, contributing to defining the
disease and affecting its functional outcome [4].

In the last few decades, cognitive neuroscience has focused on unravelling the neural
mechanisms underlying cognitive processes and researching possible specific treatments to
ameliorate cognitive performances. Instrumental investigations, such as electroencephalog-
raphy, functional magnetic resonance imaging, and positron emission tomography, allow
researchers to explore the functional activity of brain regions and networks involved in
general cognition and specific abilities. On a molecular level, cellular and animal studies
are more suitable to analyze neurotransmitters, receptors, and their interaction in physi-
ologic and pathologic conditions and characterize the modifications induced by possible
therapeutic compounds [4].

However, cognition is influenced by both biological and environmental factors. Nu-
merous studies in the literature address the topic of the genetic effect on cognitive abilities
and the changes in gene expression during brain development and throughout life, sug-
gesting that half of the variance in general cognition can be attributed to genetic factors [3].
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In this article, we will focus on the crucial impact that genetic variants may exert on
general cognition or specific executive functions, with special attention to SNPs involved
in the dopaminergic network and the transsulfuration pathway.

2. Genetics, Neurotransmitters, and Cognitive Disorders

Several genes have been linked to conditions that manifest at an early age, frequently
affecting the development of cognitive functions [5,6]. For instance, monogenic disorder
involving neurotransmitter regulation can influence neuronal excitability and synaptic
efficacy in numerous areas of the central nervous system [5,7]. Neurotransmitters are
crucial for proliferation, migration and differentiation of the nervous cells, as well as for
neurite outgrowth, axonal guidance and synaptogenesis [8]. Notably, an imbalance be-
tween excitatory and inhibitory inputs may lead to impaired information processing and
it has been implicated in the etiology of autism spectrum disorder (ASD), schizophrenia,
anxiety, epilepsy, and substance abuse [9]. In these neurodevelopmental disorders, exci-
tatory/inhibitory neurotransmission may influence the connectivity at the synaptic level
impacting synaptic plasticity; therefore, it has been proposed as a possible mechanism
affecting the stability of functional networks and cognitive function [10]. Genetic mutations
affecting neurotransmitter regulation have the potential to disrupt the activity of neuronal
networks during brain development, resulting in cognitive disorders such as intellectual
development disorder and ASD [5,7,11]. Particularly, the prefrontal cortex (PFC) and its
dopaminergic circuits have been highly implicated in cognitive processes, such as working
memory, response inhibition, planning, attention, cognitive flexibility, decision making, and
self-monitoring [12]. PFC receives inputs from the local inhibitory interneurons and pyra-
midal cells as well as excitatory projections from other limbic structures, and it is regulated
by a layer of neuromodulators including catecholamines, acetylcholine, and serotonin [13].
Glutamate, the most abundant amino acid in the nervous system, represents the primary
excitatory neurotransmitter. By contrast, gamma-aminobutyric acid (GABA) constitutes
the main inhibitory neurotransmitter in the adult mammalian brain [9]. Alterations in
glutamatergic and GABAergic systems have been implicated in social behavior and brain
functional connectivity, supporting the connection between glutamatergic dysregulation
and functional dysconnectivity in ASD [10,14]. Several animal models of autism proved an
elevated excitatory synaptic input in comparison to the inhibitory synaptic inputs [15,16].
A study in humans proved reduced concentrations of glutamate and glutamine in the
pregenual anterior cingulate cortex have been linked to more severe communication deficit
symptoms in individuals with ASD [17].

The regulation of glutamate and GABA receptors and transporters has been linked
to conditions involving cognitive impairment [9,18]. The genes encoding the proteins
related to glutamate and GABA receptors and transporters are among the common ge-
netic variants associated with ASD [19]. A very recent study on a mouse model proved
that glutamatergic projections from the prelimbic cortex to distinct brain areas play an
important role in emotion: projections to the basolateral amygdaloid nucleus mediate
pyramidal neuron hyperactivity and anxiety-like behaviors, while the ones to the dorsal
striatum mediate fast-spiking interneurons’ hyperexcitability and medium spiny neurons’
inhibition, leading to ASD-like behaviors [20]. Experiments on animal models suggest that
the abnormal interaction of the metabotropic glutamate receptor subtype 5 (mGluR5) with
the N-methyl-D-aspartate (NMDA) receptor can contribute to certain cognitive phenotypes
of the Fragile X Syndrome, a disorder caused by mutations of the FMR1 gene and charac-
terized by intellectual disability and autistic features [21]. In fact, postsynaptic activation
of mGluR5 triggers long-term depression (LTD) in the hippocampus of FMR1-KO mice,
inducing the internalization of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and NMDA glutamate receptors [22]. In addition, mGluR5-mediated signaling
was selectively altered in striatal neurons of SHANK3 knockout mice, a different animal
model of ASD. These changes resulted in perturbed function at striatal synapses, abnormal
brain morphology, aberrant structural connectivity, and autistic features. In this model,
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in vivo recordings confirmed a tonic hyperactivation of the cortico-striatal-thalamic circuit
in mutants, which became hypoactive during social behavior, underlying the deficits in
learning and behavioral symptoms [14]. In Fragile X Syndrome, a decreased expression
of glutamate transporter-1 (GLT-1) and glutamate re-uptake has been reported, resulting
in abnormal neuronal hyperexcitability [23]. This mechanism may lead to pathological
repetitive behaviors that can be reduced through NMDA receptor inhibitors [16,24]. The ac-
tive phosphorylated cAMP response element-binding protein (p-CREB) acts as an activator
of astrocytic GLT-1 gene expression, preserving glutamate balance, maintaining synaptic
plasticity and preventing excitotoxicity. In fact, it is crucial in dendrite formation, spine
growth, neuronal plasticity and long-term memory formation. Moreover, null mice for the
GABA transporter 1 (GAT1) showed an impairment in the long-term potentiation (LTP)
and therefore in hippocampus-dependent memory and learning [25].

Interestingly, a very recent study tried to underpin the mechanisms linking genetic
and behavioral changes in ASD individuals with brain structure abnormalities. The authors
revealed greater differences in cortical thickness between autism and controls in the regions
with greater gene expression of glutamatergic and GABAergic genes, suggesting a role for
excitatory/inhibitory imbalance. In fact, they found that cortical thickness in these regions
is higher in adolescent patients with ASD and in typically developed adults, supporting
the hypothesis that excitatory/inhibitory imbalance affects the overall cortical thickness in
patients with ASD [26].

The serotoninergic network also acts as a modulator of the excitatory/inhibitory
balance and, through the 5H-T7 receptor, it enhances the NMDA receptor-mediated synap-
tic plasticity and enhances the GABAergic interneurons in the hippocampus, exerting a
pro-cognitive effect [7].

Indeed, genetics is a fundamental tool to understand the basis of psychopathologies
and to delineate genotype-phenotype correlations and cognitive endophenotypes [1]. This
characterization allows us to tie the peculiar physical, clinical, and cognitive features to spe-
cific genetic conditions [27–29]. In certain genetic pathologies, the neuropsychological and
behavioral features may not be the prominent traits during infancy, but they become pre-
dominant during adolescence and early adulthood [30]. For instance, Rett syndrome (RTT)
is peculiarly characterized by normal neurodevelopment until 18–24 months, followed by a
rapid regression of acquired skills, including motor and higher cognitive abilities [31]. It has
been reported that GABAergic dysfunction is a critical mediator of altered cognition in RTT
phenotypes, since it has been implicated in impaired learning, memory, and social behavior.
In particular, MeCP2 deficiency in GABAergic neurons results in altered glutamic acid
decarboxylase (GAD)1/2 expression and changes in neuronal GABA content. In addition,
MeCP2 affects the brain-derived neurotrophic factor (BDNF), a neurotrophin implicated in
brain development that has a crucial role in modifying synaptic connections and modu-
lating hippocampal LTP [32,33]. Delineating such modifications between childhood and
adulthood is fundamental in recognizing the biological mechanisms that regulate typical
and atypical development [3]. In parallel, the early recognition of underlying conditions
in cognitive defects is crucial to starting an accurate therapy and preventing more severe
outcomes. In fact, understanding the mechanisms that are at the basis of a genetic disease
may contribute in the choosing of an effective therapy with lower cognitive burden [34].

The PFC circuitry is also involved in 22q11.2 deletion syndrome, a chromosomal disor-
der characterized by a hemizygous deletion in the long arm of chromosome 22. As a matter
of fact, this region includes numerous genes involved in cognitive functions (i.e., COMT,
PRODH, RTN4R, and DGCR8) and the patients show a higher risk for developing a psy-
chotic disorder across their lifespan. In addition, impaired social cognition is among the
main features of the syndrome, severely impacting the general outcome of the disease [35].

The Catechol-O-methyltransferase (COMT), encoded by the COMT gene, is the main
one responsible for extra-synaptic catabolism of the dopamine (DA) in the PFC and appears
to play an essential role in the modulation of fronto-striatal networks [12,36]. On the
contrary, the proline dehydrogenase (PRODH) gene encoded a proline oxidase responsible
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for converting proline into D-1-pyrroline-5-carboxylate. Genetic mutations that cause a
reduced activity of this enzyme result in type I hyperprolinemia, an autosomal recessive
disorder characterized by cognitive/behavioral disturbances and epilepsy [37]. Both
COMT and PRODH mutations have been implicated in modulating cognitive functions
and susceptibility to psychiatric manifestations: the reduction in COMT activity determines
an increased availability of dopamine in the PFC, and the elevation in proline caused by
the impairment of PRODH activity leads to an increased glutamatergic signaling, which
in turn induces a subsequent release of DA in the PFC. Therefore, the interaction between
COMT and PRODH genes can cause an augmentation in dopamine activity, predisposing
the patient to psychosis and schizophrenia [38].

3. SNPs and Neurocognition

Aside from rare single-gene disorders, an exciting strand of cognitive neuroscience
is focused on single nucleotide polymorphism (SNP)-based heritability, referring to the
genetic influence of common variants in genes involved in cognitive abilities [3].

Specifically, polymorphisms in genes that regulate the PFC circuits have been inves-
tigated in relation to cognitive impairments. For instance, the association between the
Val158Met SNP of the Catechol-O-methyltransferase (COMT) and cognitive abilities have
been extensively studied [12,36]. Results showed that this SNP impacts general executive
functions, working memory, inhibition, and episodic and semantic memory [12]. Moreover,
the COMT gene, together with FMR1 and DCX (encoding for doublecortin, a protein in-
volved in the migration of post-mitotic neurons and cortical layering in the developing
brain), has been linked to the Wnt signaling, a pathway responsible for hippocampal
neurogenesis and synapse formation and remodeling. In fact, the Wnt signaling pathway
and its modulators have been related to ASD and intellectual development disorder [39].
In addition, the Val158Met COMT has been proven to modulate PFC-dependent responses
to drugs, especially those that work on the dopaminergic system [36,40].

Also, the monoamine oxidase (MAO) is another important enzyme involved in the PFC
circuitry, being responsible for the deamination of monoamine neurotransmitters. Notably,
MAO-A is involved in the catabolism of serotonin; a recent study on its polymorphism
MAOA-uVNTR showed that a high activity allele is related to lower 5-HT levels, leading
to worse performance in social cognition [41]. Accordingly, this polymorphism has been
reported in relation to enhanced aggressive behaviors in animals and humans, cause
by increased amygdala reactivity and decreased prefrontal activity during emotional
arousal [42,43]. More recently, the interaction between this gene and the polymorphism of
serotonin transporter 5-HTTLPR has been studied in relation to the pre-attentive processing
of threatening voices, proving an impact in male individuals on threat processing and
social cognition [44].

Regarding the PFC, the SNPs of dopamine receptors (DRD) in the pyramidal neurons
are also involved in cognition: the TaqIA DRD2 variant has been shown to influence
verbal memory, learning, and visuospatial abilities, while the 4R variant of the 48 bp
VNTR SNP in the DRD4 gene has been consistently related to poorer performances in
attention, executive functioning, and inhibition, suggesting a crucial role in Attention
Deficit/Hyperactivity Disorder (ADHD) [12]. Moreover, DRD2 polymorphisms have
been associated with ADHD, ASD, and the overlap of these two conditions [45]. The
Ser9Gly polymorphism in the DRD3 gene has also been extensively studied in association
with ADHD, since it is widely expressed in the mesolimbic areas, the critical regions for
cognitive and emotional functions, novelty seeking, and expression of reward. It has been
demonstrated that the T allele carriers are less sensitive than the C allele carriers to the
effects of DA, possibly showing a lower response to methylphenidate treatment [46].

Furthermore, the Val66Met SNP of the BDNF has been proven to impact memory and
executive functions for its higher expression in the hippocampus: it affects monoaminergic
neurotransmitter systems, increasing the serotonergic tone and influencing dopaminergic
activity [12]. Recently, a study conducted on 18 individuals (9 Val homozygotes and
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9 Met allele carriers) suggested that BDNF may participate in the excitatory/inhibitory
imbalance of the motor cortex. According to this hypothesis, the BDNF genotype is related
to the strength of excitatory and inhibitory neural circuitry. As a matter of fact, the BDNF
Val66Met Val/Val homozygotes showed an increased response to LTP- and LTD-like forms
of transcranial magnetic stimulation compared to Met allele carriers [47].

In addition to the genes related to the PFC, polymorphisms involved with the transsul-
furation pathway have been associated with cognition. Pathogenic variants and SNPs of
the methylenetetrahydrofolate reductase (MTHFR) gene have been consistently reported in
diseases present with cognitive impairment, such as Alzheimer’s disease, Parkinson’s dis-
ease, epilepsy, and cerebrovascular lesions [48–51]. Although not always directly associated
with alterations in cognitive abilities, polymorphisms of the MTHFR determine a reduced
function of the enzyme, causing, in turn, increased levels of homocysteine, a well-known
risk factor for cognitive impairment and brain development abnormalities [48,49,52]. More-
over, the His475Tyr polymorphism of the glutamate carboxypeptidase II (GCPII) has also
been associated with cognitive abilities. GCPII is an enzyme that regulates folate absorp-
tion and neurotransmitters, influencing homocysteine levels [53]. The transsulfuration
pathway is crucial in restoring the methionine supplies for epigenetic regulation and gene
expression [48].

Finally, with the help of computational analysis, such as machine learning algorithms,
SNPs of different genes (ADGRL3, DRD4, and SNAP25) have been used to predict symp-
toms severity in ADHD. In this study, polymorphisms of genes involved in dopamine
circuitry (DRD4-rs916457), synaptic plasticity and working memory (SNAP25-rs362990),
and hyperactivity and impulsivity symptoms (ADGRL3-rs2122642, ADGRL3-rs10001410)
have been associated with the severity of ADHD under different genetic models of inher-
itance [54]. Another study performed a machine learning analysis to evaluate positron
emission tomography imaging and genetic predictors involved in the serotonergic sys-
tem. The authors propose that abnormalities in serotonergic transmission in ADHD may
be depicted through an interplay between the striatum, insula and anterior cingulate
cortex [55].

4. Conclusions

Although the effect of genetic factors is often subtle and difficult to interpret, the
current literature indicates its important role in general and specific aspects of cognition.
The intricate interplay between genetic factors and epigenetic regulation adds layers to this
complexity. In fact, environmental factors may influence the experience-driven synaptic
activity leading to long-lasting modifications of neural circuits and neuronal properties in
the adult brain [5]. Mechanisms such as DNA methylation, chromatin remodeling/histone
modifications, and microRNA regulation are responsible for the stability and accessibility
to the chromatin, thus controlling gene expression [56]. Deciphering the pathological
mechanisms that underlie neuropsychiatric disorders, along with unraveling the interaction
between genetics and the environment, holds the key to tailoring targeted treatments. This
intricate understanding promises to positively shape the prognosis of individuals facing
these conditions.
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