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Abstract: Precision medicine has the potential to revolutionize the way cardiovascular diseases are
diagnosed, predicted, and treated by tailoring treatment strategies to the individual characteristics of
each patient. Artificial intelligence (AI) has recently emerged as a promising tool for improving the
accuracy and efficiency of precision cardiovascular medicine. In this scoping review, we aimed to
identify and summarize the current state of the literature on the use of AI in precision cardiovascular
medicine. A comprehensive search of electronic databases, including Scopes, Google Scholar, and
PubMed, was conducted to identify relevant studies. After applying inclusion and exclusion criteria,
a total of 28 studies were included in the review. We found that AI is being increasingly applied
in various areas of cardiovascular medicine, including the diagnosis, prognosis of cardiovascular
diseases, risk prediction and stratification, and treatment planning. As a result, most of these studies
focused on prediction (50%), followed by diagnosis (21%), phenotyping (14%), and risk stratification
(14%). A variety of machine learning models were utilized in these studies, with logistic regression
being the most used (36%), followed by random forest (32%), support vector machine (25%), and deep
learning models such as neural networks (18%). Other models, such as hierarchical clustering (11%),
Cox regression (11%), and natural language processing (4%), were also utilized. The data sources used
in these studies included electronic health records (79%), imaging data (43%), and omics data (4%).
We found that AI is being increasingly applied in various areas of cardiovascular medicine, including
the diagnosis, prognosis of cardiovascular diseases, risk prediction and stratification, and treatment
planning. The results of the review showed that AI has the potential to improve the performance
of cardiovascular disease diagnosis and prognosis, as well as to identify individuals at high risk of
developing cardiovascular diseases. However, further research is needed to fully evaluate the clinical
utility and effectiveness of AI-based approaches in precision cardiovascular medicine. Overall, our
review provided a comprehensive overview of the current state of knowledge in the field of AI-based
methods for precision cardiovascular medicine and offered new insights for researchers interested in
this research area.

Keywords: precision medicine; cardiovascular diseases; artificial intelligence; machine learning

1. Introduction

Globally, cardiovascular diseases (CVDs) are well-known major causes of mortality,
accounting for nearly one-third of all deaths in the world [1]. In the United States (US),
CVDs are widespread, with one in three adults having some type of CVDs [2], and the
number of cases has doubled to approximately 523 million worldwide [3]. In 2035, about
half of the US population is expected to suffer from at least one kind of CVDs [4]. The
shift from population-based care toward more patient-centred approaches in healthcare
has been accompanied by a shift in the management of disease processes. One aspect is a
greater emphasis on precision medicine (PM). PM is an emerging healthcare model that
takes into account individual variations in lifestyles, genes, and environments [5,6].

Precision cardiovascular medicine aims to optimize the diagnosis, risk prediction,
prognostication, and therapeutic intervention by integrating large multimodal biomedi-
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cal datasets incorporating individual genes, function, lifestyle, and environmental varia-
tions [7]. The significant benefit of this approach over conventional medical methods is
its use of high-dimensional datasets to determine an individual’s health status, treatment
response, and prognosis. The data can be obtained from various sources such as electronic
health records (EHR), genomics and other multi-omics data, medical imaging, wearable
sensors, biosensors, and behavioural monitors. Through the application of precision car-
diovascular medicine, diagnostic, predictive, and therapeutic errors could be significantly
reduced. As an example, by interrogating longitudinal medical datasets, one can identify
disease subtypes and match the patient to those with similar disease profiles; through the
knowledge of treatment effectiveness and outcomes, the prognosis of this patient would
be more precise, and therapy recommendations would be optimized in accordance with
similar subgroups [8].

AI methods, such as deep learning (DL) models and machine learning (ML), enable
the integration of complex multimodal biomedical datasets to generate multimodal insights
to facilitate precision medicine [9]. In fact, CVDs are complex and heterogeneous in
nature, as they are caused by multiple genetic, environmental, and behavioural factors [10].
Therefore, AI algorithms can potentially find the cryptic and genotypic structures to be used
in advanced patient care, such as diagnosing the disease early, predicting the treatment
response, predicting the risk of developing the disease in the future, prognosis, and other
outcomes in individual patients [5]. Lately, researchers have developed personalized
prediction models in cardiology. Chaves et al. [11] proposed a DL-based framework for
opportunistic risk assessment of ischemic heart disease (IHD) using medical imaging
data combined with patient EHR. Zhao et al. modelled genetic data fused with EHR for
practising the the 10-year risk of IHD [12].

The integration of AI in PM will revolutionize cardiovascular healthcare delivery. To
this end, this review aimed to provide a comprehensive review of recent developments
and the use of AI methods and their applications for PM in cardiovascular medicine. There
are some other reviews in the literature that focus on the use of AI for cariology [13–16];
however, we differed from them in terms of the scope and coverage of our review. Some
previous reviews focused on the use of AI for specific CVD diseases, such as cardiac ar-
rest [13] and acute coronary syndrome [16]; they did not cover all cardiology diseases.
Other reviews focused on paediatric cardiology using AI; Van et al. reviewed AI applica-
tions in paediatric cardiology from 2020 to the present and summarized the foundational
work and incremental progress [14]. To the best of our knowledge, there is no review paper
covering AI models for CVD precision medicine. To this end, our review summarized
studies relating to AI-powered PM-based diagnosis, risk prediction, treatment selection,
and prognosis of any CVD.

The main purpose of our scoping review was to analyse and synthesise the scientific
literature that uses AI models for different precision cardiovascular medicine applications
answering four main questions:

• PM branches (applications): What types of PM clinical applications are addressed
using AI-based models for CVDs?

• CVD types: For what type of CVDs are AI-powered PM models implemented?
• AI models: What AI algorithms are most commonly applied for different PM applica-

tions in CVDs?
• Data sources: What are the medical data modalities used for each model? What are

the most commonly used datasets?

This review provided researchers and professionals in the healthcare domain with a
comprehensive overview of the advancements made in precision cardiovascular medicine
using AI-based methods. Additionally, the study offered a list of publicly available
CVDs-related medical datasets that could help AI researchers to develop innovative
research methods.
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2. Methods

We conducted a literature search in famous databases and conducted a scoping review
of the existing literature on the applications of AI for cardiovascular precision medicine.
We followed the guidelines recommended by the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) [17].

2.1. Search Strategy
2.1.1. Search Sources

This review searched three different databases: Scopus, PubMed, and Google Scholar.
It is worth noting that PubMed includes MEDLINE. In Google Scholar, we selected the
first 100 relevant studies, as beyond 100 entries, the search results lost relevance and were
unrelated to our review. Besides searching the three databases, the reference lists of the
included studies were also screened to obtain further pertinent studies.

2.1.2. Search Terms

A literature review and a consultation with experts in the field enabled us to define
search terms. Our study focused on studies that used AI models for cardiovascular precision
medicine; therefore, the search string was a combination of three search terms connected by
AND: (“cardiovascular disease” AND “artificial intelligence” AND “precision medicine”).
Different forms of each term were used. The detailed search string used for each database
is shown in Supplementary File S1.

2.2. Search Eligibility Criteria

In this review, we included all studies applying AI/ML methods to perform population
phenotyping, risk stratification, disease diagnosis, early prediction, mortality and survival
prediction, treatment prediction, or therapy efficiency prediction for any CVD disease.
We did not restrict the types of AI methods, the type of CDV disease, the used medical
data modalities, or the type of clinical outcomes. Moreover, no restrictions were placed
regarding age, gender, and ethnicity. We included peer-reviewed studies, book chapters,
and conference proceedings. The studies included in this review were all limited to
English only.

We excluded studies that did not focus on CVDs and did not use AI-based models.
Non-English studies, Conference abstracts, reviews, commentaries, letters to editors, and
animal studies were also excluded.

2.3. Study Selection

Rayyan web-based review management [18] tool was used for the first screening and
study selection. Two reviewers, BA and NB, independently performed two phases of
screening. The first screening involved assessing study titles and abstracts and removing
duplicates. In the second screening phase, the full text was examined against the predefined
eligibility criteria to perform study selection. Disagreements between the two reviewers
were resolved through discussion. A third author (FM) was consulted when an agreement
could not be reached.

2.4. Data Extraction

To ensure a consistent and accurate data extraction process, we developed a form
and tested it on a sample of five studies. The extracted data included the name of the first
author, publication year, country of the first author’s institution, type of cardiovascular
disease, clinical outcome (precision medicine branch), data modalities, data source, and
AI models. The data extraction was performed independently by two reviewers (BA and
NB), and any disagreements were resolved through discussion, with a third author (FM)
consulted as needed.
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2.5. Data Synthesis

We used a narrative approach to synthesise the data after the data extraction. We
analysed the studies from three perspectives: CVD disease branch, PM branch (diagnosis,
prediction, phenotyping, etc.), AI models, and data sources/type and size. We used MS
Excel for performing and managing data synthesis. A summary of all the data extracted
from included studies is given in Supplementary File S2.

3. Results
3.1. Search Results

Our search initially identified 679 studies, of which 569 were retained after removing
duplicates. Of these, 42 studies were selected for full-text review based on the inclusion
criteria outlined in the Section 2. After further review, 14 studies were excluded, while
2 additional studies were identified by checking reference lists. In total, 28 studies met the
inclusion criteria and were included in the data extraction and synthesis process. The study
screening and selection process is summarized in Figure 1.
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3.2. Demographics of the Studies

After extracting the enriched information from the finalized relevant articles, it was
concluded that most of the articles are journal articles (n = 26). This high number of
journal articles reflects the interest of the researchers to work in this research domain.
In addition, it was observed that most of the work was reported from the USA, UK,
China, Netherlands, and other developed countries, but no work was reported from the
third countries. Moreover, the results are synthesised for a comparatively smaller dataset
comprising 1000 samples for training and testing purposes. Only four articles used a sample
size of more than 20,000 scanned MRI/CT scan images. Table 1 shows the demographics of
the included studies of this review.

Table 1. The demographics of the studies included in the analysis.

Characteristics Number of Studies Included

Publication type

Journals n = 26
Conference n = 1
Books n = 1

Country

United States of America n = 16

United Kingdom n = 5

China n = 3

Netherlands n = 2

Amsterdam, Australia, Belarus, France, Germany, Iran,
India, Italy, Slovenia, Switzerland n = 1

Year of publication

2020 n = 5
2021 n = 5
2022 n = 1
2018 n = 5
2019 n = 2
2017 n = 6
2016 n = 2

Sample size
<1000 n= 16
1000–20,000 n= 7
>20,000 n= 4

3.3. Cardiovascular Disease Branch

Different types of cardiovascular diseases (CVD) are identified after analysing the
accumulated relevant articles, as depicted in Figure 2. These CVD types are classified into
six categories including coronary heart disease [19–29], heart failure [22,26,30–34], arrhyth-
mia [29,33,35–39], aortic diseases [25,26,29,40,41], and cardiomyopathy [26,29,33,42,43],
and only one study for hypertension (HTN) [44]. Among these finalised 28 articles, the
most represented category is coronary heart disease (n = 14). This high contribution is
mostly relevant to chronic diseases and represents the complications and high mortalities.
This mortality factor can be minimised if people at high risk can be diagnosed well before
an incident of a coronary event [21].
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Figure 2. CVD distribution in the included studies.

3.4. Precision Medicine Branch

In this research, the use of AI in precision medicine for CVD was classified into four
different branches. These branches were prediction, diagnosis, phenotyping, and risk
stratification. All these branches were detailed in the following subsections of the paper.

3.4.1. Prediction

Disease prediction uses data to feed algorithms to predicate disease occurrence or the
effectiveness of specific medication and other purposes [45]. In this review, 14 papers
out of 28 contributed studies on the purpose of prediction [19–29,46]. These papers
were further classified into early prediction, mortality prediction, disease prediction, and
dose prediction.

• Early prediction—In these 14 articles, 3 studies conducted early detection [25,30,35].
One study was conducted to develop a platform that can detect arrhythmias in real-
time using the electrocardiogram (ECG) signal from the patient’s records. As a gradual
optimization process, the artificial bee colony (ABC) technique detects and classifies
different ECG signals using least-square twin support vector machines (LSTSVMs).
As a result of this study, the algorithm achieved a high accuracy and sensitivity rate,
indicating that it was a success and will aid in detecting arrhythmias early [35]. An-
other study reported on determining the pretest probability of coronary artery disease
(CAD) and how to continue further in the diagnostic and therapeutic process [25]. The
modality data collected from EHR are clinical, pathological, familial, pharmacological
history, and lifestyle habits, besides the proteomics omics data. Combining these
two modalities of data showed that a panel of 50 proteins outperforms the clinical
risk model in predicting the risk of myocardial infarction, and a Gradient boosting
classifier algorithm was applied for this study [25]. Fan et al. [30] constructed and
evaluated an individual’s Cardiorenal Syndrome Type 1 (CRS1) risk nomogram for
patients with Acute heart failure (AHF). Demographic and clinical data were collected
from the patient’s EHR, and a logistic regression model was applied for this study.

• Mortality prediction—For mortality prediction, four studies were reported in the
literature [19,21,40,46]. Vignoli et al. [46] presented a study aimed to characterize the
metabolomic fingerprint of acute MI using nuclear magnetic resonance spectroscopy
on serum samples from patients and assess the potential significance of metabolomics
in the predictive classification of acute MI patients. Multivariate statistics were used
to build a predictive model for death within two years of a cardiovascular event.
Finally, a prognostic risk model predicted death with a sensitivity of 76.9 per cent, a
specificity of 79.5 per cent, and an accuracy of 78.2%, with an area under the receiver
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operating characteristic curve of 85% [46]. In [40], medical records were examined
to evaluate the potential risk for patients undergoing transcatheter aortic valve im-
plantation (TAVI). An extreme gradient boosting (XGBoost) model was utilized to
investigate the impact of feature selection on the model’s performance. The authors
compared machine learning models for all-cause mortality with traditional risk scores.
Their results indicated that the machine learning model outperformed traditional risk
scores and improved patient selection for all-cause mortality in the hospital. Medical
records were consulted for the following information: patient’s demographics and
medical conditions, results of tests and imaging studies such as electrocardiograms
and echocardiograms, and reports from CT scans and MRIs [40]. Models for all-cause
mortality were compared to risk scores that were used before new models were devel-
oped. An extreme gradient boosting (XGBoost) model was used to examine the effect
of feature selection on performance. Lastly, the outcome of this study showed that
machine learning was finally able to obtain significantly better results. Furthermore,
it improved patient selection compared to older risk scores for "all-cause death" in
the hospital [40]. A study evaluated the impact of age on percutaneous coronary
intervention in a large, random sample of patients (PCI) [21]. Therefore, demographic
data, clinical data, and procedural characteristics were collected from the patient’s
EHR, and multivariate Cox regression analyses were applied. In [19], patients with
coronary heart disease were evaluated using a variety of machine and deep learning
models to predict five-year mortality rates. These models are the support vector ma-
chine, decision tree, random forest, gradient boosting, neural network, and logistic
regression. Demographic and physical features, comorbid conditions, medication,
laboratory biomarkers, and electrophysiological results were among the data modal-
ities acquired from EHR in this study. Furthermore, only age, dyslipidaemia, prior
cerebrovascular disease, and random forest score remained statistically significant in
multivariate modelling, confirming their independence from the other factors [19].

• Disease prediction—Six studies were carried out [20,22,23,31,32,44] for disease pre-
diction. Precision medicine was utilized in one study to discover risk polymorphisms
in hypertension in African Americans that altered left ventricular mass linked with
body surface area (LVMI) as a measure of cardiovascular disease risk by using a con-
volutional neural model [44]. Participants’ demographic information, past medical
history, current medical condition, laboratory results, and CMR results are collected
to evaluate LVMI [44]. The results showed that feature learning and representation
produced better results than others [44]. One study [23] used machine learning ap-
proaches random forest model to develop a similar panel to predict incident coronary
heart disease. Data from demographics, clinical and genetic data, and epigenetics were
used in this study. This study reported a novel precision medicine tool based on DNA
that is capable of capturing complicated genetic and environmental risk variables for
CHD [23]. Another study gathered predictor factors from the EHR, knowing that
they were routinely documented and accessible during the period examined [32]. The
study used a regularized logistic regression model to predict 30-day readmission risks
for heart failure, and the results can be used to determine patient risk for readmission
and to guide clinicians in delivering precise health interventions. A study argued by
Broers et al. [22] reported that patients with cardiac problems could improve their prog-
nosis by altering lifestyle factors. Hence, the data modalities that were collected from
EHR were demographic data and environmental lifestyle data, e.g., physical activity
and sleep tracking. An analysis of the trajectories of outcome variables was performed
using a locally weighted error sum of squares (LOESS). Predictors of both progress
and deterioration in outcome measures were discovered using the linear mixed-effects
regression technique [22]. A study was conducted to establish a foundation for more
accurate, individualized risk assessment in individuals with chronic heart failure [31].
The data modalities were from EHR (demographics, clinical data, blood test, ECG)
and echocardiography data and all these variables were entered into the multivariable
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Cox regression model [31]. Cine cardiac magnetic resonance (Cine-CMR) images are
used for clinical diagnosis to differentiate between myocardial infarction (MI) and
viable tissues/normal cases, where the support vector machine and logistic regression
were applied in this study to predict coronary heart diseases [20].

• Dose prediction—Only one study was reported for dose prediction [24]. This study
used demographics, clinical characteristics, and medical therapy as input data for
regression models based on machine learning methods (random forest, boosted trees,
linear regression, and optimal regression tree) [24]. The experimental results showed
that data-driven models for customized coronary artery disease (CAD) management
using electronic health records significantly improved health outcomes relative to the
standard of care. In total, 81.5% AUC for each treatment has been achieved based on
medical history and clinical examination results.

3.4.2. Diagnosis

A diagnosis could be described as a process as well as a classification system or a set of
pre-existing classifications used by doctors to identify a particular disease [47]. For diagno-
sis, 6 studies were identified out of a total of 28 most relevant articles. Alimadadi et al. [42]
used omics data modalities by collecting RNA-Seq data to detect cardiomyopathy, which
can present in two major clinical forms, dilated cardiomyopathy (DCM) or ischemic car-
diomyopathy (ICM). This study showed the potential of using artificial intelligence via
machine and deep learning models to diagnose cardiomyopathies with an improved level
of precision. Five ML and DL algorithms were used in this study, which were the sup-
port vector machine with the radial kernel (svmRadial), neural networks with principal
component analysis (pcaNNet), decision tree (DT), elastic net (ENet), and random forest
(RF) [42]. The study [43] used echocardiography images and clinical variables to identify
complex structural and functional abnormalities patterns in different cardiac pathologies
using machine learning including the support vector machine and random forest model
to integrate clinical and echocardiographic data. Moreover, a study used demographics,
clinical data, and ECG singles from HER. In addition, coronary angiography image data
were used to detect coronary heart diseases. Moreover, logistic regression was used in
this study for the purpose of diagnosis [48]. MRI and electrocardiographic imaging were
employed in another study to detect coronary heart diseases, and a fully convolutional
network (FCN) was used to construct patient-specific 3D biventricular heart models from
MR cine slices [26]. Similarly, Baessler et al. [27] used cardiac magnetic resonance (MR)
images to determine whether texture analysis (TA) could be utilized to detect both acute
and chronic myocardial infarctions. Texture features were used to distinguish between
ischemic scar and normal myocardium using multiple logistic regression models. The
results of this proof-of-concept study showed that TA of non-enhanced cine MR could
accurately diagnose subacute and chronic MI [27]. For Aortic disease detection, one study
was conducted using image clustering (CMR) to improve disease-specific treatment plan-
ning, risk assessment, and medical device development in complex diseases. A hierarchical
clustering technique was used to gather subjects with similar characteristics, while issues
with distinct differences formed another group [41].

3.4.3. Phenotyping

Four studies contained information regarding phenotyping [28,29,37,38]. According to
Zhao et al. [28], the dataset contained the electronic copy of each patient’s electronic health
record. Before the first diagnosis, the dataset comprised 10 years of EHR data and consisted
of phenotypic codes (PheCodes). This investigation used a non-negative constraint-tensor-
factorization technique to extract phenotypic themes across time scales [28]. This data-
driven approach is likely to support researchers’ efforts to identify complex and chronic
disease sub-phenotypes in precision medicine. Study [37] reported the design for a proto-
type mechanism for atrial fibrillation (AF) warnings and evaluated the prototype’s efficacy
and safety using an electronic health record (EHR) to gather demographic information,
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medical reports, such as clinical reports, radiology reports, CIED implantation reports,
and lab test results. The AKENATON prototype workflow consisted of two steps: First,
natural-language processing algorithms abstract the patient’s health record into the digital
format, and second, an applied formal ontology-based and knowledge-based algorithm
calculates and evaluates the patient’s anticoagulation status. Patients’ health records with
similar clinical features were clustered or classified based on their similarity in patient
similarity analysis. Based on echocardiographic features of left ventricular (LV) structure
and function, hierarchical clustering techniques were applied to create a patient similarity
network that predicted significant adverse cardiac events (MACE) in an individual pa-
tient [29]. Another study reported to provide individualized medication for patients with
atrial fibrillation (AF) would be helpful in identifying sub-phenotypes (“endophenotypes”)
of the condition. Demographic data and clinical outcomes were collected from EHR, and
also echocardiography images were used in this study. A binary logistic regression analysis
with univariate and multivariable options was performed to assess clinical associations for
patients with AF [38].

3.4.4. Risk Stratification

In the finalized 28 most relevant articles, four studies [33,34,36,39] reported their ex-
perimental results on risk stratification. Smole et al. [33] developed a new risk stratification
model for human capital management using machine learning techniques known as HCM-
RSS [33]. This works on patients’ current clinical status, imaging data, genetic data, and
medical history to identify patients at risk of any severe adverse cardiac disease. This
study involved different machine learning models (random forest, boosted trees, neural
network, and support vector machine) that were fed with the patient data that were already
mentioned. For each prediction, the risk stratification model explained the patient’s classifi-
cation. Ref. [39] evaluated the risk of life-threatening ventricular tachyarrhythmias. Data
were collected from known cases of chronic heart failure, including physical assessment,
lab investigation, echocardiography (Echo), Holter monitoring (HM), stress test, and de-
mographic data. The Cox regression analysis model was used. The study’s findings led to
developing a new two-step paradigm for customized risk stratification in individuals with
CHF. The classification model had an 80.8 per cent sensitivity and 99.1 per cent specificity.
Finally, Individualized risk assessment algorithms based on logistic regression models
correctly classified 93.9 per cent of CHF patients. Moreover, an experiment was performed
to demonstrate how an outcome-driven strategy could be used to detect clinically similar
individuals [36]. As a result, patients with comparable clinical outcomes were likely to be
classified together [36]. An atrial fibrillation patient cohort currently thought to be at high
risk of an ischemic stroke (IS) was used in a real-world case study. A hierarchical clustering,
agglomerative clustering, was used to group patients in a comparable context. It began
with a single cluster and merged the two “closest” clusters at each stage until the process
was complete. Finally, the method was able to identify a precise group of patients with a
low probability of developing IDS.

Lastly, a study was conducted to determine the probability of sudden cardiac death
(SCD) or pump failure death (PFD) in chronic heart failure (CHF) patients; models based
on clinical characteristics were developed [34]. This study aimed to determine whether
merging standard clinical factors with ECG markers for autonomic nervous system (ANS)
imbalance and electrophysiological abnormalities would increase the capacity to stratify
SCD and PFD risks. The Cox regression was used to determine whether each potential risk
marker was associated with SCD or PFD [34]. Finally, a risk model constructed entirely
from conventional clinical characteristics could significantly enhance the prediction of
syncope and pump failure events in patients with chronic heart failure.

3.5. Artificial Intelligence Algorithms

After analysing the literature, it was concluded that most of the research models used
traditional classification models. No advanced or hybrid artificial-based models were
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reported in the extant literature. The ML-based models reported in this research domain
are depicted in Table 2.

Table 2. Detection of different types of CVD using AI-based techniques.

S. No AI-Based Models References

1. Logistic Regression [19,20,24,27,30,32,33,38,46,48]

2. Random forest [19,23,24,33,40,42,43,46]

3. Support Vector Machine [19,20,33,35,40,42,43]

4. Neural Network [19,26,33,42,44]

5. Clustering (Hierarchical clustering) [36,41]

6. Cox regression [21,22,31,34]

7. Gradient boosting [19,25,33]

8. Decision Tree [19,42]

9. Locally Weighted Error Sum of Squares (LOESS) [22]

10. Tensor-Factorization [28]

3.6. Datasets

Different data modalities (datasets) were reported in the studies, such as EHR, image,
omics, lifestyle, and environmental data. In the articles [19,21–25,28–40,44,48], EHR data
were used for the experimental and identification process. It comprised demographic
data, physical characteristics, medication, laboratory results, medical history, patient vital
signs, and procedure characteristics if the patient had a procedure related to the heart.
For cardio-relevant problems, three types of MRI images [20,26,27,41,44], CT scan [40],
and echocardiography [26,29,31,33,39,43,48] images were used for the early prediction
and diagnosing process. In lifestyle and environmental data, Broers et al. [22] used sleep
tracking, physical activity, and consuming alcohol. The omics data [23,25,33,42] were
another big database tool used for disease diagnosing and prediction purposes. It mostly
comprised the proteomics and RNA-Sequence data.

4. Discussion

This section of the paper outlines the key findings of this research work. Moreover, it
briefly outlines the implications of this scoping review work.

4.1. Principal Findings

In this review process, the explication of artificial intelligence was reviewed for preci-
sion medicine in cardiovascular medicine. From a total of 697 retrieved studies, 28 were
included in this review. The included papers were reported in the years ranging from 2015
to 2022. Among the countries that contributed to the domains of precision medicine, the
United States has reported more research trends for precision medicine in cardiovascular
medicine, with a total of 16 papers.

The findings of this scoping review were classified into three broad categories, where
each category represented a different classification of the reviewed papers. The first category
focused on the cardiovascular branches. It was further divided into six subcategories:
coronary heart disease, arrhythmia, heart failure, aortic disease, cardiomyopathy, and
hypertension. The second category was the precision medicine branch, and it contained
four subcategories: predicting, diagnosing, risk stratification, and phenotyping.

The third category was based on the AI algorithms used in the targeted research trends.
These AI-based algorithms were classified into eleven subbranches. The most common
algorithms used were logistic regressions, random forests, support vector machines, and
neural networks. For the AI algorithms used in the studies, we discussed the type of
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algorithm used in the studies. Moreover, the algorithms proved their ability to predict and
classify diseases based on the data used to train the different models.

4.2. Practical and Research Implications

This review process highlighted commonly used AI models for precision medicine
in cardiovascular diseases. Based on our findings, AI models have shown promising
performance in various branches of precision cardiovascular medicine, as reported in most
studies. One possible explanation is that AI and machine learning algorithms can process
large amounts of patient data from multiple sources, including electronic health records,
mobile healthcare applications, and medical images [49]. This enables the development of
more accurate and personalised predictive models for cardiovascular disease, which can
identify early warning signs and risk factors before symptoms appear. Another potential
factor is the ability of AI and machine learning algorithms to detect subtle patterns and
relationships within the data that may not be visible to the human eye. For example, CNNs
have been shown to be effective at analysing medical images, such as CT scans and MRI
scans, to detect abnormalities and predict outcomes [50]. Similarly, gradient-boosting
classifiers and random forests can identify important features and relationships within
complex datasets, which can then be used to make accurate predictions. Furthermore, AI
and machine learning algorithms can be trained and updated continuously as new data
become available. This allows for real-time monitoring and prediction of changes in a
patient’s condition, which can lead to more timely interventions and improved outcomes.
Overall, the use of AI in precision cardiovascular medicine has shown great promise and
offers many potential benefits for patient care.

To be clear, none of the listed ML applications was created to take the role of a therapist
but rather to improve the physicians’ abilities and the quality of treatment they provide.
Since there are not many scoping reviews performed in this field, a more focused scoping
review is required to address the use of AI for precision medicine based on the purpose
that was discussed in this paper.

Strengths and Limitations

We were able to capture evidence about the successful ML algorithms that have
proven their capabilities to predict risk for cardiovascular diseases or predict risk and
disease complication and mortality rate. To the best of our knowledge, there was no
scoping review discussing precision medicine in cardiovascular diseases in general; the
other review discussed the AI used for specific purposes, such as predicting cardiac arrest.
For that reason, this scoping review is the first one to conduct and explores the different
algorithms used in this field of precision medicine in CVD.

This review has some limitations. We limited our review to articles published in the
English language. As a result, we may miss some studies.

5. Conclusions

This scoping review aimed to investigate the use of AI models in precision medicine
for CVDs. We examined various branches of precision medicine and machine learning
algorithms using patient data from various sources to predict the risk of heart diseases
such as coronary artery disease, arrhythmia, and heart failure. The findings from the
most relevant articles suggest that precision medicine can improve the diagnosis and
prediction of various cardiovascular diseases. Furthermore, the availability of a large
number of patient data from sources such as electronic health records and mobile healthcare
applications allows for the development of new algorithms that can reduce mortality rates,
improve the quality of life for cardiac patients, and predict the risk of diseases. These
advancements have the potential to impact the health of individuals and communities.
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