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Abstract: No major breakthroughs have entered mainstream clinical fertility practice since egg dona-
tion and intracytoplasmic sperm injection decades ago, and oocyte deficits secondary to advanced
age continue as the main manifestation of diminished ovarian reserve. In the meantime, several
unproven IVF ‘accessories’ have emerged including so-called ovarian rejuvenation which entails
placing fresh autologous platelet-rich plasma (PRP) directly into ovarian tissue. Among cellular
responses attributed to this intervention are reduced oxidative stress, slowed apoptosis and improved
metabolism. Besides having an impact on the existing follicle pool, platelet growth factors might
also facilitate de novo oocyte recruitment by specified gene upregulation targeting uncommitted
ovarian stem cells. Given that disordered activity at the mechanistic target of rapamycin (mTOR) has
been shown to exacerbate or accelerate ovarian aging, PRP-discharged plasma cytokines combined
with mTOR suppression by pulsed/cyclic rapamycin represents a novel fusion technique to enhance
ovarian function. While beneficial effects have already been observed experimentally in oocytes
and embryos with mTOR inhibition alone, this proposal is the first to discuss intraovarian platelet
cytokines followed by low-dose, phased rapamycin. For refractory cases, this investigational, tailored
approach could amplify or sustain ovarian capacity sufficient to permit retrieval of competent oocytes
via distinct but complementary pathways—thus reducing dependency on oocyte donation.
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1. Introduction

Ovarian reserve constrains human fertility potential as female reproductive capacity
deteriorates with increasing age. The primordial follicle pool and its rate of activation are
compromised by chronic low-grade inflammation over time, culminating in eventual loss of
both egg quality and quantity. Once considered nonrenewable, primordial follicles supply
the cells which move gradually into the active (growing) follicle group [1,2]. Auditing this
process has practical relevance, since few fertility clinics will embark on an IVF cycle with-
out estimating ovarian reserve first. The failure to respond to gonadotropins, irrespective
of dose or duration, becomes the final common pathway for any ‘low reserve’ problem.

While choice of IVF stimulation protocols can sometimes be empiric [3], a better un-
derstanding of how phosphatidylinositol 3-kinase (PI3K)/mammalian-mechanistic target
of rapamycin (mTOR) can be driven by specific gonadotropins has been helpful. Some
IVF medications, for example, preferentially boost insulin-like growth factor 1 (IGF-1)
with a view to improving oocyte quality [4,5]. Given that IGF-1, epidermal growth fac-
tor (EGF), platelet derived growth factor (PDGF) and vascular endothelial growth factor

J. Pers. Med. 2023, 13, 1147. https://doi.org/10.3390/jpm13071147 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm13071147
https://doi.org/10.3390/jpm13071147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0001-7334-1031
https://orcid.org/0000-0001-6528-9704
https://orcid.org/0000-0001-5961-0709
https://doi.org/10.3390/jpm13071147
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm13071147?type=check_update&version=1


J. Pers. Med. 2023, 13, 1147 2 of 9

(VEGF) are among the cytokines sourced from activated platelets (PLTs), this led to a hy-
pothesis that reproductive outcome might be shaped by intraovarian platelet-rich plasma
(PRP) [6–8]. Insulin/IGF-1 signaling can also regulate the PI3K/mTOR cascade to advance
follicle stimulating hormone (FSH)-mediated granulosa cell development [9]. In mam-
malian ovarian function, the PI3K/mTOR pathway interacts with other signaling motifs
to calibrate steroidogenesis, granulosa proliferation, corpus luteum survival and oocyte
maturation [10,11]. However, satisfactory IVF stimulations (with or without intraovarian
PRP) can still, unfortunately, yield cycle cancellation or failure, so an alternative therapeutic
option—rapamycin—is explored here for selected, refractory, poor-prognosis IVF patients.
While rapamycin is known for its general anti-aging effects [12–14], what features would
be most salient if this were to be repurposed for an ovarian application, especially if used
in tandem with intraovarian PRP?

2. PRP and Its Cytokine Constituents

Aging in the ovary unfortunately traces a different trajectory compared to somatic
cells, with anti- and pro-longevity genes in oocytes tending to change in opposite directions
over time [15]. Ovarian reserve begins to decline measurably often by about 35 years of
age and despite advancements of oocyte donation and ICSI [16,17], the need to enlarge the
oocyte reservoir remains acute. In this regard, PRP includes components able to upregulate
pluripotency genes (e.g., c-Myc, Klf4, Oct3/4, Sox2) associated with reprogramming somatic
cells for a pluripotent lineage [18]. Here, Oct4 has special relevance for ovarian remodeling,
as human testicular cells express this marker after PRP culture [19], and a parallel response
in ovarian tissue is plausible following intraovarian activated platelet-derived cytokines.

Perhaps most crucially, stem cells near the ovarian surface epithelium [20,21] are well
placed for research and clinical access. These cells display features which permit cellular
transformations into different functional lineages (e.g., epithelium to mesenchyme) [22–24].
Local macrophages assert some role in this, although how this influence occurs is not
known exactly. Xiao et al. recently (2022) reported that inflammation associated with
ovulation in mice drives selective activation of primordial follicles at each estrous cycle [25],
depending on follicular macrophages having either M1 or M2 polarization. Interestingly,
newborn ovaries cocultured with these macrophage subtypes evince stimulatory features
with M1 macrophages but dormancy characteristics with M2 macrophages [25].

This discovery aligned with earlier data which found M2 macrophages more often in
older murine retinal tissue [26]. Importantly, this M1/M2 switching is controlled by the
PI3K/mTOR signaling pathway [25]. PI3K/mTOR also orchestrates complex intracellular
signaling systems, which direct proliferation, cellular quiescence and longevity. With relevance
to ovarian rejuvenation practice, PI3K/mTOR is enhanced or regulated by specific PRP
cytokine components including EGF, fibroblast growth factor 2 (FGF-2) and IGF-1 [27–29].
Such research is consistent with metabolic crosstalk among platelet-derived cytokines and
pluripotency networks, perhaps explaining more fully what has become known as ‘ovarian
rejuvenation’ [30].

3. Rapamycin, mTOR and Reproductive Biology

First described in 1972, rapamycin was isolated from Streptomyces hygroscopicus found
in soil and plant samples collected on Rapa Nui (Easter Island). First developed as an
antifungal and immunosuppressant (see Figure 1), the substance was later found to have
potent anti-tumor properties [31]. Further work on its mechanism of action showed that
rapamycin complexes with the 12 kDa peptidyl-prolyl cis-trans isomerase FK506-binding
protein-12 (FKBP12) to block proliferation and cell growth [32].
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Figure 1. Rapamycin (Sirolimus), a macrolide lactone with potent immunosuppressant, antiprolifer-
ative and antifungal properties, received U.S. FDA approval in 1999. While widely used in organ
transplant surgery, lower-dose applications of this mTOR inhibitor have successfully decelerated
cellular aging to extend lifespan. Any emergent oocyte precursors available after intraovarian PLT
cytokine injection may benefit from reduced mTOR activity, as described here.

In 1991, the protein target of rapamycin (TOR) was discovered in Saccharomyces cerevisiae,
where TOR gene mutations were noted to cause rapamycin resistance [33]. Subsequent
research confirmed mTOR as the allosteric binding site for the rapamycin-FKBP12 complex
in mammalian cells [34] where its organizing role in autophagy and cellular senescence was
later characterized [35]. It is now agreed that mTOR is a serine/threonine protein kinase in
the Class IV PI3K superfamily, which regulates proliferation, growth and cell survival [36].

Integral to many complex signaling networks, mTOR drives adult stem cell prolifer-
ation and dictates the differentiation programs of stem cells [37]. Full deletion of mTOR
is lethal shortly after embryo implantation [38], yet mTOR null blastocysts can have near-
normal early morphology. Nevertheless, trophoblast formation is impaired such that cells
taken from the inner cell mass will not proliferate when cultured in vitro. Hence, proper
mTOR activity is mandatory for normal embryo development past the blastocyst stage [39].
Rapamycin slows proliferative decay via p16 and butyrate-induced p21 [12], and partial
mTOR inhibition enhances maturation of selected populations of human stem cell-derived
cardiomyocytes [40].

The consequences of mTOR overactivation are evident in animal progeria models. For
example, in the Ercc1-/∆ accelerated aging (mouse) model, rapamycin improved muscle-
derived stem cell function via autophagy [41]. Interrupting mTOR signaling by blocking
its downstream target (S6K) resulted in longer lifespan and preserved cell function [42].
Specifically, rapamycin was able to recover differentiation and proliferation, reduce senes-
cence and enhance autophagy in a murine progeria model [43]. Hyperactive mTOR with
aging thus seems to have serious and harmful consequences for somatic stem cells [13],
and mice given rapamycin for the first 45 d of life attain longer lifespans [14]. In human
umbilical vein endothelial cells, rapamycin suppresses migration, reverses TGF-β1 stimu-
lated endothelial-to-mesenchymal transitions and downregulates the mesenchymal marker
SMA-α [44].

In clinical practice, one profound derangement of aging is confronted in Hutchinson–
Gilford syndrome, an ultrarare progeria [45]. In this condition, progerin deposits occur due
to a single point mutation c.1824C→T in exon 11 of the LMNA gene [46]. Abnormal primary
transcript splicing while forming the lamin A mRNA generates progerin as intracellular
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accretion; children with this mutation experience accelerated aging with death often before
15 years of age. In this disease, one promising therapy is to stimulate autophagy for
clearance of toxic progerin by rapamycin [46]. Of note, rapamycin was recently used for
successful treatment of an unrelated cardiomyopathy which involved an LMNA gene
variant and dysregulated mTOR [47].

Altered mitochondrial status is another hallmark of aging, and key quality control
checks have evolved to prevent vertical transmission of any ovarian mtDNA error. Palozzi
and Hurd (2023) recently completed an RNAi screen in Drosophila to find mtDNA integrity
surveilled via mTOR complex 1 (mTORC1), implicating the mitophagy adaptor BNIP3
and RNA-binding protein Atx2 as major elements [48]. This extended earlier research that
showed that BNIP3 mediates inhibition of mTOR in response to hypoxia [49]. Specifically,
Atx2 (C. elegans homolog of human ATXN2L and ATXN2) regulates mTOR and the ‘dietary
restriction’ phenotype [50]. Indeed, local nutrient availability (e.g., folate [51]) is sensed
by mTOR which then coordinates metabolism, growth and autophagy functions. More
recently in early mammalian embryos, the impact of rapamycin on mitochondrial fission
and mitophagy [52] was studied under varied rapamycin concentrations, with significant
improvements noted in blastocyst development, autophagy formation and mitochondrial
activation with rapamycin compared to no treatment [52]. In addition, among >200 im-
mature human oocytes submitted for in vitro maturation then fertilized by ICSI, more
high-quality embryos were obtained with rapamycin culture vs. untreated controls [53],
and histone γH2AX levels (indicating double-strand DNA breaks) in oocytes cultured with
rapamycin were also markedly reduced vs. controls [53]. While one-way (permanent) loss
of growth potential was previously observed as blocked in arrested cells, rapamycin does
not push the arrested cells into proliferation. Instead, rapamycin enables a permissively
reversible aging condition [12].

Notwithstanding its use in organ transplantation, which succeeds best with minimal
inflammation, rapamycin also paradoxically increases some pro-inflammatory cytokine out-
puts (i.e., IL-6, IL-12, IL-23) while lowering production of the anti-inflammatory IL-10 [54].
Such actions would not be welcome if rapamycin were planned for simultaneous use
with conventional intraovarian PRP, which by design places PLT boluses beneath the
surface epithelium [55]. That PLTs exposed to rapamycin undergo functional change is
uncontested—a property exploited in vascular stents coated with rapamycin to prevent
restenosis [56]. Higher-dose rapamycin interferes with aspirin’s ability to block PLT ag-
gregation [57,58] and more research is needed to know its impact on PLT morphology,
membrane phosphatidylserine and thrombin formation [36]. A biphasic disruption in
PLT calcium homeostasis does occur with rapamycin, mediated by slowed activation and
granule release [59]. Thus, if PLT function were disturbed by rapamycin, then pairing it
with conventional PRP would make an odd therapeutic combination.

4. PLT Cytokine Augmentation by Rapamycin?

The puzzle of a treatment plan interlocking ovarian PRP with rapamycin, given the
latter’s interference with PLT features, may at first seem intractable. However, using con-
densed PLT cytokines isolated as a cell-free product would bypass the rapamycin tampering
problem, and this PRP variant has already been used successfully—without rapamycin—for
human ovaries [60]. In other words, if PLT cytokines are separated first and then inserted
into ovarian tissue as a filtered condensate by PLT subtraction, the microclimate affected by
rapamycin would, in aggregate, end up supporting the potential cytokine commitment of
ovarian stem precursors to an oocyte lineage. In this way, rapamycin sustains or possibly
extends the ovarian response as entrained by fresh, autologous PLT cytokines.

Investigating how lowering mTOR action affects ovarian biology is not original here,
as measurements by NYU researchers found that a two- to four-fold dampening of mTOR
activity preserves ovarian function and parity [61]. The current model assumes that limited
local inflammation is not injurious but essential, and, from this perspective, intraovar-
ian PLT growth factors followed by rapamycin would be an adaptation of the latter’s
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recognized role in tissue repair. If introduced at a low dose following ovarian treatment
with condensed PLT cytokines, pulsed rapamycin might provide metabolic gains sim-
ilar to fasting [62] for a nascent follicle pool undergoing induction by platelet-derived
growth factors.

5. Rapamycin—Scheduling and Toxicity Issues

Rapamycin at relatively low dose is more likely to confer a beneficial response with
preferential mTORC1 inhibition, while blunting any undesirable effects on mTORC2 [63].
In the USA, Rapamycin (Sirolimus) is available as 0.5, 1 and 2 mg tablets as well as 1 mg/mL
oral solution; it is classified under FDA Pregnancy category C. An improved immune re-
sponse was reported from one short-term clinical study using the ‘rapalog’ everolimus [64],
but a rapamycin protocol specific to the adult human ovary has not been standardized.
Unlike high-dose rapamycin used for immunosuppression in transplant medicine, which
has received close monitoring, establishing a toxicity threshold for rapamycin use in ovar-
ian (fertility) applications awaits additional study. Poison control records include a failed
suicide attempt where a female age 18 consumed more than 100 tablets of 1 mg rapamycin
each, and high serum cholesterol was the only documented abnormality [65]. In rats, the
LD50 for rapamycin could not be calculated because it exceeded 2500 mg/kg [66].

Inconsistency in rapamycin dosing required for adequate mTOR suppression has also
complicated its therapeutic use. Differing rapamycin sensitivities are likely due to varied
functional characteristics in mTOR complex 1 and 2 (mTORC1 and mTORC2). For example,
mTORC1 is inhibited at low nM levels of rapamycin while mTORC2 suppression usually
requires chronic use at higher concentrations [67]. PI3 K/Akt works with Hippo signaling
to accelerate recruitment of primordial follicles, while mTORC1 suppression suppresses
uncoordinated ‘flash’ discharges resulting in mass follicular activation [9,68]. Platelet-rich
plasma (or its condensed cytokine derivatives) plus rapamycin has not been previously
studied, probably because both treatments are somewhat novel and available research on
each is lacking.

The combined method favored here for ovarian use is a variation on a prior rapamycin
dosing calendar with short, pulsed exposure at low doses [64,69]. Specifically, this means
phased/cyclic monthly rapamycin with the first day’s oral dose at 3 mg, taken one week
after the office PRP procedure. For subsequent days, 1 mg/d is taken for six days and then
no rapamycin for the next three weeks. Next, a 3 mg loading dose is repeated on the first
day of Cycle #2 again with 1 mg/d taken × 6 d. Cycles #3 and #4 follow the same pattern,
so a total of four pulses is completed before planned IVF (see Figure 2).

By comparison, oral rapamycin tablets given for prevention of organ transplant rejec-
tion can entail a larger initial first-day 6 mg loading dose followed by 2 mg/d [70]. Baseline
and follow-up laboratory measurements appropriate for rapamycin use include serum
AMH, complete blood count (w/PLT), C-reactive protein, comprehensive metabolic panel,
serum E2, ferritin and FSH/LH, with a fasting insulin and lipid panel. Additional testing
for specific gene regulators may not be available in all centers.
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Figure 2. Schematic for combined intraovarian condensed PLT growth factors (CF/GF) and oral
cyclic rapamycin (r ×4). Following IRB approval, the study protocol includes enrollment labs (blue
arrow) reviewed within 1 mo of ovarian injection (purple). Weekly oral rapamycin phased one-week-
per-month begins 7 d after ovarian injection, where a 3 mg loading dose is followed 1 g/d for the
next 6 d (inset). Subsequent testing scheduled monthly (a–a”) allows for close monitoring, intended
to improve ovarian reserve sufficient for fertility treatment later (tx).

6. Conclusions

Sponsorship for rapamycin investigation significantly outpaces ovarian PRP research.
At present >1000 rapamycin anti-aging clinical trials are formally registered [71], although
none focus specifically on premature ovarian insufficiency or low reserve. Given that
the total number of registered ovarian PRP clinical trials remains less than ten [72], it is
unsurprising that research joining both topics is lacking. Nearly a decade ago, the failure to
define general dosing guidelines for rapamycin was acknowledged as a major impediment
to its use [73], and consensus on rapamycin use in ovarian biology is likewise absent.

While pulsed or phased oral rapamycin dosing has been discussed in the setting
of wound healing [74], the concept described here has not yet been applied in clinical
IVF practice. Oocyte capacity sets downstream reproductive fidelity through meiosis,
fertilization, nidation and eventual development to term, and other treatments to affect
these have been reviewed for the adult human ovary [75,76]. The experimental nature
of intraovarian PRP [7] and its condensed plasma cytokines [60] notwithstanding, these
interventions alone may still be insufficient for some patients. Given that intraovarian
injection of PLT growth factors can increase serum AMH (indicating expansion of the
follicle/oocyte unit) [7,77] and mTOR inhibition has been suggested to boost ovarian
reserve [78], a bespoke protocol incorporating both might provide a useful synergy.

Author Contributions: E.S.S. developed the protocol and organized initial drafts; E.S.S., C.H., S.H.W.
and S.L.T. reviewed the literature and revised drafts. All authors read and approved the published
version of the manuscript.
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