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Abstract: Prediction of high-risk events amongst patients with mental disorders is critical for per-
sonalized interventions. We developed DeepBiomarker2 by leveraging deep learning and natural
language processing to analyze lab tests, medication use, diagnosis, social determinants of health
(SDoH) parameters, and psychotherapy for outcome prediction. To increase the model’s interpretabil-
ity, we further refined our contribution analysis to identify key features by scaling with a factor from
a reference feature. We applied DeepBiomarker2 to analyze the EMR data of 38,807 patients from
the University of Pittsburgh Medical Center diagnosed with post-traumatic stress disorder (PTSD)
to determine their risk of developing alcohol and substance use disorder (ASUD). DeepBiomarker2
predicted whether a PTSD patient would have a diagnosis of ASUD within the following 3 months
with an average c-statistic (receiver operating characteristic AUC) of 0.93 and average F1 score,
precision, and recall of 0.880, 0.895, and 0.866 in the test sets, respectively. Our study found that
the medications clindamycin, enalapril, penicillin, valacyclovir, Xarelto/rivaroxaban, moxifloxacin,
and atropine and the SDoH parameters access to psychotherapy, living in zip codes with a high
normalized vegetative index, Gini index, and low-income segregation may have potential to reduce
the risk of ASUDs in PTSD. In conclusion, the integration of SDoH information, coupled with the
refined feature contribution analysis, empowers DeepBiomarker2 to accurately predict ASUD risk.
Moreover, the model can further identify potential indicators of increased risk along with medications
with beneficial effects.

Keywords: post-traumatic stress disorder; alcohol; and substance use disorder; social determinants
of health; psychotherapy; natural language processing; deep learning; biomarker identification

1. Introduction

Posttraumatic stress disorder (PTSD) and alcohol and substance use disorder (ASUD)
often co-occur, with an estimated prevalence of ASUD amongst individuals with PTSD
of 46% in the United States alone [1]. Patients with ASUD experience higher rates of
PTSD, with the highest rates reported in patients with both alcohol and drug use disor-
ders [2]. The current literature has enlisted mechanisms that may explain this co-occurrence:
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(1) ASUD could exacerbate the risk of developing PTSD, as patients tend to lead a high-risk
lifestyle, which increases the chances of being exposed to or experiencing a traumatic
event (e.g., sexual assault under the influence of substances) [3]; (2) PTSD development
can precede ASUD as patients use substances to self-medicate their PTSD symptoms [4];
(3) genetic influences on the onset, maintenance, or etiology of both disorders; and
(4) multiple aspects of well-being such as psychosocial risk and protective factors ex-
tracted from social determinants of health (SDOH) could be related to a shared underlying
factor affecting the overall quality of life. While various studies suggest that both PTSD
and ASUD share common dysfunctions in numerous biological systems, it is paramount to
determine multiple indicators of increased and decreased risk that are responsible for the
development of ASUD in PTSD, and this can be achieved via the application of novel ana-
lytic technologies to data-mine Electronic medical record (EMR) data from these patients.
In addition, the current treatment of PTSD and ASUD is limited [5].

Social determinants of health (SDoH) are “conditions or environments in which people
are born, grow, live, work, and age” [6]. Five key SDoH domains that have significant
impacts on human health are (1) economic stability, (2) education, (3) health and health-
care, (4) neighborhood and the built environment, and (5) the social and community
context [7]. These complex, integrated, and overlapping social and economic systems are,
in turn, responsible for most health inequalities and poor health outcomes existing today.
EMRs are an important component of clinical practice and documentation. However, a
major limitation of EMRs is the lack of reliable SDoH information and documentation,
which is strongly associated with mental health [8]. EMRs collect clinical information
such as diagnosis, medication use, laboratory test results, vital signs, procedures, and
other data in a systemic fashion. Other nonclinical determinants of health such as age,
race, and ethnicity are collected in a structured EMR format. Current studies have linked
a variety of SDoH parameters such as neighborhood socioeconomic status (nSES) indi-
cators with disease risk factors to improve the accuracy of risk prediction models [9,10].
By extrapolating information obtained from both conventional (e.g., EMR sources) and
non-conventional sources (e.g., SDoH databases, clinical EMR notes, census data), one
can use these “big data” for risk prediction and the development of interventions to
improve multiple clinical outcomes, especially focusing on high-risk patients such as
patients with multiple comorbidities. However, to the best of our knowledge, few stud-
ies have assessed the importance of this wide range of multimodal information, which
includes diagnosis, medication use, laboratory test results, individual-level SDoH indica-
tors (e.g., race, age, gender, etc.), neighborhood-level SDoH indicators (e.g., nSES index,
etc.), and psychotherapy status in the prediction of outcomes of patients, especially with
mental disorders.

Deep learning/data mining algorithms translate “big data” into valuable informa-
tion for hypothesis generation through deep hierarchical feature construction to capture
long-range dependencies in the EMR data [11]. Deep learning techniques learn certain
features directly from the data itself, without any human guidance, thus allowing for the
automatic discovery of latent data relationships that might otherwise be hidden. Vari-
ous deep learning models offer unique advantages in addressing challenges associated
with temporal EHR data by using the multilayer perceptron (MLP) [12], the restricted
Boltzmann machine (RBM) [13], a convolutional neural network (CNN) [14], a recurrent
neural network (RNN) [15,16], and transformer-based architectures [17], to name a few.
A systematic review found RNNs, including Long short-term memory (LSTM) and the
Gated Recurrent Unit (GRU), effectively handle sequential information in multiple studies,
while CNNs capture spatial correlations in fewer studies [18]. Additionally, the complex
structure of temporal EHR data poses difficulties in standard learning algorithms, and
four major challenges are currently identified: data irregularity, sparsity, heterogeneity,
and model opacity. Intrinsically interpretable models, like the Risk-calibrated Supersparse
Linear Integer Model (RiskSLIM) [19] and AutoScore [20], integrate machine learning with
deep learning for practical clinical score generation. In summary, these models contribute
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diverse strengths, encompassing data augmentation, transferability, interpretability, and ef-
fective handling of sequential and spatial information in temporal EHR data. Deep learning
models still encounter other challenges related to their interpretability and their capacity to
offer uncertain estimates, which is less than ideal for clinical applications [18,21–23]. Future
studies are necessary to explore the development of more comprehensive and integrated
solutions to enhance the effectiveness of handling temporal EHR data. Researchers are
encouraged to integrate clinical domain knowledge into their study designs and focus
on improving model interpretability, ultimately facilitating more seamless clinical imple-
mentation [18,24]. Clinical domain knowledge encompasses expertise in clinical medicine
and healthcare, covering medical practices, diseases, patient care, and treatment protocols.
Examples include disease pathophysiology, treatment guidelines, patient care protocols,
medical terminologies, diagnostic criteria, pharmacology, epidemiology, patient history
analysis, clinical research methods, and familiarity with healthcare workflows. Integrating
clinical domain knowledge is crucial for designing effective healthcare solutions, interpret-
ing medical data, and ensuring artificial intelligence models align with real-world clinical
scenarios [24–31].

By analyzing the EMR of PTSD patients and leveraging clinical domain knowledge, we
can find indicators of increased risk or medications that may have the potential to reshape
the trajectory of disease progression. We are especially interested in finding medications
associated with a high risk or a low risk of developing adverse outcomes such as developing
substance abuse disorder among PTSD patients. This, in turn, can be used to design better
treatment options for those patients. In this study, we improved our previous deep-
learning-based Deepbiomarker to develop our latest version, DeepBiomarker2. We refined
the relative contribution analysis for the identification of important features, used natural
language processing to extract psychotherapy from clinical notes, and integrated multiple
SDOH and psychotherapy parameters in our model. We then applied DeepBiomarker2 to
ASUD risk prediction, provided refined results specific to high-risk cohorts, proposed new
interdisciplinary hypotheses, and identified risk/protective medications for the prevention
of PTSD developing into ASUD. In the development of DeepBiomarker2, clinical domain
knowledge played a pivotal role. We enhanced model applicability and interpretability
by incorporating clinical domain knowledge through feature selection, collaboration with
healthcare professionals, and transparent reporting to contribute to model relevance and
practical implementation in healthcare settings. Collectively, we anticipate that health
professionals can improve the classification of patients based on their complexity and
heterogenicity, develop targeted interventions for better health outcomes, and reduce
existing health disparities at lower costs.

2. Materials and Methods
2.1. Data Source

We included data from January 2004 to October 2020 from the Neptune system at
the University of Pittsburgh Medical Center (UPMC), which houses EMR from the UPMC
health system for research purposes (rio.pitt.edu/services). The database includes multi-
modal information: demographic information, diagnoses, encounters, medication prescrip-
tions, prescription fill history, and laboratory tests. We used ASUDs after the diagnosis
of PTSD. PTSD and ASUD patients were identified by ICD9/10 codes (‘309.81’, ‘F43.10’,
‘F43.11’, and ‘F43.12’) and ICD9/10 codes (See Appendix A), respectively. The medication
fills include medications that a patient had filled at commercial pharmacies, collected, and
reported by the clearing house SureScripts.

2.2. Data Preparation

Data preparation was performed similarly to that described in our previous paper
DeepBiomarker [32]: For a given PTSD patient without a previous diagnosis of ASUD at
an index date, our primary aim was to predict whether the patient will experience ASUDs
within the next 3 months. In our study, a case was defined as a PTSD patient who had a
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record of ASUD within the next 3 months, while a control was defined as a PTSD patient
with no record of ASUD in the next 3 months after the index date. The index date can be
any encounter date after the PTSD diagnosis but before the first diagnosis of ASUD. If a
patient had multiple encounters satisfying the inclusion criteria, we only considered the
latest encounter to mimic the latest status of the patient. We excluded patients who had
a diagnosis of PTSD and ASUD on the same day or experienced ASUD before the PTSD
diagnosis. The patient was also required to have no record of ASUD within one year before
the index date to negate the possibility of a previous history of ASUD (Supplementary
Figure S1). The reason for using a 3-month time window for prediction and a one-year
observation time window for data collection is that we are interested in risk prediction of
the near future (e.g., within 3 months) and the effects of medication use on patient outcomes.
We assume that the effects of a medication cannot last for too long (e.g., no more than
1 year). We used multimodal information such as diagnosis, medications, and lab test results
1 year preceding the index date, as well as SDoH and psychotherapy information at the
index date as the input. We specifically included lab test results that had high frequencies
and were coded as abnormal by searching results that were labeled as “ABNORMAL”,
“HIGH”, or “LOW”. We did not consider lab test results with a low frequency (less than
100 times). We clustered diagnosis codes into diagnosis groups based on the first 3 letters of
their ICD-10 codes. Medication names were converted to their respective unique DrugBank
IDs. Lastly, for each encounter, the associated multimodal information, namely diagnosis,
medication, and lab tests, was packed into a sequence based on their respective disease
categories, DrugBank IDs, and lab test IDs.

2.3. Dataset Splitting

We split our dataset with a ratio of 8:1:1, where 8 subsets were used as the training
dataset, one subset was used as the validation dataset to find the optimal parameters, and
the last subset was used as the test set to evaluate the generalization of our model.

2.4. SDoH Data

For each PTSD patient, we included both the individual-level SDoH and neighborhood-
level SDoH data. Individual-level SDoH features such as race, age, and gender were
extracted from the demographic information in EMR and coded similarly to diagnosis codes
to input in the models. We also used neighborhood-level SDoH features (see Appendix A)
such as racial segregation, neighborhood socio-economic status, percentage of non-citizens,
a person of color index, the normalized difference vegetation index, the aridity index,
percentage of male widowers, percentage of US citizens, percentage of households with
limited English proficiency, income segregation, percentage of population with same-sex
marriage, the urban index, percentage of population who are separated from their partner,
and percentage of households with transportation barriers, which were calculated using
their respective formulas and extracted from the American community survey (ACS)
(See supplementary information about SDoH parameters). Neighborhood-level SDoH
factors are geographically derived neighborhood-level SDoH parameters that can be used
for the assessment of healthcare utilization [33]. The ACS is a rolling survey of the US
population that gathers information, such as ancestry, educational level, income level,
language proficiency, migration status, disability status, employment status, and housing
characteristics, across 1298 variables [34]. The ACS releases estimates at the regional,
state, and county levels every year, and data at the census tract, block group, and zip
code levels are available every 5 years. Structural racism demands a multidimensional
measure to address racial and income disparities [35]. Previous studies have used all of
the above indexes including an index of concentration at the extremes (ICE) to represent a
geographical area–based measure of the socioeconomic deprivation experienced according
to their neighborhood [36]. Although the efficacy of these SDoH parameters such as ICE is
established at the census tract level, its utility at the zip code level, where it offers potentially
more stable estimates of disparities, remains relatively unexplored [37,38]. For our study,



J. Pers. Med. 2024, 14, 94 5 of 24

a patient’s 5-digit zip code at the index date was used. Collectively, the SDoH data were
mapped and later used as input in our model.

2.5. Trauma-Focused Psychotherapy and Cognitive Behavioral Therapy Data

For each PTSD patient, we extracted both cognitive behavioral therapy (CBT) and
trauma-focused psychotherapy data. Trauma-focused psychotherapy included cognitive
processing therapy (CPT), prolonged exposure (PE), and eye movement desensitization and
reprocessing (EMDR), which were extracted from respective clinical notes in the EMR using
natural language processing techniques. The iterative extraction process was performed as
follows (Supplementary Figure S2): we created a custom keyword dictionary with the help
of subject matter experts and extracted only those sentences that included the keywords or
related keywords that had: “cognitive processing therapy”, “prolonged exposure”, “eye
movement desensitization and reprocessing”, and “cognitive behavioral therapy”. We then
created a sentence dictionary that would identify only those patients who have an active
status. We then used a pre-trained model all-mpnet-base-v2, a sentence transformer-based
natural language model. This model is based on the MPNet architecture and has the highest
performance in generating sentence embeddings [39]. We used the original form, where
the output dimension was 768. We then identified which patients underwent or are under-
going CBT and trauma-focused psychotherapy, and we coded it similar to SDoH to input
in the models.

2.6. DeepBiomarker2

We leveraged the Pytorch_EHR framework developed by Rasmy et al. as the foun-
dation of our analysis. These deep learning models based on multiple recurrent neural
networks were used to analyze and predict clinical outcomes [40]. We implemented two
models: TLSTM (Time-aware long short-term memory) and RETAIN (Reverse Time Atten-
tion Model). TLSTM is a specialized neural network architecture designed for modeling
time-series data with temporal dependencies. Unlike traditional LSTMs, they consider
timestamps, enabling them to capture the data’s temporal context during training and
prediction. These models are valuable in handling irregularly sampled time-series data
with varying intervals and missing data. It decomposes memory cells, integrates elapsed
time information, and effectively captures temporal dynamics, enhancing its utility for
tasks involving irregularly timed data sequences [41]. RETAIN (Reverse Time Attention
Model) is a specialized neural network architecture that leverages both patient-level and
visit-level information to make predictions about patient outcomes using EMR data. The
model incorporates attention mechanisms, which enable it to weigh the significance of
different medical visits and patient history, providing interpretable insights into why
specific predictions are made. In conjunction with these algorithms and our previous
model DeepBiomarker, we further modified the framework and named it DeepBiomarker2
(Figure 1). This enhanced model represented a significant advancement regarding (a) the
extraction of psychotherapy status (both cognitive behavioral status and trauma-focused
psychotherapy) from clinical notes, (b) the integration of individual lab tests, SDoH pa-
rameters, psychotherapy status, medications, and diagnosis as the input, so that we can
assess the important clinical and non-clinical factors associated with ASUD risk, and
(c) the refinement of the contribution analysis module, a pivotal component of our ap-
proach. This refinement involved optimizing the relative contribution analysis, a method
used to quantify the impact of key factors. We assessed these factors by measuring the ob-
served changes in the model’s predictions. In our study, we followed the same parameters
as our previous versions to maintain consistency and ensure methodological robustness
and comparability. Embedding dimension 128 determined the dimensionality of embedded
data representations, impacting the model’s ability to capture complex relationships. The
hidden size of 128 specified the number of neurons in each recurrent layer, influencing
the model’s capacity to capture intricate data patterns. A dropout rate of 0.2 served as a
regularization measure during training, preventing overfitting by randomly deactivating
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neurons. With eight layers, our model delved deeply into data hierarchies, although at
the cost of increased complexity. An input size of 30,000 signified the breadth of features
considered, while a patience value of 3 dictated early stopping based on validation perfor-
mance. Together, these parameters underpinned our deep learning model’s architecture,
ensuring reliable and consistent analysis of factors associated with ASUD risk among PTSD
patients. To estimate the standard deviations of the accuracy, we repeated our calculations
five times for each of the algorithms.
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Figure 1. Overview of DeepBiomarker2. (A) Data sampling from electronic medical records: Patients
A and B both pass the inclusion criteria and within the given time interval. Patient A has no event
and Patient B has events and is considered as a control and a case, respectively. We extract their
multimodal information (i.e., Diagnoses/Disease, Medication use/Drug, and Lab-test results) from
their EMRs and use them as input in our model; (B) data embedding: the multimodal information
is then converted into continuous vector spaces to build an embedding matrix; and (C) prediction
by neural networks such as TLSTM and RETAIN as the basic prediction units. We then incorporate
individual- and neighborhood-level SDoH information, trauma-focused psychotherapy, and cognitive
behavioral status information in our neural networks for outcome prediction. Our model provides
us with a comprehensive list of multiple biomarkers, and with the help of the perturbation-based
contribution analysis, we identify the most important features/biomarkers. TLSTM: Time-aware long
short-term memory; RETAIN: Reverse Time Attention Model; SDoH: social determinants of health.

2.7. Statistical Analysis

Assessment of the importance of the clinical factors for predicting ASUD events.
To examine the importance of the clinical factors for the prediction of ASUDs, we

calculated the relative contribution (RC) of each feature on the ASUD [42]. The RC of a
feature was calculated as the median contribution of the feature to events divided by the
median contributions of this feature to no events. The contributions were estimated by a
perturbation-based approach [43]. The RC value and significance calculation are shown as
follows where FC represents the feature contribution:

RC value =
median(FC with event)

median(FC without event)

RC signi f icance = Wilcoxon rank sum test p value (FCswith event and FCswithout event)

The FC value was the total value of the feature within the same patient if the feature
appeared more than once in that patient. In most cases, FCs did not follow a normal
distribution. As such, the medians of FCs were used in the RC calculation instead of the
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mean value, and the significance of RCs was represented by the p-value of the Wilcoxon
rank sum test with the comparison of the median difference between FCs with and without
events [44]. False discovery rate (FDR) adjustment was used to reduce the type I error
caused by multiple comparisons. FDR is the expected ratio of the number of false positive
results to the number of total positive test results [45]. The FDR adjustment was represented
by an FDR-adjusted p value with alpha = 0.05.

We improved our assessment by normalizing the FC value and scaling the RC value for
all our features. The improved FC formula is the ratio of the summary of the contribution
of a feature and the summary of the contribution of all the features. Next, we performed
scaling, where the RC for a PTSD diagnosis was scaled to 1 and the scale factor generated
was applied to obtain the final RC value for each of the other features. FC normalization ac-
counts for heterogeneity in the numbers of encounters across patients, which may otherwise
inflate the contribution of features observed in patients with higher healthcare utilization,
and by normalization, we estimate the contribution of a feature while considering all
features from that patient/sample. The step of scaling is to distinguish beneficial factors
from risk factors using a common internal factor as a reference. Because of the disparity in
visits among cases and controls, even PTSD might have a beneficial or risk effect when only
considering the raw RCs. We also would emphasize that this is still an active area in the
model interpretation, and more complex and reasonable approaches might come out in the
future. To evaluate the approach, we can use previous well-known knowledge to validate
the performance of analysis, e.g., whether an approach can “discover” previous findings
and reveal some new insights for hypothesis generations to generate new knowledge.

Assessment of model performance.
The model performance was evaluated by the area under the ROC curve (AUROC)

in both the validation set and test set. The precision, recall, and F1 scores were calculated
in the test sets. The mean and standard deviation of five repeats of those metrics were
reported. We used both deep learning and logistic regression to compare the performance
of our model. To assess the effect of SDoH, we repeated our analysis ten times, averaged
the coefficient factors of SDoH parameters, and calculated the p values using a t-test.

3. Results

The performance of DeepBiomarker2 on the ASUD prediction.
We identified 38,807 PTSD patients from UPMC EMR data. We further identified

7927 cases and 7685 controls from patients with more than 1 year of EMRs before the
diagnosis of PTSD (Supplementary Figure S1 and Supplementary Table S1). Those samples
were split into an 8:1:1 ratio for training, validation, and test sets. The performance metrics
of the DeepBiomarker2 can be found in Table 1.

As shown in Table 1, the deep learning models TLSTM and RETAIN algorithms
implemented in DeepBiomarker2 all showed excellent performance on ASUD prediction,
i.e., all yielded an AUC ≥ 0.90 (Supplementary Figure S3). The performance of deep
learning (AUC above 0.93) was better than LR (0.85). The performance of models with
SDoH was slightly better than those without SDoH.

Table 1. The performance metrics of DeepBiomarker2 with different deep-learning and machine-
learning algorithms with and without SDoH features.

RETAIN(+SDOH) 1 2 3 4 5 Average std.s

Validation AUC 0.922 0.925 0.927 0.934 0.935 0.929 0.005
Test AUC 0.918 0.927 0.930 0.933 0.928 0.927 0.007

Test Precision 0.886 0.890 0.899 0.915 0.886 0.895 0.013
Test Recall 0.850 0.878 0.865 0.867 0.869 0.866 0.011

Test F1 0.868 0.884 0.882 0.890 0.877 0.880 0.009
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Table 1. Cont.

RETAIN(−SDOH) 1 2 3 4 5 Average std.s

Validation AUC 0.926 0.921 0.933 0.933 0.922 0.927 0.006
Test AUC 0.923 0.918 0.916 0.932 0.927 0.923 0.006

Test Precision 0.898 0.878 0.857 0.888 0.866 0.878 0.017
Test Recall 0.867 0.870 0.872 0.882 0.881 0.874 0.007

Test F1 0.882 0.874 0.864 0.885 0.873 0.876 0.008

LR(+SDOH) 1 2 3 4 5 Average std.s

Validation AUC 0.875 0.872 0.871 0.876 0.868 0.872 0.003
Test AUC 0.849 0.841 0.845 0.854 0.844 0.847 0.005

Test Precision 0.758 0.702 0.714 0.746 0.723 0.729 0.023
Test Recall 0.825 0.872 0.858 0.849 0.838 0.848 0.018

Test F1 0.790 0.778 0.779 0.794 0.776 0.784 0.008

LR(-SDOH) 1 2 3 4 5 Average std.s

Validation AUC 0.869 0.868 0.869 0.851 0.868 0.865 0.008
Test AUC 0.846 0.843 0.843 0.828 0.841 0.840 0.007

Test Precision 0.704 0.706 0.692 0.752 0.773 0.725 0.035
Test Recall 0.897 0.889 0.904 0.776 0.787 0.851 0.063

Test F1 0.789 0.787 0.784 0.764 0.780 0.781 0.010

TLSTM(+SDOH) 1 2 3 4 5 Average std.s

Validation AUC 0.936 0.932 0.935 0.944 0.929 0.935 0.006
Test AUC 0.910 0.924 0.935 0.928 0.935 0.926 0.010

Test Precision 0.786 0.863 0.869 0.873 0.886 0.855 0.040
Test Recall 0.906 0.855 0.887 0.855 0.878 0.876 0.022

Test F1 0.842 0.859 0.878 0.864 0.882 0.865 0.016

TLSTM(−SDOH) 1 2 3 4 5 Average std.s

Validation AUC 0.931 0.939 0.937 0.937 0.941 0.937 0.004
Test AUC 0.919 0.925 0.925 0.923 0.931 0.924 0.005

Test Precision 0.826 0.869 0.869 0.836 0.882 0.857 0.024
Test Recall 0.902 0.878 0.859 0.888 0.859 0.877 0.019

Test F1 0.862 0.874 0.864 0.862 0.871 0.866 0.005

AUC: area under curve, std: standard deviation, TLSTM: Time-Aware Long Short-Term Memory, RETAIN: Reverse
Time AttentIoN model, LR: Logistic regression, std.s: Standard deviations of validation AUC, test AUC, test
precision, test recall, and test F1, respectively.

3.1. Important Indicators for the ASUD Prediction

As we described previously, we followed a perturbation-based estimation approach
to calculate the relative contribution of each feature on the prediction of ASUD (Supple-
mentary Table S2). Tables 2–5 enlist the top important abnormal lab tests, medication
use, diagnosis, and SDoH parameters, respectively. The most important indicators were
ranked based on the highest number of cases and controls and the most significant p-values.
We can see that in Table 2, HGB with RC of 1.45, along with other abnormal lab tests
with RC > 1, are indicators of increased risk for ASUD. In Table 3, pain medications such
as acetaminophen and oxycodone both have an RC of RC > 1, which are categorized as
indicators of increased risk for ASUD while medications such as clindamycin and enalapril
have an RC < 1 and are categorized as indicators of decreased risk for ASUD. In Table 4,
diagnoses such as routine lab examinations are categorized as protective factors for ASUD
(RC = 0.71) while other chronic pain is categorized as a risk factor for ASUD (RC = 1.17).
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Table 2. Most important abnormal lab test results identified by perturbation-based contribution
analysis for ASUD prediction.

Feature Name Relative
Contribution Wilcoxon_p FDR_Q

HGB 1.46 2.63 × 10−34 8.75 × 10−35

HCT 1.40 5.43 × 10−29 1.36 × 10−29

Glucose 1.32 9.64 × 10−28 1.93 × 10−28

RBC 1.28 4.99 × 10−16 4.99 × 10−17

WBC 1.32 6.02 × 10−14 5.47 × 10−15

CL 1.29 8.99 × 10−14 7.49 × 10−15

MCHC 1.34 9.79 × 10−13 7.53 × 10−14

MCH 1.31 4.18 × 10−11 2.78 × 10−12

Albumin 1.35 5.77 × 10−11 3.61 × 10−12

RDW 1.30 7.80 × 10−11 4.59 × 10−12

Total Protein 1.41 1.31 × 10−9 6.57 × 10−11

Protein-Urine 1.41 2.20 × 10−9 1.00 × 10−10

Leukocyte Esterase 1.36 9.21 × 10−9 3.54 × 10−10

ABS Neutrophils 1.33 1.95 × 10−8 6.95 × 10−10

CO2 1.28 0.0001 2.87 × 10−6

Urea Nitrogen 1.20 0.0001 2.87 × 10−6

Ca 1.27 0.0003 5.77 × 10−6

Relative contribution value >1: Risk and Relative contribution value, <1: FDR_Q: false discovery rate adjusted Q
value, p_wilcoxon: p values of Wilcoxon test. Hemoglobin (HGB), hematocrit (HCT), red cell distribution width
(RDW), red blood cells (RBC), white blood cells (WBC), absolute (ABS) neutrophils, mean corpuscular hemoglobin
(MCH), mean corpuscular hemoglobin concentration (MCHC), chloride (CL), carbon dioxide (CO2), and
calcium (Ca).

Table 3. Most important medication uses results identified by perturbation-based contribution
analysis for ASUD prediction.

Feature Name Relative
Contribution Wilcoxon_p FDR_Q

Acetaminophen 1.60 3.67 × 10−38 1.84 × 10−38

Hydrocodone 1.42 1.38 × 10−10 7.66 × 10−12

Oxycodone 1.44 3.49 × 10−10 1.84 × 10−11

Diphenoxylate and
Atropine 0.30 4.07 × 10−8 1.40 × 10−9

Sodium
sulfacetamide sulfur 0.45 2.52 × 10−7 7.87 × 10−9

Gabapentin 1.39 4.16 × 10−7 1.26 × 10−8

Enalapril 0.48 0.0001 2.84 × 10−6

Moxifloxacin 0.31 0.0003 5.46 × 10−6

Alprazolam 1.63 0.0019 2.89 × 10−5

Symbicort 1.36 0.0228 0.0003
Clindamycin 0.59 0.0295 0.0003

Xarelto/Rivaroxaban 0.39 0.0337 0.0004
Valacyclovir 0.53 0.0495 0.0005

Penicillin 0.65 0.0735 0.0007
Relative contribution value >1: Risk and Relative contribution value, <1: FDR_Q: false discovery rate adjusted Q
value, p_wilcoxon: p values of Wilcoxon test.



J. Pers. Med. 2024, 14, 94 10 of 24

Table 4. Most important diagnosis results identified by perturbation-based contribution analysis for
ASUD prediction.

Feature Name Relative Contribution Wilcoxon_p FDR_Q

Routine general medical examination at a
health care facility 0.71 9.76 × 10−25 1.63 × 10−25

Esophageal reflux 1.25 1.40 × 10−16 1.68 × 10−17

Asthma, unspecified type, unspecified 1.34 1.51 × 10−16 1.68 × 10−17

Long-term (current) use of anticoagulants 1.24 4.82 × 10−9 2.10 × 10−10

Personal history of tobacco use 1.25 8.78 × 10−9 3.51 × 10−10

Anxiety state, unspecified 1.18 1.21 × 10−8 4.49 × 10−10

Lumbago 1.25 8.80 × 10−7 2.45 × 10−8

Personal history of other mental disorders 1.28 1.15 × 10−6 3.10 × 10−8

Depressive disorder, not elsewhere classified 1.21 4.54 × 10−6 1.16 × 10−7

Periumbilical pain 1.17 1.93 × 10−5 4.48 × 10−7

Fibromyalgia 1.19 0.0024 3.58 × 10−5

Migraine without aura, with intractable
migraine, so stated, without mention of

status migrainosus
1.17 0.0146 0.0002

Osteoarthrosis, unspecified whether
generalized or localized, site unspecified 1.26 0.0157 0.0002

Arthrodesis status 1.18 0.0192 0.0002
Body Mass Index, pediatric, greater than or

equal to 95th percentile for age 0.86 0.0261 0.0003

Other chronic pain 1.17 0.0704 0.0007
Screening for malignant neoplasms of cervix 0.86 0.5997 0.0037

Relative contribution value >1: Risk and Relative contribution value, <1: FDR_Q: false discovery rate adjusted Q
value, p_wilcoxon: p values of Wilcoxon test.

Table 5. Most important SDoH and psychotherapy parameters identified by averaging 10 repeats for
ASUD prediction.

Name Mean sd p Impact on ASUD Risk Type of SDoH

Race (White) 0.120 0.02 2.60 × 10−9 White patients have higher
risk of ASUD Individual

Trauma focused
psychotherapy −0.0812 0.016 1.49 × 10−8

Individuals undergoing trauma
focused psychotherapy have lesser

risk of ASUD
Individual

Neighborhood
socioeconomic status −0.0943 0.033 3.27 × 10−6

Neighborhoods with low
socio-economic status has higher

risk of ASUD
Neighborhood

Percentage of
Non-Citizens −0.116 0.04 3.43 × 10−6 Non-US Citizens have a higher

chance of ASUD risk Neighborhood

Cognitive
behavioral therapy −0.0623 0.022 3.66 × 10−6

Individuals undergoing cognitive
behavioral therapy have lesser

risk of ASUD
Individual

Percentage of
Foreign born −0.0901 0.033 5.08 × 10−6 US born patients have higher

risk of ASUD Neighborhood

People of color index −0.0778 0.03 9.88 × 10−6 Black majority have higher
risk of ASUD Neighborhood

Limited
English-speaking

household
−0.106 0.042 1.00 × 10−5

Households with limited English
speaking capacity have higher

risk of ASUD
Neighborhood

Racial segregation −0.118 0.047 1.30 × 10−5 High racially segregated zip codes
have higher risk of ASUD Neighborhood
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Table 5. Cont.

Name Mean sd p Impact on ASUD Risk Type of SDoH

Widowed partner who
is a Male −0.0781 0.032 1.41 × 10−5

Widowed partner who is a male have
lower risk of ASUD as opposed to
widowed partner who is a female

Neighborhood

Household with
transportation barriers 0.0870 0.04 3.82 × 10−5 Households with no vehicles have

higher risk of ASUD Neighborhood

Gender −0.0964 0.046 5.56 × 10−5 Females have higher risk of ASUD Individual

Age −0.0828 0.043 0.0001 Younger patients have higher
risk of ASUD Individual

Household with same
sex marriages 0.0652 0.039 0.0003 Households with same sex marriages

have a higher chance of ASUD risk Neighborhood

Aridity −0.0487 0.03 0.0004
Low Humidity/lower

vegetation/greenery have higher risk
of ASUD

Neighborhood

Normalized difference
vegetative index −0.0581 0.043 0.0016 Low vegetation/greenery have

higher risk of ASUD Neighborhood

Gini index −0.0216 0.019 0.0045 Zip codes with low Gini index have
higher risk of ASUD Neighborhood

Household with
Separated partners 0.0396 0.037 0.0063 Households with separated partners

have higher risk of ASUD Neighborhood

Income segregation −0.0276 0.036 0.0309 Households with higher income
segregation have higher risk of ASUD Neighborhood

SDoH: social determinants of health, sd: standard deviation, p: p values.

3.2. Overall Lab Test-Based Indicators of Comorbidities and Disease Burdens for ASUD Prediction

Through further analysis of the DeepBiomarker2 model, we identified the most impor-
tant lab tests as the biomarkers (Supplementary Table S3). These biomarkers are strongly
correlated to ASUD and PTSD, along with their implications for adjoining diagnosis and
medication use. These lab tests are indicators of underlying comorbidities and thus can be
considered measurements of disease burdens.

4. Discussion

We developed and applied our deep learning model DeepBiomarker2 to predict the
risk of ASUDs in PTSD patients based on abnormal results of regular lab tests in the last
year together with the diagnosis and medications used in the same period, as well as SDoH
parameters. The model yielded very good performance with an AUC score above 0.93.
The improvement might be due to the fact that DeepBiomarker2 can also consider the
sequential information of these multimodal features. This study marks the first to establish
a connection between these lab test results and the risk of ASUD among PTSD patients.
However, further research investigating the relationship between these biomarkers and
the risk of ASUD in PTSD patients is warranted, as there remains a gap in the existing
literature on this topic. To further refine our understanding of specific biomarkers of PTSD
and ASUD, we have categorized our top biomarkers as follows:

4.1. Biomarkers Closely Related to PTSD and ASUD

Inflammatory-based biomarkers. We have identified two inflammatory-based biomark-
ers that are potentially useful for assessing the risks of ASUDs in PTSD patients. Current
research has emphasized the importance of incorporating inflammatory biomarkers in
risk prediction models to further catapult mental disorder research efforts. Several studies
showed PTSD patients had elevated levels of WBC and neutrophil levels in their system
on account of the activation of multiple inflammatory pathways. Abnormal WBCs and
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neutrophil levels express tissue function and release pro-inflammatory and pro-coagulant
molecules to promote thrombus formation, including platelet activation and adhesion,
which potentially increase the risk of cardiovascular disease in these patients [46]. An-
other study found low WBC and neutrophil levels in alcoholics but higher WBC levels in
cannabis, inhalants, tobacco, and opioid users, and no significant levels of WBCs amongst
cocaine users. At the same time, low neutrophil levels were seen in cannabis users and
high levels in inhalants and opioid users [47–51].

Heme-based biomarkers. The PTSD patient population might have pathologies that
are related to hematopoiesis, inflammation, endothelial function, and coagulability, de-
pending on abnormal levels seen in these patients [52]. Current epidemiological studies
have shown RBCs may interact with the inflammatory system and platelets. Once exposed
to oxidative stress, they acquire a senescent phenotype promoting a pro-inflammatory and
pro-atherogenic state [53]. We found elevated levels of hemoglobin, red blood cells, hemat-
ocrit, RDW, MCH, and MCHC in depressed patients. We also found low hemoglobin levels
in alcoholics, cannabis, and heroin users [54]. At the same time, other heme biomarkers
are discussed in Supplementary Table S1. To the best of our knowledge, we would be the
first to propose these heme biomarkers as possible biomarkers for the risk of ASUDs in
PTSD patients.

Liver-based biomarkers. Albumin is a protein shown to possess free-radical scaveng-
ing properties that act as a selective antioxidant. There are studies examining the role of
serum albumin levels in patients with psychiatric diseases [55,56]. The current research
hypothesizes that low serum albumin levels in depressed patients might be due to the
activation of inflammatory responses in these patients [57–59]. Another study found low
serum albumin levels in drug addicts and higher serum albumin levels in alcoholics in an
emergency department setting [60]. However, it is important to thoroughly examine the
association between developing ASUD risk and albumin to demonstrate it as a prognostic
biomarker amongst PTSD patients.

Additional biomarkers including calcium, chloride, carbon dioxide, total protein, pro-
tein in the urine, leukocyte esterase, and urea nitrogen were identified as factors associated
with increased risk of ASUD in our cohort of patients with PTSD.

4.2. Effect of Medication Use on PTSD for ASUD Prediction

Indicators of increased risk:
Pain medications: PTSD patients prescribed pain medications such as acetaminophen,

oxycodone, hydrocodone, and gabapentin have significantly higher PTSD symptom sever-
ity scores, with opiate analgesics use associated with the highest scores [61]. The rationale
associated with the use of both opiate and non-opiate analgesics leads to the hypothesis
suggesting the dysregulation of the opioid system in both PTSD and ASUD. While physical
injury at the time of PTSD accounts for ongoing pain symptoms seen in these patients,
there is a possibility that the emotional and social impact of these traumas may further
exacerbate ASUD risks among these patients.

Alprazolam: Alprazolam is a medication that belongs to the class of benzodiazepines.
Studies have found that there may be an increased incidence of PTSD in patients treated
with alprazolam immediately after exposure both in the civilian and veteran popula-
tions [62]. Other studies found that alprazolam has been associated with disproportionate
harm compared to other benzodiazepines, especially among people in opioid substitution
treatment, and drug-related deaths [63]. This can be attributed to the significant attenuation
of the hypothalamus–pituitary axis (HPA) response, suggesting a possible link between
initial HPA-axis response disruption and subsequent unfavorable outcomes [64].

Symbicort: Steroids such as Symbicort exert potent anti-inflammatory properties but
come with a spectrum of adverse effects from mild concerns like acne to severe conditions
like Cushing syndrome, thus potentially leading to diabetes and heart problems [65].
They are widely employed to manage inflammatory and autoimmune diseases including
rheumatoid arthritis, upper airway inflammation, asthma, and pulmonary conditions.



J. Pers. Med. 2024, 14, 94 13 of 24

However, corticosteroids can provoke psychiatric issues like depression, anxiety, delirium,
and panic disorders [66]. The side effects impact up to 90% of long-term corticosteroid users
and may even lead to cognitive impairment progressing to dementia or delirium. Multiple
studies report varying rates of mental problems ranging from 2–60% [67]. However, dosage
needs to be taken into consideration to avoid side effects. By discontinuing corticosteroids,
one can resolve mood and cognition problems as demonstrated in multiple controlled
experiments [68]. Studies investigating its risk in ASUD are lacking.

Indicators of decreased risk:
Clindamycin: Based on medical notes, we found that endocarditis, pneumonia, and

osteomyelitis are popular indications for clindamycin in these PTSD patients. Postoperative
and posttraumatic infections of bones and joints are some of the most common complica-
tions in the field of medicine. Osteomyelitis is a condition in which patients experience
inflammation in the bone and bone marrow. This could be either due to tuberculosis or
syphilis, or bacterial, fungal, or parasitic (toxoplasma gondii) in origin [69]. There is a
growing interest in epidemiology where infections are implicated as a novel risk factor for
the development of multiple mental disorders. The infection caused by the neurotropic
parasite Toxoplasma gondii (T. gondii) is transmitted to a host (e.g., rodent or human) via
the ingestion of tissue cysts in undercooked meat or oocytes in cat feces or contaminated
soil, where it progresses to form focal brain lesions as seen in patients with acquired im-
mune deficiency syndrome (AIDS) [70]. This can further lead to seizures, mental confusion,
neurological impairment, ataxia, visual abnormalities, cranial nerve palsy, alcohol-related
dementia, and psychomotor or behavioral alterations among patients with multiple etiolo-
gies [71]. A study examined the association between T. gondii infection, anxiety, PTSD, and
depression among individuals in a population-based study. They found that seropositive
individuals had more than twice the odds of reporting anxiety compared to seronegative
individuals, suggesting a relationship between the immune response to T. gondii and other
multiple anxiety and mood disorders [72]. A case study found that clindamycin treatment
provided clinical improvement within 48 h of treatment and resolved irregular brain lesions
in the right basal ganglia within 3 weeks of treatment [73]. Another case study proposed
clindamycin to be used to improve the cognitive function of AIDS patients with cerebral
toxoplasmosis and alcohol abuse [74–76]. Thus, the use of clindamycin can be extended to
patients with PTSD and ASUD.

Recent studies have suggested no major improvement in community-acquired strep-
tococcus pneumoniae meningitis. The long-term neurological sequelae coupled with its
high mortality impacts overall quality of life. This can be attributed to the systemic in-
flammatory response of the host leading to leucocyte extravasation into the subarachnoid
space, brain edema, secondary ischemia and vasculitis, stimulation of resident microglia
in the central nervous system by bacterial compounds, and finally, interaction with the
bacterial hemolysins on neurons [77–79]. A study performed in a rabbit model found that
clindamycin was found to pass the blood–brain barrier and provided neuroprotection as
opposed to other drugs in question. The proposed mechanism of action is attributed to
reduced hydroxyl radical formation and lower concentrations of glutamate and glycerol in
the interstitial fluid of the hippocampal formation, which finally leads to decreased neu-
ronal injury in the dentate gyrus [80]. As mentioned, the role of the dentate gyrus in bipolar
disorder [81], schizophrenia [82], and PTSD reiterates the possibility of clindamycin’s
protective effects.

Enalapril: Disorders such as depression and anxiety manifest as excessive fear, hy-
pervigilance, and related disturbances, often co-occurring with major depressive disorder
(MDD). This interplay may be driven by heightened HPA axis activity and amygdala
dysfunction. Conventional treatments often exhibit limited efficacy and delayed onset,
exacerbated by accompanying anxiety, which underscores the urgent need to explore novel
therapeutic targets. The renin-angiotensin system (RAS), traditionally associated with
hypertension, has emerged as a potential player in these disorders. Elevated RAS activity
is linked to depression and anxiety, partly due to neuroinflammation, stress, and oxidative
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stress induction. RAS blockade demonstrates anti-inflammatory and anti-oxidative stress
properties, suggesting a foundation for treating depression and anxiety. Drugs like capto-
pril and enalapril (angiotensin-converting enzyme inhibitors: ACEIs) have exhibited rapid
mood improvement in hypertensive patients [83]. Another study found that ACEIs such as
captopril and enalapril improved and reversed the adverse memory effects of hypertension.
High arterial blood pressure is significantly associated with cognition impairment along
with depression and anxiety [84]. Both reversed these deficits. Another study found that
64% of normotensive alcoholics taking 20 mg/day of enalapril had decreased their alcohol
intake as compared to the control [85,86]. In turn, these inhibitors may reduce alcohol
intake by elevating a nonapeptide fragment or elevating central angiotensin II levels [87].

Other medications such as penicillin, valacyclovir, Xarelto/rivaroxaban, moxifloxacin,
diphenoxylate atropine, and sodium sulfacetamide sulfur could potentially serve as protec-
tive treatment options for PTSD patients with ASUD risks (See supplementary information
for more details). It is worth noting that there may not be existing literature reports on
these medications’ direct impact on ASUD risk, likely because their effects on ASUD risk
are indirect. We also found that “bundled screening” for early detection and treatment of
mental disorders, ASUDs, and other unspecified conditions could be used as a precaution-
ary protective factor because it can help in overall healthcare cost reduction, disseminate
complications from co-occurring disorders, and overcome the lack of adequate behavioral
health infrastructure to provide appropriate diagnostic follow up. Other protective factors
such as screening for malignant neoplasms of the cervix amongst PTSD and ASUD patients
will help identify high-risk patients early on. Our results are in line with a study that
applied the Health Belief Model and trauma-informed frameworks to guide their analysis.
They found that discomfort with pap screening was common amongst women experi-
encing PTSD, ASUD, and homelessness and who had a history of sexual trauma such as
interpersonal violence, incarceration, discrimination, and neglect [88]. Providers suggested
an aggressive application of a trauma-informed approach where educating, counseling,
and privacy may help address complex barriers among women experiencing PTSD, ASUD,
and other discomforts.

4.3. Effect of SDoH on PTSD for ASUD Prediction

Negatively correlated:
Racial segregation: We found that patients who had values closer to −1 had higher

incidences of ASUD risks as opposed to patients closer to 1. Our results are in line with
a study that showed patients belonging to heavily racially segregated areas experiencing
place-based health disparities, which often arise due to a result of historical segregationist
policies, tend to have higher levels of inflammation that were attributed to higher incidences
of mental disorders [89].

Income segregation: Like racial segregation, our findings indicate that patients with
values closer to −1 are more prone to ASUD risks compared to those values closer to 1.
These results align with a previous study that demonstrated how individuals residing
in heavily segregated, low-income areas often face place-based health disparities. These
disparities are frequently linked to historical segregationist policies and are associated with
increased levels of inflammation, which, in turn, are connected to a higher occurrence of
mental disorders [89].

Low Neighborhood Socioeconomic Index (nSES index): The neighborhood socio-
economic index (nSES) captures the educational, occupational, and wealth composition of
a given zip code, as well as the material resources available to the residents [90]. Neighbor-
hood environments can impact health through several pathways, including psychosocial
stress stemming from toxic social environments prevalent in socioeconomically deprived
neighborhoods, individual-level factors such as smoking and diet, and exposure to toxic
physical elements like air pollution and chemical pollutants, which are more common in
low-income neighborhoods. These pathways may contribute to physiologic stress, with a
focus on inflammation, known to lead to chronic diseases including cardiovascular disease,
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diabetes complications, and cancer [91]. Toxic social stressors can stimulate inflammatory
responses via the HPA axis, resulting in chronic inflammation and increased risks. Higher
levels of inflammatory markers in residents of low socioeconomic status neighborhoods
support the notion that neighborhood deprivation may influence disease through inflam-
matory pathways [92]. We found that patients belonging to lower nSES zip codes had
higher ASUD risks as opposed to those belonging to high nSES zip codes.

Younger patients: Traumatic events affecting young individuals at higher rates can
have profound consequences on their mental health given the ongoing neurobiological
and emotional development. Prevalence estimates for trauma exposure and PTSD in
young individuals vary but underscore the need for updated assessments using current
diagnostic criteria. These experiences are associated with a significant health burden, in-
cluding increased risks of psychiatric disorders, suicidality, and functional impairment [93].
Furthermore, the United States is witnessing an alarming surge in ASUD among young
individuals, emphasizing the need for healthcare professionals to adapt their perioperative
care to minimize relapse rates in this demographic [94]. While further research is necessary,
our results shed light on the possibility of younger individuals being susceptible to the
addictive properties of various substances.

Other SDoH parameters, such as patients belonging to zip codes with a black majority,
low normalized difference vegetation, low aridity, a high percentage of non-USA citizens,
a high number of households with limited English-speaking capacity, a high number of
widowed partners who are females, higher income segregation, and low Gini index, were
all found to have an association with PTSD and ASUD, both in our study and in the mental
health literature and, thus, should be considered when reforming the healthcare system to
respond to the challenge of health disparities.

Positively correlated to ASUD risk:
Transportation barrier: Transportation barriers due to a lack of access to transportation

lead to rescheduling conflicts, longer wait times, and missed or delayed care [95]. These,
in turn, promote poorer management of chronic illness and mental health outcomes [96].
We found that patients living in zip codes with a lack of available transportation tend to
experience higher incidences of ASUD risks as opposed to patients living in zip codes with
access to transportation. Our study is in line with a study that showed that 5.8 million
individuals in 2017 delayed medical care because they did not have access to transportation.
The study emphasized that transportation barriers increased between 2003 and 2009 with
people of color, those living below the poverty threshold, Medicaid recipients, and people
with disabilities having greater odds of reporting a transportation barrier [97]. Another
study found unwillingness to be in treatment, financial/insurance, and transportation
barriers to be the most common barriers to aftercare treatment for alcohol and substance
use [98].

Households with separated partners: The link between heavy drinking and di-
vorce/separation has been recognized, with alcohol abusers having a roughly 20% higher
risk of divorce compared to the general population [99]. However, little is known about
the impact of divorce on the mental health of individuals in marriages marked by alcohol
abuse. Current research on divorce in the general population has shown that mental health
problems tend to peak following a divorce, possibly due to a combination of the health
selection model (where troubled individuals are less likely to stay married) and the social
causation model (stating that divorce-related adversities like emotional stress, unhealthy
lifestyles, reduced social support, and limited resources lead to mental health issues) [100].
Our study is in line with another study that found that mental health may deteriorate more
significantly after divorce among high-risk users, but that the impact may be less severe
than in other divorced couples [101].

Cognitive behavioral therapy and Trauma-focused psychotherapy: Cognitive behav-
ioral therapy serves as a psychotherapeutic approach aimed at identifying and transforming
detrimental patterns that adversely impact one’s behavior and emotions. It proves partic-
ularly beneficial in helping individuals break free from pessimism and problem-solving
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challenges during times of stress, fostering more balanced thinking and enhancing their
stress-coping abilities [102]. Also, trauma-focused psychotherapy such as cognitive pro-
cessing therapy, prolonged exposure, and EMDR boast the strongest empirical support
in addressing core PTSD symptoms. These techniques involve immersing individuals
in prolonged and narrative exposure exercises, allowing them to reimagine and reframe
traumatic experiences while restructuring cognitive processes. EMR entails revisiting dis-
tressing memories and their associated thoughts while simultaneously engaging in bilateral
physical stimulation, such as eye movements, taps, or tones [103]. Research has identified
these therapies as effective treatments for patients with PTSD [104]. While research using
real-world data is lacking, our study is one of the first to find that PTSD patients undergoing
these therapies had less risk of ASUD than those who did not undergo these treatments in
a real-world setting.

Other SDoH parameters such as patients belonging to zip codes with households with
same-sex marriages, single parents, and a higher number of patients who are white through
EMR information were found to exhibit elevated incidences of PTSD, suicide-related events,
and ASUD [95,105–108].

We also noticed that by adding the neighborhood level of SDoH parameters, the
performance of Deepbiomarker2 has a slight improvement, and this might imply that
some impact of those SDoH parameters has been captured by EMR data. As shown in
Table 4, routine general medical examination at a healthcare facility, screening for malignant
neoplasms of the cervix, and screening for childhood obesity are protective factors with
reduced ASUD risk.

4.4. New Hypothesis Generated by DeepBiomarker2 on ASUD Risk in PTSD

Most prior PTSD and ASUD studies share a common shortcoming of being rooted in
the de facto assumption that ASUDs may emerge majorly due to biological factors. How-
ever, we would like to propose some unique hypotheses that are based on our results and
validated by the literature. They may serve as important novel interdisciplinary indicators
of mental health diseases. However, it is important to approach our findings with caution
since they do not establish a causal relationship. There exists a possible indirect link be-
tween gut microbiota dysbiosis, UTIs, and Toxoplasmosis gondii [109]. Microbial dysbiosis
is a major perpetrator of intestinal inflammation, which promotes subsequent permeability
of the gut barrier, ultimately leading to distal consequences of Toxoplasmosis gondii infec-
tion to permeate the blood–brain barrier [110]. This compromise may promote cognition
and AUD risk in patients with PTSD, depression, epilepsy, suicidal ideation, GAD, and
schizophrenia [111]. This health disparity can be potentially corrected by improved water
purification for all. Serum albumin (SA) is closely related to oxidative stress and antioxi-
dant capacity. It may exist in relatively high concentrations in patients with liver disease
and other neurodegeneration disorders, and significantly lower in patients with cancer,
critically ill patients, and patients with neuropsychiatric disorders such as schizophrenia
and depression [112]. Albumin may aggravate oxidative stress by increasing the percentage
of free radicals and oxidative damage products entering the blood–brain barrier. This, in
turn, may promote inflammation while simultaneously decreasing omega-3 polyunsatu-
rated fatty acids, magnesium, and thyroid hormone levels causing depression [113–116].
Another unconventional hypothesis that could be extrapolated and used for future studies
is correlating allergies to PTSD and ASUD. A study showed immunoglobulin-E and WBCs
to be associated with worsening depressive scores in bipolar patients during high pollen
seasons. Also, PTSD patients with nicotine dependence and chronic obstructive pulmonary
disorder (COPD) had high RBCs [117]. Based on our results and the literature, we show
that the activation of inflammatory mediators due to asthma and allergy rhinitis may be a
potential biomarker for predicting ASUDs in PTSD, but further investigations are necessary.
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4.5. Biomarkers for Personalized Treatment for PTSD to Reduce the Risk of ASUD

Using EMR and non-EMR data, we examined multiple biomarkers concerning patient
medication history, diagnosis, lab tests, SDoH (both neighborhood and patient levels), and
psychotherapy to propose novel therapies for PTSD patients with ASUDs. Our findings
provided compelling evidence that suggests that in addition to targeting risk and protective
factors and developing prevention and intervention strategies, one must incorporate SDoH
and psychotherapy information to ameliorate sources of psychological and psychosocial
risk. This, in turn, would help to better predict ASUD risks in PTSD patients. Although
the literature focuses on using conventional SDoH parameters such as income, race, and
unemployment to be the major predicting factors for future ASUDs, the inclusion of future
SDoH-ASUD factors such as peer substance use, easy drug access, cultural norms, low
access to ASUD help centers, and other psychosocial parameters should be considered
to obtain a comprehensive view of PTSD and SDoH. Our tool is intuitive and could
provide easy interpretation of these complex biomarkers. We emphasize a novel focus on
biomarkers for assessing ASUD risk among PTSD patients, particularly the inclusion and
examination of SDoH and psychotherapy parameters. This pioneering approach identifies
novel biomarkers that are relevant to both PTSD and ASUD, a distinctive contribution
considering previous studies focused solely on either condition. Additionally, our model’s
ability to integrate diverse factors, including SDoH and psychotherapy, sets it apart from
prior research. We emphasize the significance of considering combinations of biomarkers
over individual ones. Our study’s robustness encompasses a wide range of both EMR
(both clinically and non-clinically applicable) biomarkers and non-EMR (non-medical
and non-behavioral precursors of health) biomarkers, features a substantial sample size,
considers sequential effect, and acts as an efficient choice of routine testing, which positions
it as a valuable contribution to the existing literature and provides a more comprehensive
understanding of these complex conditions. Our study’s emphasis on refining our relative
contribution analysis adds a valuable dimension to the existing literature and enhances our
understanding of the identification and treatment of ASUD among PTSD patients. While
it is true that many of the factors associated with PTSD and ASUD are well-established
in prior research, our analysis is the first to provide several noteworthy contributions
concerning both PTSD and ASUD that deserve attention. Firstly, our approach allows for
the replication of previous findings, which indirectly validates the effectiveness of our
analytical methodology. By confirming established non-causal associations between certain
factors and comorbid PTSD and ASUD, we demonstrate the reliability and robustness of our
approach. This validation serves as a foundation upon which we build our novel findings.
While certain biomarkers may be well-known in isolation, our study uniquely connects the
biomarkers associated with both PTSD and ASUD. This linkage is a distinctive contribution,
as it underscores the interplay between these conditions and offers fresh insights into
potential diagnostic and therapeutic avenues. Moreover, the extensive literature we have
cited serves to establish the context and significance of our work. It demonstrates that
while individual factors have been explored, the comprehensive analysis of ASUD and
PTSD biomarkers is relatively underexplored. Our study bridges this gap by systematically
examining a wide range of factors within the context of comorbid PTSD and ASUD and
provides a more comprehensive perspective on the identification and treatment of ASUD
among PTSD patients.

Our study also has a few limitations: First, there could be inconsistencies in biochem-
ical test results between patients due to enrollment bias, and some lab tests might have
low representation in our database. As such, the analysis might have limited power to
detect the effects. Second, we used EMR data from January 2004 to October 2020, and in
this period, there is a possibility of changes in treatment and number of lab tests amongst
these patients. However, these are limitations caused by using observational EMR as a
data source and can be resolved by investigations using a randomized clinical trial or
prospective design. Third, we considered the effect of biomarkers along with diagnosis
and medication use; however, in our results, comorbidities had a higher impact compared
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to biomarkers. This can be explained by the fact that diagnosis considers the past status
of the patients while biomarkers take into consideration the recent status of PTSD and
ASUDs. However, it is important to note that these associations are not causal, and further
investigation is planned to explore potential causal relationships involving these biomark-
ers. Fourth, there are SDoH data inconsistencies due to missing data. Fifth, due to data
limitations, we only mapped neighborhood-level SDoH parameters based on the zip codes
of patient information extracted from EMR data, and we did not include individual-level
SDoH (e.g., income, home address, and education level) due to patient protection and
privacy issues. Sixth, while our primary findings solidly establish predictive features for
ASUD risk in PTSD, caution should be exercised when interpreting the secondary results
related to specific features. This caution is particularly relevant in the context of deep learn-
ing models as these methods assess factors/features independently, whereas the original
predictive models inherently consider combinations of factors/features. This challenge
in interpretation is inherent to such models and extends beyond the scope of our paper.
Seventh, our use of diagnosis codes to identify ASUD has inherent limitations, particularly
concerning questions related to indicators of increased and decreased risk. We did not
include a formal diagnosis by conducting screening interviews to formally diagnose these
patients but used the diagnosis codes available to us from published results [118]. It is
plausible that the observed impact of diagnosed comorbidities may reflect variations in
detection and documentation practices rather than solely underlying disease processes.
The diagnosis codes are simply extracted from claims data and are not a representation
of the actual diagnosis of the patient, which is a limitation of using EMR data. Eighth,
we used SDoH measures at the 5-digit zip code level, which may result in reduced pre-
cision compared to finer geographical units. However, prior research supports the use
of 5-digit zip code-level data as a practical approach for examining SDoH, allowing us
to contribute valuable insights into its relationship with the ASUD risk [37]. Because of
the inclusion of SDoH in our model, it is hard to compare our model performance with
other approaches because those models did not integrate SDoH yet. Instead, we used
evidence from the literature to validate our model. There might still be room to enhance the
model performance with more recent models. In addition, although transformer models
exhibit superior performances, their implementation in our study proves challenging due
to the constraints imposed by our small dataset [18]. Our future research will seek to find
remedies to the above shortcomings by utilizing larger and more integrated datasets with
more accurate diagnoses, improving our algorithms, including more insightful biomarkers,
integrating other forms of metadata and other biological measures relevant to ASUD risk,
and performing causal pathway analyses.

5. Conclusions

Our improvised data-driven deep learning approach aimed to identify and examine
biomarkers for assessing the risk of ASUDs among PTSD patients, which can be utilized
to develop novel interdisciplinary hypotheses surrounding its etiology. Extrapolating
our results and current information, we found medications like clindamycin, enalapril,
penicillin, valacyclovir, Xarelto/rivaroxaban, moxifloxacin, sodium sulfacetamide sulfur,
diphenoxylate, and atropine all to have a potential to reduce risk of ASUDs among PTSD
patients. That, being said we also found multiple SDoH parameters, both conventional
and unconventional ones, and psychotherapy to have significant contributions to ASUD
risk prediction. The high accuracy of DeepBiomarker2 showed ASUD risk to be particu-
larly higher among a subset of patients who may experience elevated psychosocial risk
coupled with pain medication treatment and inactive psychotherapy status. This might
provide a novel insight into our understanding of PTSD with ASUD in a more holistic
manner. While universal prevention programs may offer current benefits, these findings
from DeepBiomarker2 offer potentially valuable and refined information that can be used
to design and develop personalized prevention and intervention programs that are de-
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signed to address the psychosocial needs and health disparities existing amongst these
high-risk patients.
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Appendix A Diagnosis Codes

1. PTSD:

309.81, F43.10, F43.11, F43.12

2. ASUD:

291.0, 291.1, 291.2, 291.3, 291.4, 291.5, 291.8, 291.81, 291.82, 291.89, 291.9, 292.0, 292.11,
292.12, 292.2, 292.81, 292.82, 292.83, 292.84, 292.85, 292.89, 292.9, 357.5, 425.5, 535.30, 535.31,
571.0, 571.1, 571.2, 571.3, 648.30, 648.31, 648.32, 648.33, 648.34, 965.00, 965.01, 965.02, 965.09,
968.5, 969.6, E850.0, E854.1, E860.0, E935.0, E938.5,E939.6,V654.2, 303, 303.0, 303.00, 303.01,
303.02, 303.03, 303.9, 303.90, 303.91, 303.92, 303.93, 304, 304.0, 304.00, 304.01, 304.02, 304.03,
304.1, 304.10, 304.11, 304.12, 304.13, 304.2, 304.20, 304.21, 304.22, 304.23, 304.3, 304.30, 304.31,
304.32, 304.33, 304.4, 304.40, 304.41, 304.43, 304.5, 304.50, 304.51, 304.52, 304.6, 304.60, 304.61,
304.62, 304.63, 304.7, 304.70, 304.71, 304.72, 304.73, 304.8, 304.80, 304.81, 304.82, 304.83, 304.9,
304.90, 304.91, 304.92, 304.93, 305, 305.0, 305.00, 305.01, 305.02, 305.03, 305.1, 305.10, 305.12,
305.13, 305.2, 305.20, 305.21, 305.22, 305.23, 305.3, 305.30, 305.31, 305.33, 305.4, 305.40, 305.41,
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305.42, 305.43, 305.5, 305.50, 305.51, 305.52, 305.53, 305.6, 305.60, 305.61, 305.62, 305.63,
305.7, 305.70, 305.71, 305.72, 305.73, 305.8, 305.80, 305.81, 305.83, 305.9, 305.90, 305.91, 305.92,
305.93, F10.10, F10.11, F10.120, F10.121, F10.129, F10.14, F10.151, F10.159, F10.180, F10.188,
F10.19, F10.20, F10.21, F10.220, F10.221, F10.229, F10.230, F10.231, F10.232, F10.239, F10.24,
F10.250, F10.251, F10.259, F10.26, F10.27, F10.280, F10.288, F10.29, F10.920, F10.921, F10.929,
F10.94, F10.951, F10.959, F10.96, F10.97, F10.980, F10.982, F10.988, F10.99, F11.10, F11.11,
F11.120, F11.121, F11.129, F11.14, F11.159, F11.188, F11.19, F11.20, F11.21, F11.220, F11.221,
F11.222, F11.229, F11.23, F11.24, F11.250, F11.259, F11.288, F11.29, F11.90, F11.921, F11.929,
F11.93, F11.94, F11.988, F11.99, F12.10, F12.11, F12.121, F12.122, F12.129, F12.150, F12.151,
F12.159, F12.180, F12.188, F12.19, F12.20, F12.21, F12.220, F12.23, F12.250, F12.259, F12.288,
F12.29, F12.90, F12.920, F12.921, F12.922, F12.929, F12.959, F12.980, F12.988, F12.99, F13.10,
F13.11, F13.129, F13.14, F13.180, F13.188, F13.19, F13.20, F13.21, F13.220, F13.221, F13.229,
F13.230, F13.231, F13.232, F13.239, F13.24, F13.259, F13.27, F13.280, F13.29, F13.90, F13.920,
F13.921, F13.929, F13.930, F13.931, F13.939, F13.94, F13.97, F13.980, F13.99, F14.10, F14.11,
F14.120, F14.121, F14.122, F14.129, F14.14, F14.151, F14.159, F14.180, F14.182, F14.188, F14.19,
F14.20, F14.21, F14.220, F14.221, F14.222, F14.229, F14.23, F14.24, F14.250, F14.251, F14.259,
F14.280, F14.282, F14.288, F14.29, F14.90, F14.920, F14.921, F14.929, F14.94, F14.951, F14.959,
F14.980, F14.988, F14.99, F15.10, F15.11, F15.121, F15.129, F15.14, F15.159, F15.180, F15.188,
F15.20, F15.21, F15.220, F15.222, F15.229, F15.23, F15.259, F15.29, F15.90, F15.920, F15.921,
F15.929, F15.93, F15.94, F15.950, F15.951, F15.959, F15.980, F15.982, F15.988, F15.99, F16.10,
F16.11, F16.129, F16.159, F16.20, F16.21, F16.221, F16.24, F16.259, F16.283, F16.90, F16.921,
F16.929, F16.950, F16.959, F16.980, F16.983, F16.988, F16.99, F17.200, F17.201, F17.203,
F17.208, F17.209, F17.210, F17.211, F17.213, F17.218, F17.219, F17.220, F17.223, F17.228,
F17.229, F17.290, F17.298, F17.299, F18.10, F18.11, F18.19, F18.20, F18.24, F18.90, F19.10,
F19.11, F19.120, F19.121, F19.129, F19.14, F19.150, F19.159, F19.180, F19.181, F19.188, F19.19,
F19.20, F19.21, F19.221, F19.229, F19.230, F19.231, F19.232, F19.239, F19.24, F19.259, F19.280,
F19.29, F19.90, F19.920, F19.921, F19.922, F19.929, F19.930, F19.931, F19.939, F19.94, F19.950,
F19.951, F19.959, F19.96, F19.980, F19.982, F19.988, F19.99.
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