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Abstract: Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the
fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads
to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of
developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt
diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy.
A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma
due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of
mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction,
and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to
have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes
an additional risk factor, with a particular impact on the population with the highest daily sodium
intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests
that diminishing salt intake and employing antibacterial therapeutics could potentially lower the
susceptibility to gastric cancer among individuals.
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1. Introduction

In 2020, approximately 1.1 million new cases of gastric cancer were diagnosed and
770,000 deaths were associated with it [1]. By 2040, this number is expected to rise to
1.8 million new cases and 1.3 million deaths [2]. The highest incidences were found in
males in comparison to females, and 75% of the cases were reported in Eastern Asia
(Japan, China, and South Korea) [3,4]. Some common risk factors include Helicobacter pylori
(H. pylori) infections, specific dietary foods, smoking, and obesity [5].

1.1. Genetics

H. pylori is a spiral shaped, Gram-negative bacteria that infects and colonizes the
stomach of half of the world’s population. This bacterial infection leads to inflammation
and ulceration [6]. Individuals infected with H. pylori may be asymptomatic, but if left
untreated, the bacteria can cause peptic ulcers, as well as atrophic and chronic gastritis.
Those with persistent infections have a higher risk of developing gastric adenocarcinoma [7].
The genetic variability of H. pylori is 50-times more diverse than the human population [8].
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This is due to the exponential rates of DNA point mutations, causing high genotypic and
phenotypic variability in H. pylori and intergenomic recombinations [9]. These errors in
DNA replication permit H. pylori to adapt and thrive in various hosts and changing gastric
acidic environments. These DNA replication errors are due to the shortage of DNA repair
genes, influenced by the mutagenic properties of DNA polymerase [10]. High genetic
diversity allows H. pylori to easily incorporate exogenous DNA and transfer their genes to
the host gastric cells [11]. Recombinations occurring between genes of the same H. pylori
strain or between various alleles of H. pylori DNA are the driving force behind the genetic
variability [12]. The pathogenesis of H. pylori is related to specific characteristics of the
bacteria, such as the genetic composition of the outer membrane proteins babA1, oipA,
and sabA. Genes such as vacA, cagA, iceA, and babA2 have been studied and shown to
increase the severity of bacterial pathogenesis, contributing to gastric adenocarcinoma [13].

All strains of H. pylori have the vacuolating cytotoxin gene (vacA) [14]. Yet, variations
specifically in the signal (S) and mid- (M) sections within VacA account for varying cyto-
toxicities [15]. Differences in the “S” region alter the level of vacuolating activity of VacA,
while variations found in the “m” regions signify the specificity of vacuolation, related
to toxin binding to recipient hosts. For instance, S1/M1 is the strain of H. pylori with the
greatest production of toxin, whereas S2/MS will produce a negligible amount [16].

1.1.1. CagA

The CagA gene of the bacteria uses a type IV secretion to translate CagA into the
host’s gastric cell. Here, it undergoes EPIYA phosphorylation-dependent or -independent
processes in the cytoplasm to control the cell’s proliferation and signal transduction path-
ways [17]. CagA disrupts tight and adherent junctions, compromising DNA integrity
and promoting proinflammatory and mitogenic responses. The CagA gene is a marker of
pathogenicity [18].

1.1.2. IceA

The IceA gene is composed of two allelic variants known as iceA1 and iceA2 [19]. IceA1
is expressed when H. pylori interacts with human gastric epithelial cells. This interaction
increases the risk of peptic ulcer disease.

1.1.3. BabA

Blood group antigen binding adhesin (BabA) is encoded by the babA3 gene, and its
binding to adhesin has been associated with gastric cancer [20].

Overall, studies have shown that outer membrane proteins are more likely to be influ-
enced by genomic mutations. In vivo experiments have revealed that the diversification of
H. pylori’s outer membrane aids in immune evasion. Thus, the heterogeneity of proteins
interacting with the host favors developing chronic infection [21,22].

1.2. Clinical Presentation

Clinical presentations of H. pylori infections result from virulent strains of the bacteria,
molecular host characteristics, lifestyles, and environmental factors [23]. A high-salt diet
(HSD) is evidenced as one of the environmental factors increasing the risk of gastric cancer,
presenting as the third-most-common cause of cancer deaths globally [24,25]. The American
Heart Association suggests that adults should consume less than 2300 mg a day, while the
ideal limit of consumption for adults should be no more than 1500 mg [26]. This includes
elderly persons who are not taking nutritional supplements or pharmaceutical drugs. Since
more than half of the salt intake is from ultra-processed and fast foods, active precautions
and preventive measures must be carried out by consumers of these products [27].

Many epidemiological studies highlight the synergistic interplay between an HSD and
H. pylori infections and the increased likelihood of the pathogenesis of gastric cancer [28].
This review aims to synthetize those scientific findings and provide evidence regarding
the molecular and genetic mechanisms such as gastric epithelial changes and dysfunction,
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inflammation, oxidative stress, and the increase in mutations as a result of these risk factors
(Figures 1 and 2). Thus, the evolution of H. pylori to gastric cancer is heavily influenced by
dietary composition, particularly increased salt consumption.
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Figure 1. The intake of an HSD results in increased H. pylori colonization in gastric mucosa. The
increased virulent strains of H. pylori lead to: (1) gastritis and ulceration; (2) changes in the structure
and function of epithelial cells; (3) high levels of oxidative stress and the production of free radicals;
(4) DNA damage. All of these molecular mechanisms increase the risk of developing cancer.
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Figure 2. The intake of an HSD results in increased H. pylori colonization in gastric mucosa. The
increased virulent strains of H. pylori lead to: (5) inflammation; (6) endogenous mutations; (7) activa-
tion of signaling pathways such as JAK/STAT. All of these molecular mechanisms increase the risk of
developing cancer.

2. Materials and Methods

The authors conducted an electronic search across the PubMed, Medline, Cochrane
ScienceDirect, Google Scholar, and Embase library databases for English, peer-reviewed
articles and reviews published after the year 1993 using the following MeSH terms: gastric
cancer, high-salt diet, salt intake, H. pylori infection, gastric adenocarcinoma, AND models.
Case reports were excluded. The results were further screened by title and abstract for
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studies performed in rodents and humans, at which time, full-text articles were screened
for eligibility.

3. Mechanisms Causing Gastric Cancer from the Synergistic Influence of a High-Salt
Diet with H. pylori Infection

Several mechanisms are outlined whereby an HSD and H. pylori synergistically may
increase gastric cancer risk, as seen in Figures 1 and 2.

3.1. Damage to Mucosal Barrier and Intestinal Metaplasia

Studies indicate that, the parts of the world where increased dietary salt is consumed
(preserved fish, soy sauce, pickled foods) and those individuals who are habitual consumers
of an HSD parallel the incidence of gastric adenocarcinoma [29,30]. For example, in Asia,
where gastric cancer is high, a dietary factor that underlies this cancer risk is the high
intake of salt [3,31]. In studies with non-human primates, smoked, pickled, and cured
foods revealed a connection between foods with nitrosamines and H. pylori. An HSD plays
a role in the differentiation of mucosal epithelial cells, as evidenced in intestinal metaplasia
and intraepithelial neoplasia in gastric epithelial cells [32].

In animal studies, an HSD fostered the colonization of H. pylori by altering the struc-
ture and stability of the gastric mucosa through an inflammatory response and gastric cell
proliferation [33] (Table 1). This has been shown to lead to gastritis, increased epithelial
damage, and gastric cancer. Experimental mice who were given NaCl at high concentra-
tions developed gastric mucosal changes with tissue damage and cell proliferation, leading
to gastric cancer [34]. H. pylori-infected mice were characterized by a loss of parietal cells
and hypertrophy of the mucous epithelium in the corpus mucus, compared to the unin-
fected rodents [35]. Importantly, those H. pylori-infected mice showed an exacerbation of
inflammation with a high salt intake [36]. In vivo experiments conducted by DeKoster et al.
showed that gastric mucosal cells multiplied exponentially with salt intake, a phenomenon
similarly seen in H. pylori-infected patients [37]. In another study, Fox et al. examined the
interaction between an HSD and infection, finding that both promoted gastric injury and
advanced gastric lesions to malignancy in the gastric corpus due to hypergastrinemia [33].
Their findings concluded that an HSD may cause carcinogenesis by enhancing H. pylori
colonization, intensifying chronic H. pylori gastritis.

Additionally, an HSD increased the risk of intestinal metaplasia—a known precursor
to gastric cancer [38]. Mucosal damage in the stomach as a result of high intragastric salt
concentration coupled with injury from the colonization of H. pylori infection increases the
rate of mitotic cell division and results in a high rate of cell turnover and the hyperplasia
of the gastric epithelium [39] (Table 1). Vencez-Mejez et al. experimented with high-
salt injections in rats and noticed pathological indications of irreversible injury in the
stomach mucosa—lipid peroxidation, organelle swelling, mitochondrial dysfunction, and
fragmented DNA [40] (Table 1). Those animals receiving 12%, 18%, and 24% sodium
chloride diets experienced chronic gastritis, regenerative hyperplasia, and focal metaplasia,
respectively. In addition, calciform cells were detected in the glands and in gastric foveolar
cells, accelerating the development of gastric cancer in the rats.

3.2. Foods High in Nitrites

Nitrates, nitrites, and nitrosamines are normally contained in the standard diet. Ni-
trates and nitrites, naturally contained in fruit and vegetables, are often added to processed
meat to allow better preservation, preventing microbial spoilage and maintaining appear-
ance and flavor. Nitrosamines, including N-nitrosodimethylamine (NDMA) as one of
the most-common, arise from the chemical reaction from the previous two compounds
mentioned [41–43].

Nitrates appear to be inert prior to undergoing a reduction–oxidation (redox) reac-
tion caused by mouth bacteria, thus transforming into nitrites. Upon reaching the gastric
acid environment, they are converted into nitrous acid, which reacts with amines to form
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nitrosamines [44]. The presence of nitro-derivatives in the diet leads to the formation of
carcinogenic N-nitroso compounds (NOCs) in the GI tract. It has been found that the coex-
istence of high heme-iron concentrations, typical of a diet high in red and processed meats,
enhances these processes [45] by augmenting the carcinogenic risk of these compounds.
NOCs contribute to the formation of DNA adducts and are considered as risk factors of
gastric cancer, especially non-cardia gastric cancer [46]. A meta-analysis conducted by Song
et al. [47] investigated the role of nitro-derivatives on gastric carcinogenesis and found
that food rich in nitrates was related to a decreased risk of gastric cancer, while a high
intake of nitrites and NDMA resulted in an elevated risk of cancer. The protective role of
nitrates was attributed to the fact that dietary nitrates are mainly provided by vegetables
rich in fiber, vitamin C, and other antioxidants. However, the authors concluded that, due
to the limitations and confounding factors in the studies analyzed, the reliability of these
findings was hindered. Another meta-analysis conducted by Zhang et al. [48] included
a wide range of participant characteristics and confirmed that high or moderate nitrite
intake increases the risk of gastric cancer, whereas a high or moderate nitrate intake was
somewhat protective.

H. pylori infections have a synergic mechanism with nitro-derivatives, inducing nitric
oxide synthase (NOS) in gastric mucosa and neutrophils. Its activity results in an increase
in local NO, which, reacting with O2 metals and epithelial-derived hydrogen peroxide
(H2O2), can create DNA oxidative adducts. This oxidative stress activates oncogenes and
inactivates tumor suppressor genes via hypermethylation of CpG island promoter genes
and increased activity of DNA methyltransferase. In addition, NO augmenting DNA
damage reduces its repair mechanism by 8-oxoguanine glycosylase [49,50].

Moreover, some studies suggest that gastric atrophy and hypochlorhydria or achlorhy-
dria due to a chronic H. pylori infection can increase gastric pH and modify nitrite metabolism,
shifting to the production of N-nitrosamine by bacterial nitrite reductases, rather than
S-nitrosothiol, a relatively stable NO donor, which has beneficial effects on cardiovascular
and metabolic disorders, allowing for a high incidence of gastric cancer development [51,52].
Processed food frequently contains both nitro-derivatives and salt, obtaining a synergic
action to promote gastric carcinogenesis [53]. High-dietary-salt intake can change the
mucous viscosity protecting the non-cardia parts of the stomach, potentiating exposure to
NOCs and leading to cell death. Furthermore, in H. pylori-infected gerbils, Toyoda et al.
found that a high-salt diet significantly up-regulated the expression of enzymes, among
which was iNOS, suggesting an additional pathway for toxicity enhancement in the corpus
of the stomach [19,54,55].

3.3. Alterations in Composition of H. pylori Strains

Between the numerous mechanisms by which a high-salt diet might enhance gastric
cancer risk, high-salt conditions in the stomach may have direct effects on H. pylori, affecting
the expression of different types of genes. It is known that H. pylori is endowed with differ-
ent mechanisms of carcinogenesis, which vary between different H. pylori strains [56,57].
One of them is the promotion of gastric epithelial proliferation, oncogenes, and DNA
damage via cytotoxin associated gene A (CagA), vacuolating toxin A (VacA), and outer
membrane proteins (OMPs) such as blood group antigen binding adhesin (BabA) and sialic
acid-binding adhesin (SabA) [51]. Loh et al. [58] used RNA-seq technology to define the
salt-responsive transcriptome of H. pylori and showed that an increased salt concentration
affected the expression of many genes involved in bacterial growth and motility. An in-
crease in the transcription of VacA and OMPs such as sabA, hopA, and hopQ was observed,
as well as a reduction in the transcription of fecA2 and fecA3 (specialized OMPs involved
in iron transport), suggesting an adjustment of H. pylori growth and a reduced motility in
response to high-salt stress conditions. Caston and colleagues analyzed the H. pylori exopro-
teome cultured with different concentrations of sodium chloride. High-salt concentrations
within the extracellular environment increased the levels of VacA in the extracellular space.
Two possible mechanisms were proposed: the first, and more certain, was un-upregulated
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VacA transcription, while the proposed second process was an increased VacA release from
the outer membrane into the extracellular space [32]. The decrease in motility, which may
favor H. pylori attachment to gastric cells, might provide H. pylori the capacity to adapt
both in the short term and the long term to a high-salt environment [59].

Previous studies [60,61] showed strain-specific differences in the effect of salt on CagA
expression or survival in response to salt stress, while additional studies confirmed that
H. pylori strains with gene mutations involved in iron metabolism had a positive selection
both in vivo [59,62] and in vitro high-salt conditions [63]. This highlights the possible
crucial role played by specific selected strains to determine the H. pylori-induced disease
outcome. Furthermore, additional studies in animal models described a positive interaction
between a high-salt diet and H. pylori infections with an upregulation of processes involved
in oxidative stress (COX-2 and iNOS), inflammatory response, H. pylori colonization,
and damage progression [19,55,64]. These findings may strengthen the hypothesis of
a correlation between high-salt diets and increased stomach cancer risk, driven by the
change of interactions of the bacteria with host cells.

3.4. Oxidative Stress

At equilibrium, reactive oxygen species (ROSs) play a role in cellular function and
metabolism and assist in both the innate and adaptive defense mechanisms [65]. This
contributes to the overall maintenance of the cell. The perturbation between ROSs and the
antioxidant system is known as oxidative stress, with an overproduction of free oxygen
radicals [66], potentially resulting in molecular dysfunction. Studies have shown that an
HSD negatively impacts the gastric immune system [67]. Tamura et al. showed salt to be an
aggressive factor, creating gastric mucosal lesions. A highly osmotic pressure environment
induced by salt inhibits the mitochondrial electron transfer system, producing superoxide
anions. These anions permit apoptotic cell death via caspase-3 activation and gastric injury
via denervation in epithelial cells [68].

Decreased function in immunity due to increased oxidative stress caused by sodium
overload allows H. pylori to easily infect the gastric epithelial cells and promote tumorigene-
sis [69,70]. H. pylori produces immense quantities of superoxide anions to combat the nitric
oxide made by host inflammatory cells, leading to gastric epithelial cell damage. Once
inside the host cell, H. pylori virulence factors further increase oxidative stress through
the activation of signaling pathways [71]. H. pylori strains containing CagA and VacA are
able to invade and destroy gastric epithelial cells and stimulate cell proliferation towards
dysplasia [72,73]. Processes that activate the immune and antioxidant systems of the host
organism are inhibited once H. pylori inhibits gastric cells [74]. Specifically, CagA H. pylori
strains continue to contribute to the toxic environment of free radical ions, through the
expression of spermine oxidase (SMO), and give rise to hydrogen peroxide. Hydrogen
peroxide is a powerful oxidizing agent, which further contributes to the production of free
radicals, creating hydroxyl radicals. SMO is able to induce caspase-mediated apoptosis
and contributes to DNA strand breakage, furthering the maintenance of the low-energy
state [75,76] (Table 1). In addition, the CagA strain gives rise to tumor necrosis factor-alpha
(TNFα), which contributes to an already continuous cycle of inflammation and oxidative
stress [77], while interleukin (IL)-8 carries pro-oncogenic properties [78] (Table 1). On the
other hand, vacuolating cytotoxin A (VacA) adds to ROS production by activating nuclear
factor kappa B (NFκB) through Ca2+ influx [14]. VacA inhibits autophagy in gastric epithe-
lial cells while creating an environment prompting cancer pathogenesis [79,80] (Table 1).
Lastly, another virulence factor known as γ-glutamyltransferase in the bacteria releases
many radical ions, further damaging gastric epithelial cells [81]. In combination, the ox-
idative stress emitted from a hypertonic environment, as well as that induced by H. pylori
cause oxidative DNA damage and lead to the progression of inflammation to carcinoma.
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3.5. Endogenous Mutations

A chronic H. pylori colonization of the human stomach has been correlated with an
increased risk of gastric adenocarcinoma development [82]. Moreover, H. pylori has been
classified as a class I carcinogen [83]. Despite the high genetic diversity among H. pylori
isolates, the H. pylori cag pathogenicity island (cag PAI) is a strain-specific virulence factor.
This factor augments cancer risk by encoding a type IV secretion system that facilitates
the delivery of an oncoprotein, CagA, into the cytoplasm of gastric epithelial cells [84].
Once inside gastric epithelial cells, the CagA protein interferes with multiple intracellular
signaling pathways and confers to the host cells cancer-hallmark capabilities.

CagA, once tyrosine-phosphorylated, is capable of binding to SHP2, a non-receptor
typeof PTPase, characterized by being enzymatically inactive under normal physiological
conditions. However, once the binding of the CagA protein to SHP2 occurs, perma-
nent activation of PTPase occurs, leading to downstream activation of MEK-ERK kinases,
a pro-oncogenic signaling pathway involved in the proliferation and differentiation of
cells [85]. The sustained proliferative signaling profile of CagA is also linked to its ability
to physically interact with the E-cadherin, an adherence junctional component functionally
associated with Wnt signaling, as well as epithelial–mesenchymal transition (EMT) [86].
The CagA/E–cadherin interaction affects the E-cadherin/β-catenin complex’s formation.
The membranous fraction of β-catenin translocates to the nucleus, where it activates the
Wnt target genes, including certain transcription factors (CDX1 and CDX2) that activate the
stemness-associated reprogramming factors Sal-like protein 4 (SALL4) and Krüppel-like
factor 5 (KLF5) [87].

CagA also hampers the p53 pathway in several ways. Among them, CagA promotes
p53 proteasomal degradation by activating E3 ubiquitin ligases, human double-minute
(2HDM2), and ARF-binding protein 1 (ARF-BP1) [88]. CagA also contributes to sponta-
neous loss-of-function mutations in the p53 gene. Specifically, cagA-positive H. pylori in the
gastric epithelium promotes the expression of a DNA/RNA editing enzyme (AID) respon-
sible for nucleotide alterations, resulting in spontaneous loss-of-function mutations in the
TP53 tumor suppressor gene [89]. Furthermore, although the molecular mechanism has
not been assessed yet, it has been demonstrated that chronic exposure to the CagA protein
in gastric epithelial cells induces PAR1b inhibition, leading to defects in microtubule-based
mitotic spindle formation and double-strand breaks [90]. Remarkably, H. pylori cagA-
positive-induced gastritis is associated with CpG hypermethylation of MGMT, the gene
encoding the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) [91].
All this evidence indicates that CagA in host gastric epithelial cells may play a key role in
the development of intestinal metaplasia.

Table 1. Mechanisms leading to gastric cancer from the concurrent influence of a high-salt diet with
H. pylori infection.

Inflammation Effects of an HSD with
H. pylori Infection Mechanisms Leading to Gastric Cancer References

Mucosal barrier damage Increased mitotic cell division and turnover [32,33,37–40]
Induction of intestinal hyperplasia and metaplasia [38,39]

Cellular damage Irreversible lipid peroxidation, organelle swelling, and
mitochondrial dysfunction [40]

Alteration of H. pylori gene expression Increased expression of CagA, VacA, BabA, and SabA [14,32,50,58,59,79,80,84–91]

Oxidative stress via ROSs Apoptosis of gastric cells via the production of
superoxide anions and hydrogen peroxide [68,71,75,76]

Inflammation Activation of TNFα, interleukins, COX-2, and Th17 [19,55,64,77,78,92–98]

Legend: H. pylori: Helicobacter pylori, HSD: high-salt diet, ROSs: reactive oxygen species, TNFα: tumor necrosis
factor-alpha, COX-2: cyclooxygenase 2.
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The relationship between H. pylori and inflammation is complex and multifactorial. It is
known that H. pylori infection is the main cause of chronic inflammation in the stomach [92],
which stimulates an inflammatory response intended to eliminate the bacteria (Table 1).
However, an exacerbated immune response damages the stomach lining, leading to chronic
inflammation [93]. H. pylori-induced gastroenteritis contributes to mucosal injury by
inducing both humoral and cellular immune responses. It has been demonstrated that
H. pylori-induced inflammation is characterized by the activation of inflammatory cells
and the release of cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor
(TNF)-α. These cytokines promote the recruitment and activation of additional immune
cells, further exacerbating the inflammatory response [94]. Prolonged inflammation leads
to histological changes, including pre-neoplastic gastric lesions, and generates reactive
radicals that might disrupt the host’s DNA [95]. The release of IL-1β, IL-6, IL-8, IL-17,
and TNF-α mobilizes tumor-associated neutrophils involved in metastases by inducing
epithelial–mesenchymal transition (EMT) through the activation of the JAK2/STAT3 and
ERK1/2 signaling pathways in gastric cancer cells [96] (Table 1).

H. pylori also triggers a Th17 response, which is associated with a lower survival and
increased metastasis. IL-17 can activate proinflammatory pathways such as NFκB and c-Jun
N-terminal kinase (JNK), and high levels of JNK have been found in several cancer cell
lines [97]. Moreover, IL-17 can also attract neutrophil migration conferring pro-tumorigenic
functions, as described in colorectal cancer lesions [98].

As a note, H. pylori is able to conceal itself from the immune system by modifying
the surface molecules to avoid the recognition from the toll-like and pattern recognition
receptors (TLRs and PRRs) of dendritic cells [99]. Moreover, when H. pylori pathogen-
associated molecular patterns (PAMPs) interact with PRRs, adaptive cellular mechanisms
such as oxidative stress and autophagy are activated, turning on several transcriptional
pathways including MAPK, NFκB, Wnt/β-catenin, and PI3K. These pathways are asso-
ciated with (i) the production of inflammatory cytokines, (ii) changes in cell proliferation
and differentiation, (iii) the activation of angiogenesis, (iv) EMT, and (v) immunological
tolerance [100].

3.6. Management of Helicobacter Pylori Infection: Antibiotics, Probiotics, Natural Treatments, and
Future Perspectives

H. pylori infection treatment consists of a combination of three or four drugs, such as
combinations of acid suppressants with antibiotics and/or bismuth. The first-line treatment
should be decided according to locoregional or individual H. pylori antibiotic resistance.
The second-line treatment should consider the drugs used in the first-line treatment and the
antibiotic resistance status as well [101]. Antibiotics used as the first-line treatment are clar-
ithromycin, amoxicillin, metronidazole, levofloxacin, and furazolidone. Acid suppression is
obtained from proton-pump inhibitors (PPIs) such as omeprazole, esomeprazole, lansopra-
zole, pantoprazole, or rabeprazole at a double-standard dose. The increase of intragastric
pH to a value of 6 or higher is essential in order to optimize the stability, bioavailability, and
efficacy of antibiotics [102]. PPI efficacy is increased by doubling the PPI standard dose and
should be considered in the case of first-line treatment failure [103]. Antibiotic resistance is
the main reason for treatment failure, especially in the case of PPI-based triple-therapies
(PPI-TTs), which include a PPI, clarithromycin, and amoxicillin or metronidazole as a
substitution for either amoxicillin or clarithromycin [104]. Clarithromycin resistance has
increased to 15–30% worldwide, while metronidazole resistance is >25% in most areas of
the world. However, while the evaluation of antibiotic susceptibility testing (AST) is crucial
for clarithromycin use, in vitro AST for metronidazole does not correlate with clinical
efficacy. Moreover, metronidazole has synergistic efficacy together with co-administered
drugs, particularly bismuth [101].

Clarithromycin-based PPI-TT is the treatment of choice in the case of local clar-
ithromycin resistance prevalence <15%. On the contrary, in cases of higher resistance
rates, the treatment of choice is a bismuth-based quadruple-therapy composed of a PPI,
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bismuth, tetracycline, and a nitroimidazole antibiotic (BiQT) [105]. BiQT has a high eradi-
cation efficacy of 90%, which does not require AST. It is also not affected by clarithromycin
resistance and overcomes metronidazole resistance with the use of bismuth [106]. Another
possible first-line treatment in cases of high rates of clarithromycin resistance is the concomi-
tant therapy (PPI plus three antibiotics simultaneously administered) [107]. Concomitant
therapy has been found to be superior to PPI-TT and may be an alternative to BiQT in
case of the unavailability of the quadruple-therapy. Table 2 reports the possible first-line
treatments available [108].

Table 2. First-line treatment for Helicobacter pylori infection.

Therapy Name Dosing Duration (Days) Eradication (%)

Clarithromycin-based PPI-TT PPI bid + clarithromycin 500 mg bid + amoxicillin
1 gr bid or metronidazole 500 mg tad 14 70–85

Bismuth-based quadruple PPI bid + bismuth salicylate 300 mg qid +
metronidazole 500 mg tid + tetracycline 500 mg qid 14 75–90

PPI-TTT PPI bid + amoxicillin 1 gr bid + clarithromycin
500 mg bid + metronidazole 500 mg tid 14 90

Legend: bid: twice a day, PPI: proton pump inhibitor, qid: four times a day, TT: double-antibiotic therapy, TTT:
triple-antibiotic therapy, tid: three times a day [108].

In case of the failure of the BiQT treatment, the second-line treatment consists of a
levofloxacin-based regimen [109]. However, levofloxacin has a high resistance rate (up to
20% in Europe and 18% in the Asia-Pacific region), and because of this, its use is limited
even in second-line regimens [110]. Levofloxacin-based regimens include amoxicillin and a
PPI. In cases of higher resistance rates, alternative choices are PPI + rifabutin + amoxicillin
(or clarithromycin in case of a penicillin allergy). A possible choice may also be high-dose
PPI + amoxicillin [102]. Adverse events to treatment occur in 30–70% of patients and
include nausea, diarrhea, and taste disturbances [111]. The prevalence of diarrhea is 1–15%
and is caused mainly by alterations of the gut microbiota and overgrowth of opportunistic
pathogens [112].

Probiotics have an adjuvant role in the treatment of H. pylori, both by improving the
eradication rate of H. pylori infection and reducing the rate of adverse events given by
antibiotic therapy. A network meta-analysis of 34 randomized controlled trials comparing
nine types of different probiotic treatment showed that Bifidobacterium–Lactobacillus and
Bifidobacterium–Lactobacillus–Saccharomyces performed better than others, achieving
satisfactory results both in eradication and side-effect evaluation and improving standard
anti-H. pylori triple therapy [113]. Other effective probiotics reported to diminish bacterial
load are Saccharomyces boulardii and L. johnsonni La1 [114].

Moreover, Lactobacillus reuteri and its antipathogen compound reuterin were found
to be effective both in inhibiting H. pylori and reducing the side effects of the antibiotic
treatment. Reuterin was reported to downregulate the vacA and flaA genes, responsible
for H. pylori virulence [115].

Among natural treatments, curcumin (diferuloylmethane) and polyphenolic plant
metabolites have shown anti-proliferative activity against H. pylori. For instance, curcumin
interacts with CagA by suppressing its oncogenic activity [116]. Recently, an essential oil
mixture, obtained from species from the genera Satureja L., Origanum L., and Thymus L.,
called HerbELICO®, was shown to inhibit the growth of 20 different H. pylori types re-
gardless of their resistance or host origin with immediate bactericidal activity and the
ability to penetrate through mucin [117]. Many different plant extracts and phytochem-
icals have been tested for anti-H. pylori activity. However, very few of them have been
investigated in vivo for efficacy and capability to inhibit H. pylori urease activity [118,119].
Additionally, a diet focused on the reduction of salt intake is key to managing H. pylori
infection [68]. As indicated previously, high sodium levels in the diet can lead to the onset
of pre-malignant lesions in the gut and increase the susceptibility of acquiring an H. pylori



J. Pers. Med. 2023, 13, 1325 10 of 16

infection. Thus, limiting HSD can help prevent and even manage H. pylori infections, as
well as potential cancers.

On the whole, H. pylori antibiotic resistance demands the development of new an-
timicrobial drugs and different treatment strategies that are able to increase cure rates and
reduce relapses. Inhibition of H. pylori urease and blocking of flagellar function are possible
targets. Moreover, the development of polymeric nanoparticles delivering antibiotics and
other anti-H. pylori agents may increase the penetration of drugs into the mucus layers. The
development of selective probiotics against gastric pathogenic bacteria may be important,
as well. Indeed, H. pylori infection alters the biodiversity of other gastric bacteria, with
the development of carcinogenic clusters such as Septostreptococcus, Streptococcus, Parvi-
monas, Prevotella, Rothia, and Granulicatella. Lastly, further research is warranted in order
to identify effective vaccine candidates both for preventive and therapeutic purposes [86].

4. Discussion

H. pylori infection and an HSD are risk factors for gastric cancer. Analyses were com-
pleted to discern how these two factors contribute to the progression of gastric cancer.
First, high salt intake was shown to alter gastric cells, leading to the hyperplasia of the
gastric pit epithelium, resulting in endogenous mutations. Second, metaplastic changes
eventually lead to malignant tumors due to damage from a high intragastric salt concentra-
tion, which highly aggravates the epithelium, as well as increases metaplastic alteration.
Third, carcinogenic N-nitroso compounds are occasionally found in highly salty foods,
which are regularly consumed by populations living in East Asia. In the presence of salt,
these compounds can induce additional toxicity and, thus, be detrimental to cells. Fourth,
H. pylori colonization thrives in an HSD. H. pylori has many virulence determinants such
as cag-positive strains, which become more lethal in the presence of salt and can inhibit
gastric epithelial cells. Lastly, the protective barrier, which is composed of a viscous mucus,
is destroyed, creating immune instability. This allows the host to become susceptible to the
infection, resulting in chronic inflammation. The release of numerous, harmful cytokines
to the epithelium leads to gastritis and ulcerations, which are precancerous. Thus, the
above-mentioned evidence presents the mechanisms by which a highly concentrated salt
environment has a synergistic role with H. pylori. These interactions enhance the probability
of developing gastric cancer [119,120]. Although it is difficult to quantify how much an
HSD could contribute to the risk of gastric cancer development especially in the absence
of H. pylori colonization, previous case–control studies reported a higher median sodium
intake for gastric cancer patients with respect to healthy controls. Moreover, the risk of
gastric cancer was significantly increased by H. pylori infection, but only in the case of
high sodium intake (highest third of daily sodium intake estimated by a food frequency
questionnaire). Differently, H. pylori infection did not increase gastric cancer risk for other
measures of salt exposure [121]. As far as tumor location is concerned, mice fed with
an HSD showed increased proliferation in gastric proximal corpus and antrum and a
concomitant multifocal reduction in parietal cell number in the proximal corpus. This
process resulted in a general elongation of gastric pits, promoting subsequent H. pylori
colonization and carcinogenesis [33]. In addition, a Chinese-population-based case–control
study supported the view that HSD increases the risk of non-cardia gastric cancer [122].

There are several limitations that impact the nature of the review. First, only articles
that were published in English were considered, and a search was not performed on the
grey literature. Potentially, there could be studies conducted in other languages (especially
among the Japanese population), which could equate to the total number of eligible studies
being much larger than the number analyzed in this review. In addition, differences in
pathogenetic processes may be present among different ethnicities (Western vs. Eastern).
Moreover, many of the studies carried a moderate level of bias relating to confounding
variables, as most of the research did not accurately adjust for factors such as smoking,
obesity, consumption of red meat, and alcohol, which could have impacted the reliability
and validity of the results. The synergistic effects of an HSD and H. pylori infection on
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gastric epithelial cells and subsequent damage have only been studied in various mouse
models. However, the effects of an HSD should be considered in other animal models to
verify the consistency of the outcomes. Importantly, the high concentration of dietary salt
was inconsistent across all studies and was not operationally defined when modeling salt
intake and gastric cancer risk.

5. Conclusions

This review demonstrated that a high-salt diet and H. pylori infection could increase
the risk of gastric cancer, especially in the East Asian population. This study has important
public health implications. Gastric cancer will lead to a serious global cancer burden, and
therefore, prevention can be taken through the administration of medical treatments to
eradicate H. pylori. Individuals who prefer salt-burdened foods or are habitual consumers
of salt need to undergo dietary education, as well as management to reduce its consumption.
A review of the aforementioned studies showed urinary sodium/creatinine ratios as a
reliable measure of salt intake. Thus, more experiments utilizing this measure of salt intake
with larger sample sizes are needed to further confirm these results. Consideration should
be given to conducting more randomized controlled trials and cohort studies to assess the
effects of increased and reduced dietary salt intake on H. pylori and the risk of gastric cancer
based on subject differences.
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