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Abstract: Background. Biobanks are vital research infrastructures aiming to collect, process, store,
and distribute biological specimens along with associated data in an organized and governed manner.
Exploiting diverse datasets produced by the biobanks and the downstream research from various
sources and integrating bioinformatics and “omics” data has proven instrumental in advancing
research such as cancer research. Biobanks offer different types of biological samples matched
with rich datasets comprising clinicopathologic information. As digital pathology and artificial
intelligence (AI) have entered the precision medicine arena, biobanks are progressively transitioning
from mere biorepositories to integrated computational databanks. Consequently, the application
of AI and machine learning on these biobank datasets holds huge potential to profoundly impact
cancer research. Methods. In this paper, we explore how AI and machine learning can respond to the
digital evolution of biobanks with flexibility, solutions, and effective services. We look at the different
data that ranges from specimen-related data, including digital images, patient health records and
downstream genetic/genomic data and resulting “Big Data” and the analytic approaches used for
analysis. Results. These cutting-edge technologies can address the challenges faced by translational
and clinical research, enhancing their capabilities in data management, analysis, and interpretation.
By leveraging AI, biobanks can unlock valuable insights from their vast repositories, enabling the
identification of novel biomarkers, prediction of treatment responses, and ultimately facilitating the
development of personalized cancer therapies. Conclusions. The integration of biobanking with AI
has the potential not only to expand the current understanding of cancer biology but also to pave the
way for more precise, patient-centric healthcare strategies.
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1. Introduction

In the last few decades, biobanking has emerged as a crucial and indispensable field
in cancer research [1]. It has gained increasing prominence due to its providing a priceless
resource—organized collections of biological samples and associated data—which serve as
the bedrock for comprehensive analysis and the execution of clinical trials [1,2].

The scientific community has witnessed a remarkable surge in the utilization of
human biological samples and associated data derived from biobanks [3]. This trend is
substantiated by a growing body of scientific literature that underscores the significance of
these biobanks in advancing our understanding of cancer [3–7]. As such, biobanks house
an expansive array of diverse datasets sourced from various origins, encompassing a broad
spectrum of bioinformatics and “omics” sciences data [8]. This rich tapestry of information
harbors the immense potential to drive significant advancements in cancer [2,8].

At their core, biobanks offer datasets that extend beyond mere patient disease infor-
mation. Within their repositories lies a treasure trove of biological samples, ranging from
tissue specimens to various types of biofluids, all meticulously accompanied by annotated
pathological data [9]. Nevertheless, despite the substantial promise that has arisen since
the inception of biobanks and their subsequent regulation, these critical research infras-
tructures have grappled with various constraints and challenges, chiefly revolving around
data acquisition, storage, and operational protocols [10–12]. This overarching dilemma has
historically crystallized into the central quandary biobanks face: the effective utilization of
the meticulously stored samples and associated data.

Despite the vast amount of data that can be collected, the optimization of this wealth of
information becomes essential. Such challenges are intrinsic to the process of collecting and
analyzing biobank data [13–15]. More recently, the integration of mathematical algorithms
and machine learning technologies has emerged as promising tools to overcome these ob-
stacles. As precision medicine increasingly leverages artificial intelligence (AI) techniques,
biobanks are evolving from mere repositories of biospecimen collections to integrated
computer datasets [2]. This transformation is akin to the metamorphosis of biobanks into
dynamic, data-driven hubs that facilitate a deeper understanding of cancer biology. The
interplay between AI and machine learning applications and biobanking in cancer research
is becoming increasingly evident, with both domains mutually benefiting [16] (Figure 1).
AI and machine learning offer the capacity to extract valuable insights from vast datasets
that would be challenging, if not impossible, for humans to analyze comprehensively.
These technologies can uncover intricate patterns, relationships, and predictive markers
hidden within the data, which can significantly impact our understanding of cancer and its
myriad facets. Furthermore, they have the potential to enhance the accuracy and efficiency
of diagnosing and treating cancer patients, ushering in an era of personalized medicine
tailored to individual genetic profiles and disease characteristics.

This paper aims to delve into the pivotal role of Digital Biobanks in the era of digital
pathology, highlighting the incorporation of artificial intelligence in this field. Additionally,
it seeks to explore the prospects and potentials of AI and machine learning applications
within biobanking, particularly in cancer research.
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Figure 1. The journey of cancer research through the integration of Artificial Intelligence (AI) in the 
digital biobanking process. Schematic representation of the vast potential beneath the surface of 
conventional research methods, depicted as elements of an iceberg according to the various stages 
of digital biobanking. At the visible tip of the iceberg (Level I), we have the first crucial step of the 
process—patient-informed consent signing. Beneath the surface (Level II), the iceberg illustrates the 
extraction of tissue samples and biospecimens from cancer patients during medical procedures, as 
well as the biospecimen collection process and the implementation of sophisticated Laboratory 
Information Management Systems (LIMs). As we delve deeper into the iceberg (Level III), the 
illustration represents the development of the research environment. Eventually, at the bottom of 
the iceberg (Level IV) lies the digitalization of tissue slides by a digital scanner and the integration 
of deep learning, represented by complex neural networks used to analyze vast amounts of data 
derived from biospecimens, patient information, and other relevant research data. 

2. Next-Generation Biobanking: Transitioning from Traditional to Digital Platforms 
Biobanks serve as comprehensive repositories for varying types of biological samples 

and their associated data. Their primary objective is to process and preserve biospecimens 
according to strict criteria and provide researchers with essential resources for 
translational research and clinical investigations [2,16] and thus improve clinical 
outcomes and health care. The range of samples that can be collected and processed by 
biobanks is extensive, encompassing tissues (both normal and tumor), biofluids (such as 
blood, serum, plasma, urine, saliva, cerebrospinal fluid, effusion, bone marrow fluid, 
sperm, and cord blood), stool, purified cells from various tissues, peripheral blood cells 
(PBCs), and nucleotides (including DNA, RNA, and miRNA) among others [3]. These 
biospecimens are integrated with associated data, such as clinicopathological information, 
genetic profiles, medical record data, lifestyle data, and personal details. Consequently, it 
is imperative to augment the samples with up-to-date, pertinent data [4]. 

Figure 1. The journey of cancer research through the integration of Artificial Intelligence (AI) in the
digital biobanking process. Schematic representation of the vast potential beneath the surface of
conventional research methods, depicted as elements of an iceberg according to the various stages
of digital biobanking. At the visible tip of the iceberg (Level I), we have the first crucial step of the
process—patient-informed consent signing. Beneath the surface (Level II), the iceberg illustrates
the extraction of tissue samples and biospecimens from cancer patients during medical procedures,
as well as the biospecimen collection process and the implementation of sophisticated Laboratory
Information Management Systems (LIMs). As we delve deeper into the iceberg (Level III), the
illustration represents the development of the research environment. Eventually, at the bottom of
the iceberg (Level IV) lies the digitalization of tissue slides by a digital scanner and the integration
of deep learning, represented by complex neural networks used to analyze vast amounts of data
derived from biospecimens, patient information, and other relevant research data.

2. Next-Generation Biobanking: Transitioning from Traditional to Digital Platforms

Biobanks serve as comprehensive repositories for varying types of biological samples
and their associated data. Their primary objective is to process and preserve biospecimens
according to strict criteria and provide researchers with essential resources for translational
research and clinical investigations [2,16] and thus improve clinical outcomes and health
care. The range of samples that can be collected and processed by biobanks is extensive,
encompassing tissues (both normal and tumor), biofluids (such as blood, serum, plasma,
urine, saliva, cerebrospinal fluid, effusion, bone marrow fluid, sperm, and cord blood),
stool, purified cells from various tissues, peripheral blood cells (PBCs), and nucleotides
(including DNA, RNA, and miRNA) among others [3]. These biospecimens are integrated
with associated data, such as clinicopathological information, genetic profiles, medical
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record data, lifestyle data, and personal details. Consequently, it is imperative to augment
the samples with up-to-date, pertinent data [4].

First, biobanks were created to preserve biospecimens over time [17,18]. To facilitate
this objective, biological samples are typically preserved within cryogenic facilities, encom-
passing specialized refrigerators or warehouses to facilitate increased potential use of the
samples. Additionally, biobanks may store matched formalin-fixed paraffin-embedded
(FFPE) tissues, which provides samples that can be used for validation studies as these are
the sample types used in clinical routine. It is worth noting that biobanks collect tissues
from residual surgical specimens and biopsies obtained through minor surgical procedures
(e.g., ultrasound-guided biopsies) [19]. The latter may require specific collection as their
quantity is limited and processing is immediate. Both surgical samples and biopsies require
involvement with the clinical diagnostic process. All the biological samples and associated
data gathered must adhere to well-defined standard operating procedures. They should
always be obtained with the patient’s informed consent, demonstrated by signing a re-
search agreement or an equivalent form [19]. It is not always possible for a biobank to
identify the specific research uses of the samples and data during the collection process.
Therefore, different levels of consent are employed by biobanks, which differ in the levels
of interaction with the patient for each potential use. A modern biobank should be able
to engage with various stakeholders, such as research groups, clinical units, political insti-
tutions, biotech companies, and the pharmaceutical industry [20]. Whenever a scientific
project needs biobanking support, it becomes vital to provide well-preserved samples and
data that conform to prescribed requirements. The data must be securely stored, readily
accessible, and traceable to effectively manage multiple projects concurrently. Furthermore,
another crucial facet of biobanking management is the implementation of an integrated
Laboratory Information Management System (LIMS) software that can integrate clinical
records and patient data in addition to registering all samples-related data and sample
processing data [21–23]. To secure this integration, it is critical to obtain the informed
consent of all patients for legal and ethical requirements [19].

2.1. Precision Medicine

Precision medicine, a field rooted in analysing samples accompanied by clinical data,
relies heavily on a vast amount of information to stratify patient treatment. This necessity is
linked to the often weak connections between cancer phenotypes and clinical variables [24].
Consequently, in precision medicine research, “big data analytics” and “AI” have become
indispensable. To expedite scientific advancements and maximize their impact on health-
care, the availability of well-characterized, high-quality samples and associated data in
biobanks is paramount [25]. Addressing these demands requires a vast capacity and robust
informatics capabilities. As medical researchers expand their horizons, their appetite for
data keeps growing, leading to the collection and management of extensive sample series
from diverse sources. The generic term “Big Data” refers to extremely large complex sets of
data produced in a cancer research context, typically from patient health records, cancer
registries, and large-scale genomic and genetic sequencing, the latter of which avail of
biobank samples which guarantee the uniformity and reproducibility of results. Analy-
sis of this “Big Data” encompasses innovative computational technologies and software
that facilitate knowledge extraction from broad and heterogeneous datasets, including
biological and medical information, thereby translating it into actionable insights [26].
This rapid acquisition, discovery, and processing are achieved through the application of
computational mechanisms. Consequently, biobanking is directly affected by the paradigm
shift demanded by Big Data, encompassing alterations in storage requirements and data
analysis approaches.

2.2. The Role of AI

AI refers to computer technologies that simulate human intelligence, including cogni-
tive abilities, deep learning, adaptability, engagement, and sensory comprehension [27,28].
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Some systems can perform tasks usually requiring human interpretation and judgment
in a significantly reduced timeframe [29]. These methods find applications across various
fields, especially in health and medicine. The integration of AI in medicine can be dated
back to the 1950s when physicians first employed computer programs to enhance diagnos-
tic capabilities [30,31]. However, recent advancements in computational power and the
availability of digital data have propelled a surge of interest and progress in medical AI
applications [32].

These considerations notwithstanding, the practice of medicine is undergoing gradual
transformation due to the influence of AI, impacting a wide range of medical disciplines,
such as clinical, diagnostic, rehabilitative, surgical, and prognostic procedures. AI technolo-
gies now play a key role in disease diagnosis and clinical decision-making, leveraging vast
amounts of data from diverse sources to detect illnesses and make informed judgments [33].
Thanks to the generation of huge amounts of medical big data, AI algorithms can effectively
process and reveal novel insights that would otherwise remain hidden [34–36]. Therefore,
these technologies facilitate the discovery of new drugs, improve healthcare services and
enhance patient care [30,31].

Unlike traditional computer algorithms that follow predefined rules, AI systems learn
and adapt through exposure to training data [37]. This learning process enhances the
accuracy and reliability of AI prediction models. However, implementing new technologies
in healthcare also raises concerns about potential inaccuracies and data privacy concerns.
Inaccuracies can occur in the AI models based on the digital images and data used to train
the models and may include those introduced through digital image staining variation.
Data variation from different sites used to provide the basis for AI modelling will also
affect the accuracy of the AI algorithms. Given the critical nature of healthcare-related data,
collaboration between AI systems and physicians is essential [38]. To ensure the responsible
integration of AI solutions, a robust governance framework is necessary to protect patients
from harm and unethical behavior [39].

Ethical considerations are paramount in AI implementation, as biases can be incorpo-
rated into models through improper data collection or usage methods [40]. These biases can
be many but are fundamentally based on the cohort makeup and data used in the specific
AI systems. There are no established guidelines or standards for reporting and comparing
AI models. It will be essential to specify these potential biases introduced in the developed
systems, and therefore, future research should address this gap to guide researchers and
clinicians [41]. As AI becomes increasingly indispensable in modern digital systems, ensur-
ing ethical decision-making is free from unfair biases is crucial. Responsible AI systems
should be transparent, explainable, and accountable [42]. This is of particular concern,
given that they have the potential to enhance patients’ management and surgical outcomes
and complement or replace existing systems. Neglecting the use of AI in healthcare may be
considered unscientific and unethical. Life sciences, molecular biology, biotechnology, and
digital tools integration are driving a transformative revolution in society [43]. These novel
technologies enable personalized and preventive medical approaches, addressing chal-
lenges such as demographic change, healthcare accessibility, and sustainability. In oncology,
the utilization of biomarkers and digital pathology through Digital Biobanks facilitates
personalized diagnostic-therapeutic approaches, improving patient outcomes and resource
management [21]. Integrating AI and digital pathology enhances the speed, accuracy,
and remote capabilities of pathology diagnostics relying on novel small devices [44,45],
enabling multidisciplinary consultations and supporting clinical trials. AI implementation
in biobanks can identify new biomarkers, develop diagnostic strategies, and provide sup-
port in the selection of targeted therapies, ultimately leading to environmentally friendly
hospital care with reduced costs and improved efficiency [46]. That said, AI requires the
expertise of medical professionals to qualify the data and, particularly the digital images,
to inform and train the AI algorithms. The future, thus, lies in the collaboration between AI
and medical professionals, maximizing their combined strengths to improve healthcare
outcomes.
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2.3. Biobank Quality

To ensure the quality of samples and procedures, biobanks follow international guide-
lines such as those provided by the U.S. National Cancer Institute and, more specifically,
by best practices developed by the International Society for Biological and Environmen-
tal Repositories (ISBER) [47]. These are constantly updated as the biobanking discipline
develops. Furthermore, the International Agency for Research on Cancer (IARC) have
developed minimum technical standards and protocols for biobanks dedicated to cancer
research through all processes to guarantee the quality of samples and data collected [48].
Biobank quality is further enhanced with appropriate accreditations such as those of the
International Organization for Standardization (ISO) used in all research laboratories and
healthcare scenarios. These have historically comprised ISO 9001:2015 specifically for
quality management systems. ISO 17025:2017 covers the general requirements for the com-
petence of testing and calibration laboratories, and ISO 15189:2022 for medical laboratories
specifies the requirements for quality and competence. More recently, in recognition of the
peculiarities of biobanking, a dedicated ISO has been developed, ISO 20387, which defines
the general requirements for biobanking. This includes the requirements for operational
quality management systems to guarantee consistent quality control and reproducible
results [49,50].

2.4. Digital Biobank and SOPS

Digital Biobanks play a key role in the discovery and validation of biomarkers for
disease diagnosis and treatment. These repositories, integrated with molecular diagnostic
pathology, provide swift access to diverse sample collections and comprehensive clinical
data. Traditional biobank samples are the milestone for implementing Digital Biobanks,
which incorporate novel methodologies like liquid biopsies [51]. According to the Interna-
tional Agency for Research on Cancer (IARC), as precision medicine drives a shift toward
data-centric approaches, biobanks now capture medical data in addition to downstream
molecular data alongside well-characterized tissue samples [2]. The transformation into
Digital Biobanks involves the digitization of pathology slides using high-throughput scan-
ners, resulting in whole-slide imaging scans and the creation of imaging data banks. Digital
slides in oncology enable remote pathology and oncology consultations, enhance diag-
nostic accuracy, and uncover embedded information [52]. These digitized slides undergo
pathology-driven annotations to facilitate AI and deep learning algorithms [53]. Specialized
equips of pathologists ensure consistency and reproducibility of the data. AI analysis of the
collected data generates intelligent reports and identifies digital biomarkers, enhancing pa-
tient selection and treatment outcomes. This approach aims to standardize and harmonize
predictive oncologic pathology while reducing costs and improving tests’ sensitivity and
specificity [54]. The integration of Digital Biobanks and AI has the potential to revolutionize
cancer patients’ care, refining clinical management protocols and personalized treatments.

2.5. Direct and Indirect Costs

Establishing and managing an effective and efficient biobank requires adequate re-
sources, including physical infrastructure, instruments, software, reagents, and personnel.
It also requires financial support to support the infrastructure, personnel and continued
running costs. Personnel should include a team of professionals led by a biobank direc-
tor, with roles for quality management, security management, patient education, sample
collection, data collection, and registration including personnel to prepare samples for
downstream studies and to acquire the digital images for the digital biobank [55]. It is
also vital to ensure personnel to guarantee patient privacy through data protection. To
guarantee sample quality, adequate cryogenic instrumentation, such as freezers or liquid
nitrogen containers, is necessary for specimen freezing and storage. Labelers, barcode
readers, and proper labeling systems ensure biomaterial identification and tracking [56].
Personal protective equipment and quality control instruments are required, along with
fireproof cabinets for paper records. A computer system with hardware, software, and
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website integration for sample publication, including a LIMS, is essential. Access control
measures and processes are required to guarantee the security of the samples and data.
There must also be a disaster recovery plan to provide solutions to protect the samples
and data in the event of man-made and natural disasters. Instruments such as those to
create tissue microarrays can create high-quantity sample sets for validation studies. More
recently, digital tools like high-resolution scanners support Digital Biobank initiatives, and
these also require software tools and large data storage to archive these digital sample im-
ages. In disease-based biobanks such as cancer biobanks, often overlooked costs are those
incurred in terms of hospital engagement in patient consent and sample collection, where
they are integrated with the hospital process. In addition, the evaluation and collection
of cancer samples within pathology require the involvement of pathology personnel who
are not directly financed by the biobank and, as such, are an indirect cost. The total cost of
establishing and maintaining a biobank varies based on the type of biobank and services
provided, which affect the requirements for personnel, consumables, instruments, and
desired quality. These considerations are vital for Digital Biobanks and the utilization of AI
in research [55].

3. Applications, Challenges, and Opportunities of AI and Digital Biobanking

By more effective participant matching and recruiting, as well as more thorough data
analysis, AI and machine learning have the potential to enhance, simplify, and accelerate
clinical trials. By comparing historical data to the intended trial enrollment requirements, it
could also be feasible to generate artificial control groups. Additionally, AI and machine
learning may be utilized to forecast and comprehend potential adverse events and patient
subpopulations more accurately [57]. The creation of “synthetic patients” by AI to resemble
diagnostic or treatment results appears plausible. However, using AI and machine learning
applications and treatments brings a set of uncertainties that must be addressed in clinical
trial procedures and study reporting [58,59]. We intend to discuss developments at the
intersection between AI and medicine in our dedicated series. A separate set of issues
surround the assessment of progress. The criteria for evaluating and validating scientific
research in medicine are well established in traditional clinical research when progress
manifests itself as a novel treatment for a well-defined ailment [60]. The medical community
expects the same degree of certainty when an AI and machine-learning algorithm is used
as an intervention rather than a medicine. However, the criteria for characterizing and
assessing artificial intelligence and machine-learning treatments have not been established
yet [61]. If an implementation is regarded as the standard that will change, reform, and
enhance clinical practice, what standards should be applied to AI and machine learning-
based interventional research? Three key issues are generally to be addressed to figure this
question out [62]. First, the study design must address a clinically relevant topic in a way
that can affect the actions of the healthcare provider and enhance patient outcomes. Second,
the intervention needs to be scalable, defined, and appropriate for the current purpose.
It must produce results that can be applied to clinical issues with similar characteristics
across a wide variety of demographics and disease prevalence and must not be impacted
by variables beyond the scope of the problem. Do we require different criteria for this
procedure, or can AI and machine learning-driven care fulfill the standards we demand
from a revolutionary therapeutic project or lab-based diagnostic test? Third, the outcome
must be advantageous for all patients under consideration, not simply those comparable
to the ones with features and findings on whom the algorithm was trained. This is true
when the study findings are used in a way that influences practice. This calls into question
whether such algorithms should consider public health (i.e., the utilization of limited
resources) when making recommendations for diagnostic or therapeutic measures and
the extent to which such factors are employed in the decision-making process. Health
experts and the general medical community have met with interest in such ethical issues
for ages [63].
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4. Conclusions

Life sciences, including molecular biology, biotechnology, and digital technology, are
pivotal in the ongoing industrial and health revolution, reshaping society and unlocking
unprecedented possibilities for personalized and preventive approaches to healthcare.
Furthermore, ongoing technological progress nowadays also addresses issues regarding
increased life expectancy, equitable healthcare access, and sustainability of the medical
system itself.

Moreover, advances in molecular biology and biomarkers have revolutionized diag-
nostic inquiry in oncology, leading to precision diagnostic and therapeutic strategies thanks
to collaboration among clinicians and laboratory technicians to promote effectiveness,
appropriateness, and safety in cancer patient care. Laboratory medicine has thus assumed,
and will continue to assume, a central and pivotal role in significantly improving the clinical
approach through the various stages of a cancer patient’s life, from prevention to diagnosis,
prognosis, and therapeutic monitoring. This approach represents a promising paradigm,
affording patients enhanced prospects for receiving increasingly effective therapies while
minimizing adverse events often related to non-targeted treatments. As a result, such com-
prehensive approaches yield clinical benefits for patients and optimize healthcare resource
management prudently and sustainably. The advent of AI has increased the potential of
precision medicine, providing the enhanced capability to analyze the enormous amounts
of data produced in the genomic sequencing era and integrating the massive data sets that
incorporate not only these genomic and genetic data but also all medical record data and
digital imaging including radiology images and pathology images. Increasing numbers
and types of data augment challenges for integration of these data as well as the risk for
error, but biobanks that historically collect samples in a standardized fashion provide the
key to guaranteeing that these data are also collected in an organized fashion. As such,
they hold the key to ensuring reliable AI models. The synergy between AI and human
expertise is essential for promising results. Many physicians look to technology as a catalyst
for enabling medical professionals to work more efficiently by supporting their efforts,
resulting in fewer errors and greater seamlessness. While there remain concerns regarding
inaccuracies and biases in AI due to lack of governance and transparency, it is hoped that,
in the near future, we will overcome these concerns regarding AI. AI regulations are being
developed to address the issues regarding privacy, transparency, and governance, and
these will help address and provide a way to adopt AI in healthcare with a more positive
and thoughtful perspective.
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