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Abstract: The post-percutaneous coronary intervention (post-PCI) fractional flow reserve (FFR) can
detect suboptimal PCI or residual ischemia and potentially lead to fewer adverse clinical outcomes.
We sought to investigate the predictive value of the angiography-derived FFR for adverse cardio-
vascular events in patients after PCI. We conducted a comprehensive search of electronic databases,
MEDLINE, EMBASE, and the Cochrane Library, for studies published until March 2023 that in-
vestigated the prognostic role of angiography-derived fractional flow reserve values after PCI. We
investigated the best predictive ability of the post-PCI angiography-derived FFR and relative risk
(RR) estimates with 95% confidence intervals (CIs) between post-PCI angiography-derived FFR
values and adverse events. Thirteen cohort studies involving 6961 patients (9719 vascular lesions;
mean follow-up: 2.2 years) were included in this meta-analysis. The pooled HR of the studies
using specific cut-off points for post-PCI angiography-derived FFR was 4.13 (95% CI, 2.92–5.82) for
total cardiovascular events, while the pooled HRs for target vessel revascularization, cardiac death,
target vessel myocardial infarction, and target lesion revascularization were 6.87 (95% CI, 4.93–9.56),
6.17 (95% CI, 3.52–10.80), 3.98 (95% CI, 2.37–6.66) and 6.27 (95% CI, 3.08–12.79), respectively. In a
sensitivity analysis of three studies with 1789 patients assessing the predictive role of the post-PCI
angiography-derived FFR as a continuous variable, we found a 58% risk reduction for future adverse
events per 0.1 increase in the post-PCI angiography-derived FFR value. In conclusion, post-PCI
angiography-derived FFR is an effective tool for predicting adverse cardiovascular events and could
be potentially used in decision making, both during PCI and in the long-term follow-up.

Keywords: angiography-derived FFR; percutaneous coronary intervention; QFR; quantitative flow
ratio; vFFR

1. Introduction

Coronary artery disease (CAD) is a leading cause of death worldwide. Specifically,
126 million individuals globally suffer from ischemic heart disease (1655 per 100,000),
representing approximately 2% of the worldwide population in 2017 [1]. Percutaneous
coronary intervention (PCI), depending on the specific clinical setting in which it is per-
formed (in acute coronary syndrome or chronic coronary syndromes), has been shown
improve quality of life and prognosis [2,3] In most large-scale trials, physiology-guided
PCI using a pressure wire to assess the fractional flow reserve (FFR) has been shown to be
superior to angiography-only guided PCI and is thus currently advocated by guidelines
for decision making during PCI [4–6]. Despite the benefit of FFR-guided revascularization,
the increased time and cost of the physiology assessment result in its underutilization,
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according to real-world data [7]. As a result, a wealth of new software assessing the
angiography-derived FFR have emerged.

The angiography-derived FFR can assess the hemodynamic severity of coronary steno-
sis by combining fluid dynamics computation and a 3D anatomical vessel reconstruction
based on angiographical views without the involvement of coronary vessel instrumen-
tation with a pressure wire and the administration of vasodilator agents. One method,
the quantitative flow ratio (QFR), has shown good correlation and diagnostic accuracy
compared to the FFR [7–9]. Recently, FAVOR III China described that QFR-guided PCI
was associated with improved 1- and 2-year clinical outcomes compared to the standard
coronary angiography-guided PCI [10,11].

Although both PCI techniques and equipment have rapidly evolved in recent years,
a significant proportion of patients undergoing an angiographically successful PCI suffer
from adverse events, such as recurrent angina or silent ischemia [12]. A post-PCI functional
assessment can detect suboptimal PCI or residual ischemia, leading to possible efforts
to optimize the final result to reduce further the risk of adverse clinical outcomes. The
immediate post-stenting measurement of the FFR could aid in optimizing revasculariza-
tion results and potentially improve outcomes as it is well established that suboptimal
PCI is an independent predictor of major cardiac adverse events [13–15]. Recent studies
demonstrated the role of the post-PCI angiography-derived FFR as a predictor of a vessel-
or patient-oriented outcomes in patients with stable CAD, acute coronary syndromes, or
in-stent restenosis [16–28]. The primary objective of this meta-analysis was to evaluate
whether the post-PCI angiography-derived FFR predicts coronary adverse events in CAD
patients undergoing PCI. Second, we sought to investigate whether publication bias could
have affected our results. Third, we evaluated the effects of several demographic and an-
giographic factors on the possible predictive role of the post-PCI angiography-derived FFR
to identify the phenotype of the patient that would benefit most from such an assessment.

2. Materials and Methods

The systematic review and meta-analysis were conducted in accordance with the
PRISMA 2020 checklist [29] (see also Supplementary Material). The outcomes of inter-
est were: (1) total CV events (including vessel-oriented composite endpoint (VOCE),
defined as the composite of cardiac death, vessel-related myocardial infarction (MI), or
ischemia-driven target vessel revascularization (TVR) or major adverse cardiovascular
events (MACE) or target lesion failure (TLF)), (2) TVR, (3) cardiac death, (4) target vessel
MI and (5) TLR (target lesion revascularization). TLR was defined as revascularization
post-stenting within the stent or within the 5 mm borders adjacent to the stent.

2.1. Data Sources and Research

For this systematic review and meta-analysis, a systematic search of the literature was
performed in the PubMed, Cochrane, and Embase databases for cohort studies published
until March 2023 that investigated the prognostic role of the post-PCI angiography-derived
FFR. The following search terms were used: QFR, quantitative flow ratio, quantitative
flow ratio AND coronary artery disease, QFR AND coronary artery disease AND (POST
AND QFR AND prognosis, QFR AND prognosis, POST AND quantitative flow ratio AND
prognosis, angiography-derived FFR. angiography-derived Fractional Flow Reverse AND
vFFR. The search was not restricted to any language. Data sources were also identified by
manually searching the references of articles, reviews and meta-analyses. We subsequently
searched online resources such as the abstracts for major cardiovascular conventions and
clinicaltrials.gov (accessed on 4 May 2023) to ensure the identification of all published and
unpublished studies.

2.2. Study Selection

Studies were considered eligible if they met the following criteria: (1) were full-
length publications in peer-reviewed journals; (2) were randomized-controlled studies,
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case studies, or cohort studies, either retrospective or prospective; (3) included patients
with CAD who underwent PCI; (4) recorded the post-PCI angiography-derived FFR value;
(5) reported a VOCE, defined as the composite of cardiac death, vessel-related MI, or
TVR or MACE or TLR; and (6) had a minimum follow-up period of up to 6 months. No
restriction criteria were imposed regarding the size of the population studied or the type of
the population (chronic or acute coronary syndromes).

2.3. Data Extraction and Quality Assessment

Two reviewers (K.-P.G. and D.O.) independently conducted the data extraction, study
selection and evaluation for the risk bias of the studies. Disagreements were resolved
via consensus. The same 2 reviewers independently extracted data regarding the study
population, intervention types, sample size, mean age, gender, follow-up period, indica-
tions of procedures, method of assessing the angiography-derived FFR, the cut-off point
of the angiography-derived FFR and the studies’ outcomes and results. The quality of
each study was evaluated via the Newcastle–Ottawa Scale (NOS) [30]. The NOS scale
evaluates the quality of research by assessing the study population, comparability and
outcome. This scale allocates up to 9 points for the lowest risk of bias in 4 domains: the
selection of study groups (4 points), the comparability of the groups (2 points) and the
ascertainment of exposure and outcomes (3 points). A study’s quality was considered poor
if its Newcastle–Ottawa score was below 7.

2.4. Data Synthesis and Analysis

Each study described the risk estimates as hazard ratios (HRs), relative risks (RRs),
odds ratios or dichotomous frequency data. We managed HRs as RRs. Fully adjusted
RRs were selected over crude estimates, whenever available, as provided by the authors
in multivariable regression models. We investigated the prognostic value of the post-PCI
angiography-derived FFR by extracting and pooling RRs for the following outcomes from
each study: (1) VOCE, including cardiac death, vessel-related MI and ischemia-driven TVR;
(2) MACE; and (3) TLR. Moderate to significant heterogeneity existed among the studies,
and a random-effects model was subsequently implemented. To test whether the true effect
in all studies was the same (i.e., heterogeneity), we used the I-squared measure (I2), which
permits the quantification of discrepancy among studies. Forest plots were created for a
graphical representation of the individual studies’ RRs and confidence intervals (CIs).

We also performed a sensitivity analysis of three studies in which the RR for the
post-PCI angiography-derived FFR were described as a continuous variable and calculated
the adjusted, pooled RR per 0.1 increase in the post-PCI angiography-derived FFR value
for total cardiovascular events.

The contribution of continuous study moderators to the overall heterogeneity was
assessed via a meta-regression analysis with fixed-effects estimates. Publication bias was
illustrated graphically via funnel plots, and its associations with our results were evaluated
via the Duval and Tweedie trim-and-fill method and the classic fail-safe N method, as
introduced by Rosenthal.

All analyses were performed with comprehensive meta-analysis version 2 (Biostat,
Englewood, NJ, USA). We deemed statistical significance to be p < 0.05.

3. Results
3.1. Literature Search Results

Our initial systematic search of the literature retrieved 270 studies, 13 of which were
suitable for the analysis (Figure 1). In total, 221 articles were excluded from this meta-
analysis after reading the titles and the abstracts because they were irrelevant to the
research purpose. Specifically, 28 studies were systematic review articles, 8 studies were
editorials, letters or commentaries, 2 studies were case reports, 30 studies reported the
pre-PCI angiography-derived FFR, 79 studies investigated the coronary CT angiography-
derived FFR, 64 studies had no measurement of the post-PCI angiography-derived FFR
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and 38 studies had no relevant clinical outcome reported. Finally, eight articles were
excluded after a full review for the following reasons: one study had a population sim-
ilar to an included study [31], five studies did not report the data necessary for this
analysis [16,32–35] and two did refer to other indicators but not to the post-PCI angiography-
derived FFR [36,37].
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Figure 1. Flow diagram of study selection procedure.

3.2. Study Characteristics

Our meta-analysis included 13 original articles published since 2019. The included
studies investigated 6961 patients (9719 vascular lesions; mean follow-up: 2.2 years).
Several populations, such as patients with chronic ischemic heart disease, acute coronary
syndrome and in-stent restenosis after PCI-DES, were contained in this meta-analysis. For
the analysis of the total coronary adverse events, all but one study reported the HR without
using a cut-off point [21]. Details of the individual studies regarding the association of the
angiography-derived FFR with coronary artery events are provided in Table 1. The sample
sizes ranged from 169 to 1805 individuals. Almost all studies examined age, sex and other
cardiovascular risk factors.
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Table 1. Overview of studies on the association of angiography-derived FFR and cardiovascular events.

First Author.
Year
(Ref.)

Sample
Size

Mean
Age ± SD

FU
(Years)

Men
(%)

LAD
(%)

LCX
(%)

RCA
(%) Indication Method Cut-

Off Outcomes Results Adjusted for NOS

Biscaglia
et al., 2019
[24]

602 68 1.8 443
(74.0)

356
(48.0)

184
(24.0)

211
(28.0)

SIHD
NSTE-ACS

QAngio XA 3D (Medis
Medical Imaging
Systems)

≤0.89

VOCE
CV death
TVMI
TVR

Post-PCI QFR was
significantly lower in vessels
with the vessel-oriented
composite endpoint during
follow-up compared with
those without it.

Diabetes, prior MI and
post-PCI diameter stenosis 9

Kogame
et al., 2019
[25]

440 66.6 2 364
(92.3)

352
(45.7)

243
(31.5)

176
(22.8)

SIHD
NSTE-ACS

QAngio XA 3D (Medis
Medical Imaging
Systems)

<0.91

VOCE
CV death
TVMI
TVR

The incidence of 2-year
VOCE in the vessels with
post-PCI QFR <0.91 was
significantly higher
compared with vessels with
post-PCI QFR≥ 0.91.

Creatinine clearance, LAD
stenosis and SYNTAX
score

9

Tang et al.,
2020 [20] 186 63.1 2 140

(75.3)
169
(40.7)

106
(25.5)

140
(33.7) STEMI

QFR system software
(AngioPlus, Pulse
Medical Imaging
Technology)

≤0.91 VOCE

The multivariable model
demonstrated that low
post-PCI QFR was an
independent predictor of
2-year VOCE.

Diabetes mellitus, culprit
lesion, diffuse disease and
peak troponin I during the
first hospitalization

8

Tang et al.,
2021 [22] 177 68.6 1 143

(81.1)
93
(50.3)

37
(20.0)

55
(29.7)

DES-ISR
lesions
treated with
DCB

QFR system software
(AngioPlus, Pulse
Medical Imaging
Technology)

≤0.94

VOCE
CV death
TVMI
TVR

Post-procedural QFR ≤ 0.94
was an independent
predictor of 1-year VOCE.

Diabetes mellitus and
diameter stenosis
(post-procedural in stent)

8

Zhang et al.,
2022 [18] 1805 60.9 2 1268

(70.2)
1078
(48.4)

481
(21.6)

663
(30.0)

SIHD
ACS

QFR system software
(AngioPlus, Pulse
Medical Imaging
Technology)

≤0.92 VOCE
Post-PCI QFR results ≤0.92
were associated with a
higher risk of 2-year VOCE.

No adjustment 9

Dai et al.,
2022 [19] 1395 61.3 2 960

(68.8)
857
(50.9)

369
(21.9)

459
(27.2)

SIHD
ACS

QAngio XA 3D (Medis
Medical Imaging
Systems, Leiden, The
Netherlands)

<0.89 VOCE

Vessels with low post- PCI
QFR demonstrated higher
vessel- oriented composite
outcome risk after stent
implantation.

No adjustment 8

You et al.,
2022 [17] 224 71.1 3 152

(67.9)
177
(79.0)

35
(15.6) 12 (5.4) SIHD

ACS

QFR system software
(AngioPlus, Pulse
Medical Imaging
Technology)

≤0.94 TLF Post-PCI QFR results ≤0.94
was not a predictor of TLF. No adjustment 7

Liu et al.,
2021 [16] 169 62.5 1 128

(75.5)
81
(47.9)

25
(14.8)

63
(37.3)

SIHD
NSTE-ACS
DES-ISR
lesions
treated with
DCB

QAngio XA 7.3 (Medis
Medical Imaging) ≤0.89 VOCE

Post-procedural µQFR ≤ 0.89
was associated with a 6-fold
higher risk of VOCE than
lesions with µQFR > 0.89.

Diabetes mellitus
Difference of DCB
diameter and RVD
(per 0.10-mm increase)

8
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Table 1. Cont.

First Author.
Year
(Ref.)

Sample
Size

Mean
Age ± SD

FU
(Years)

Men
(%)

LAD
(%)

LCX
(%)

RCA
(%) Indication Method Cut-

Off Outcomes Results Adjusted for NOS

Erbay et al.,
2021 [23] 792 68 2 548

(62.9)
691
(34.2)

650
(32.1)

682
(33.7) ACS QAngio XA/3D (Medis) ≤0.89 MACE

Independent predictor of
major adverse
cardiovascular events
after ACS.

Age, sex, medical history,
type of ACS and, LVEF 9

Cai et al.,
2021 [21] 208 63.3 0.75 163

(78.4)
98
(47.1)

32
(15.4)

74
(35.6)

SIHD
DES-ISR
lesions
treated with
DCB

QAngio XA/3D (Medis) ≤0.9 ISR
Independently associated
with recurrent restenosis
after DCB angioplasty.

Vessel caliber, lesion
length and diameter
stenosis at baseline

7

Neleman
et al., 2022
[27]

748 65 5 526
(70.3)

356
(42.8) NR NR SIHD

ACS
CAAS Workstation 8.2
(Pie Medical Imaging) ≤0.93 TVF

Lower post-PCI vFFR values
are associated with
significantly increased risks
of TVF and TVR at 5-year
follow-up.

No adjustment 7

Suzuki et al.,
2019 [26] 45 68.9 1.5–2.5 41

(91) NR NR NR PCI DES QAngio XA/3D (Medis) ≤0.82 TVR Vessel QFR was significantly
lower in TVR group. No adjustment 5

Zhou et al.,
2022 [28] 136 59 0.75 91

(66.9)
90
(56.6)

33
(20.8)

36
(22.6) PCI DES FLASH ANGIO

(Rainmed) <0.90 TVF
Lower post-PCI caFFR was
associated with a higher rate
of 9-month TVF.

Age, gender and diabetes
mellitus 6

ACS: Acute coronary syndrome; DCB: drug-coated balloon; DES: drug-eluding stent; NSTE-ACS: non-ST elevation acute myocardial infarction; ISR: in stent restenosis; SIHD: stable
ischaemic heart disease; STEMI: ST elevation myocardial infarction; TLF: target vessel failure, including target lesion cardiac death (TL-CD), target lesion myocardial infarction
(TL-MI) and clinically driven-target lesion revascularization (CD-TLR); TVF: target vessel failure, defined as a composite of target vessel-related myocardial infarction (MI), target
vessel-related revascularization (TVR) and cardiac death; VOCE: composite of vessel-related cardiovascular death, vessel-related MI and ischemia-driven target vessel revascularization
(TVR); MACE, major adverse cardiovascular event, including all-cause mortality, nonfatal myocardial infarction and ischemia-driven coronary revascularization; NR: not reported;
NOS: Newcastle–Ottawa scale.
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3.3. The Effect of the Post-PCI Angiography-Derived FFR on Total Cardiovascular Events

The magnitude of risk for cardiovascular events in subjects with post-PCI angiography-
derived FFR values below the cut-off provided by each study (12 studies in total, in which
11 studies reported VOCE and 1 study MACE) was significantly higher compared with the
risk of individuals with higher post-PCI angiography-derived FFR values. Patients with
lower angiography-derived FFR values after PCI experienced a four times higher risk of
cardiovascular events during the follow-up period. Specifically, the total RR value was 4.13
(95% CI, 2.92–5.82) (Figure 2A).
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Figure 2. RR and 95% CI for lower angiography-derived FFR values and total cardiovascular (CV)
events ((A) based on cut-off values [16–20,22–28]; (B) per 0.1 increase [19–21]), target vessel revas-
cularization (C) [16,18,22–26], cardiac death (D) [16,18,22–25,28], target vessel myocardial infarction
(E) [16,18,22–25] and target lesion revascularization (F) [16,22,28]. The squares’ sizes show the weight
of each study, and the lines illustrate the 95% CI for individual studies with a lower and upper limit.
The diamonds and their width represent the combined results of the meta-analysis.

In three studies, the post-PCI angiography-derived FFR value was considered a con-
tinuous variable. An increase per 0.1 in the pooled post-PCI angiography-derived FFR
value resulted in a 58% reduction in the risk of cardiovascular events (HR 0.42 [95% CI,
0.25–0.71], per 0.1 increase) (Figure 2B).

3.4. The Effect of the Post-PCI Angiography-Derived FFR on TVR

The magnitude of risk for TVR in individuals with lower post-PCI angiography-
derived FFR values was significantly higher compared with the magnitude of risk for
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individuals with higher values. Specifically, patients with lower post-PCI angiography-
derived FFR values had an approximately seven times greater pooled RR for TVR during
the follow-up period. The RR value was 6.87 (95% CI, 4.93–9.56) (Figure 2C).

3.5. The Effect of the Post-PCI Angiography-Derived FFR on Cardiac Death

Patients with lower post-PCI angiography-derived FFR values experienced higher
levels of risk for cardiac death compared to those with higher post-PCI angiography-derived
FFR values. Specifically, the pooled RR value was 6.17 (95% CI, 3.52–10.80) (Figure 2D).

3.6. The Effect of the Post-PCI Angiography-Derived FFR on Target Vessel MI

The magnitude of risk for target vessel MI in individuals with lower post-PCI
angiography-derived FFR values was significantly higher when compared with the risk
of individuals with higher values. Specifically, the pooled HR for the lower angiography-
derived FFR was 3.98 (95% CI, 2.37–6.66) for target vessel MI (Figure 2E).

3.7. The Effect of the Post-PCI Angiography-Derived FFR on TLR

During the follow-up period, the magnitude of risk for TLR in individuals with lower
post-PCI angiography-derived FFR values was significantly higher compared with the risk
of individuals with higher values. The pooled HR for the lower angiography-derived FFR
was 6.27 (95% CI, 3.08–12.79) for TLR (Figure 2F).

3.8. Publication Bias

The funnel plots demonstrate an almost symmetrical distribution of the included
studies around the average (Figure 3). The imputed HR values based on the trim-and-fill
method were 3.92 (95% CI, 2.79–5.50), 6.01 (95% CI, 4.22–8.56), 6.17 (95% CI, 3.52–10.80)
and 3.80 (95% CI, 2.28–6.31) for total CV events, TVR, cardiac death and target vessel MI,
respectively, which are not lower than our original risk estimates but are still significant.
Regarding the fail-safe N test, the number of missing studies that would need to be
added to the analysis to give a statistically nonsignificant overall effect was 497, 282,
50, and 22, respectively. Importantly, it is less likely that there are >41 (497/12 = 41.4),
>40 (282/7 = 40.3), 7 (50/7 = 7.1) and 6 (33/6 = 5.5) unpublished studies for every 1 study
that we found for total CV events, TVR, cardiac death and target vessel MI, respectively.
These findings indicate that the apparent publication bias is inadequate to influence our
results or interpretations in a meaningful way.

3.9. Meta-Regression Analysis

The duration of follow-up was the strongest predictor of the size of the log HR in
patients with lower post-PCI angiography-derived FFR values, and it was inversely related
to the prognostic role of the post-PCI angiography-derived FFR for total cardiovascular
events (p = 0.001, Figure 4B). Age at the enrollment indicated inverse associations with
the predictive value of the post-PCI angiography-derived FFR value (p = 0.02, Figure 4A).
The cut-off point of the angiography-derived FFR was not a predictor (p = 0.26, Figure 4C),
while the percentage of diabetic patients in each study demonstrated a non-statistically
significant positive trend (p = 0.07, Figure 4D). The percentage of smokers in each study
and the percentage of LAD vessels showed positive associations with the predictive role
of the post-PCI angiography-derived FFR (p = 0.02). The percentage of patients with
acute coronary syndrome illustrated a negative association with the predictive value of the
angiography-derived FFR after PCI (p = 0.03) (Figure 4E–G).
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Figure 3. Publication bias for endpoints and their potential effects. (A) Total CV events; (B) target
vessel revascularization; (C) cardiac death; and (D) target vessel myocardial infarction. The open
circles in the left and right plots depict individual studies relating the lower value of the angiography-
derived FFR with cardiovascular events, and the open diamonds are the HR and 95% CI for the
meta-analysis. The solid circles in the right side of the figure represent imputed studies, and the solid
diamonds are the HR and 95% CI for the meta-analysis after adjusting for publication bias.
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Figure 4. Hazard ratios (HRs) of total cardiovascular events in patients with lower angiography-
derived FFR values as an impact of (A) age (data from 12 studies [16,17,19,20,22–28,36]); (B) the
study’s population follow-up period (data from 12 studies [16,17,19,20,22–28,36]); (C) cut-off value
(data from 12 studies [16,17,19,20,22–28,36]); (D) the percentage of the study population with diabetes
mellitus (data from 12 studies [16,17,19,20,22–28,36]); (E) the percentage of the study population,
who were smokers (data from 11 studies [16,17,19,20,22,24–28,36]); (F) the percentage of patients
presenting with ACS (data from 10 studies [16–25]); and (G) the percentage of LAD vessels (data from
12 studies [16,17,19–25,27,28,36]). Each circle represents one study that shows the actual coordinates
for that study. The weight of each study is proportional to the size of each circle. The center line
shows the values predicted via fixed-effects meta-regression. The vertical axis is on a log scale.

4. Discussion

This systematic review and meta-analysis investigated the relationship of the post-
PCI angiography-derived FFR with cardiovascular adverse events. We pooled data from
thirteen published studies, including approximately 7000 patients who underwent PCI,
and investigated adverse outcomes after a mean follow-up period of more than 2 years.
Our study is the first meta-analysis to show that lower post-PCI angiography-derived
FFR values increase the risk for future cardiovascular adverse events, including TVR,
cardiac death, target vessel MI and TLR. Our main finding is that patients with an im-
paired post-PCI angiography-derived FFR value experienced a four times higher risk of
adverse coronary events during the follow-up period. Also, patients with lower post-PCI
angiography-derived FFR values presented with seven-, six-, four-, and sixfold higher risks
for TVR, cardiac death, target vessel MI and TLR, respectively. According to a sensitivity
analysis of three of the included studies, we found that a 0.1 increase in the post-PCI
angiography-derived FFR was associated with a risk reduction of 58% for future coronary
adverse events. In addition, our study identified that age, clinical presentation and time of
follow-up could influence the predictive ability of the post-PCI angiography-derived FFR.

A recent meta-analysis including studies with both post-PCI invasive FFR/iFR and
post-PCI angiography-derived FFR values showed that impaired post-PCI physiology
assessment values are related to increased adverse cardiac events [38]. Using the same
primary outcome as in our study, the authors reported a twofold increase in adverse
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cardiovascular events in patients with lower post-PCI invasive or angiography-derived
FFR values, whereas our study showed a fourfold higher risk in patients with lower
angiography-derived FFR values. This difference could be attributed firstly to the inclusion
of neutral FFR studies in the meta-analysis by Griffioen et al. [38]. Secondly, in contrast
to Griffioen et al. we included two large QFR studies that reported significantly higher
risks of adverse cardiovascular events in patients with lower post-PCI QFR values [18,19].
Accordingly, a recent meta-analysis of post-PCI invasive FFR studies reported similar
results, supporting the prognostic value of post-PCI physiology [39,40].

The studies used in our meta-analysis included patients with both stable coronary disease
and acute coronary syndromes, as well as different clinical scenarios such as in-stent restenosis
lesions, indicating that lower post-PCI angiography-derived FFR values are predictive of adverse
events in a wide spectrum of coronary artery disease. In most of the included studies, the QFR
was used as the method of FFR estimation via angiography [16–28]. The QFR is a well-studied
index of coronary physiology. In a large, randomized trial, QFR-guided PCI showed improved
clinical outcomes compared to angiography-guided PCI [10,11]. According to the results of our
study, post-PCI guidance using the QFR could offer additional clinical benefits.

The presence of residual ischemia after revascularization can lead to adverse events.
Common reasons for residual ischemia are diffuse stenosis beyond the margins of the stent,
untreated lesions, or marginal-to-stent coronary artery dissection [24,41]. Intracoronary
imaging could be helpful in identifying the underlying pathology. IVUS has shown promis-
ing results in revascularization guidance [42,43] and could be used adjacent to coronary
physiology indices. Another non-invasive modality that has shown good correlations with
the invasive FFR and QFR is fractional flow reserve–computed tomography (FFR-CT),
which combines computational fluid dynamics and the coronary artery tree demonstration
from coronary computed tomographic angiography [44–49]. The prognostic role of the
post-PCI FFR-CT needs further investigation.

Microvascular dysfunction predicts adverse cardiac events independently from the
fractional flow reserve and successful epicardial coronary revascularization [50]. The index
of microcirculatory resistance (IMR) is the gold standard method for coronary microvascular
assessment. Based on recent studies, the post-PCI QFR, in either an acute or elective setting,
has been incorporated into algorithms for assessing microvascular dysfunction. Many
studies have investigated the prognostic role of these angiography-derived indexes of
microvascular dysfunction, such as IMRangio and non-hyperaemic IMRangio, providing
promising results that are comparable to the ones achieved via the actual measurement of
the IMR [51–55]. The additional post-PCI prognostic information that the QFR can offer via
post-PCI IMR estimation provides an advantage to this method.

4.1. Clinical Implications

The post-PCI angiography-derived FFR had better predictive value in patients with
some specific characteristics. These characteristics include a younger age, smoking, presen-
tation with chronic coronary artery disease and coronary artery disease located in the LAD.
Also, the post-PCI angiography-derived FFR mainly predicts short-term coronary adverse
events because adverse events occurring shortly after the procedure are related to residual
stenosis. The cut-off point does not affect its predictive value as long as it ranges from 0.88
to 0.94.

According to previous studies, lower post-PCI QFR values can predict vessel-oriented
composite endpoints during follow-up [24]. A higher post-PCI QFR value in patients
with three-vessel disease who underwent PCI was associated with a lower risk for vessel-
oriented clinical outcomes [25]. Another clinical implication is in patients with in-stent
restenosis after DES implantation. Recent studies described that lower QFR values after
drug-coated balloon angioplasty were related to worse clinical outcomes during follow-
up [16,22]. Patients presenting with acute coronary syndrome may benefit from QFR
measurements immediately after the culprit lesion is stented but also from the assessment
of non-culprit vessels [20,23].
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4.2. Strengths and Limitations

A limitation of this meta-analysis is that all studies apart from one were retrospective
cohort studies. Also, the currently included studies had small population sizes. However,
when combined, the studies provide a substantial sample size for providing conclusive
results. Furthermore, clinically relevant outcomes such as heart failure and emergency
hospitalizations could not be investigated due to a lack of reporting in the available studies.
However, data on revascularization and MI rates imply a higher number of elective and
emergency hospitalizations in patients with low post-PCI angiography-derived FFR values.

5. Conclusions

Post-PCI angiography-derived FFR assessment is a predictor for cardiovascular events
during the follow-up period. When performed in patients with a high risk of recurrent
events, such as diabetics, smokers and patients undergoing PCI in the LAD, it could provide
an effective tool to estimate patient risk in the catheterization laboratory in a wire-free
manner and without any medications to guide both acute (in the catheterization laboratory)
and long-term (secondary prevention) management.
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