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Abstract: The severity of diabetic retinopathy (DR) is directly correlated to changes in both the
oxygen utilization rate of retinal tissue as well as the blood oxygen saturation of both arteries and
veins. Therefore, the current stage of DR in a patient can be identified by analyzing the oxygen
content in blood vessels through fundus images. This enables medical professionals to make accurate
and prompt judgments regarding the patient’s condition. However, in order to use this method
to implement supplementary medical treatment, blood vessels under fundus images need to be
determined first, and arteries and veins then need to be differentiated from one another. Therefore,
the entire study was split into three sections. After first removing the background from the fundus
images using image processing, the blood vessels in the images were then separated from the
background. Second, the method of hyperspectral imaging (HSI) was utilized in order to construct
the spectral data. The HSI algorithm was utilized in order to perform analysis and simulations on
the overall reflection spectrum of the retinal image. Thirdly, principal component analysis (PCA)
was performed in order to both simplify the data and acquire the major principal components score
plot for retinopathy in arteries and veins at all stages. In the final step, arteries and veins in the
original fundus images were separated using the principal components score plots for each stage.
As retinopathy progresses, the difference in reflectance between the arteries and veins gradually
decreases. This results in a more difficult differentiation of PCA results in later stages, along with
decreased precision and sensitivity. As a consequence of this, the precision and sensitivity of the HSI
method in DR patients who are in the normal stage and those who are in the proliferative DR (PDR)
stage are the highest and lowest, respectively. On the other hand, the indicator values are comparable
between the background DR (BDR) and pre-proliferative DR (PPDR) stages due to the fact that both
stages exhibit comparable clinical-pathological severity characteristics. The results indicate that the
sensitivity values of arteries are 82.4%, 77.5%, 78.1%, and 72.9% in the normal, BDR, PPDR, and PDR,
while for veins, these values are 88.5%, 85.4%, 81.4%, and 75.1% in the normal, BDR, PPDR, and
PDR, respectively.

Keywords: hyperspectral imaging; fundus imaging; principal component analysis

1. Introduction

All the anatomical structures need to be examined and understood for the prognosis
of all the relevant diseases in the retina [1,2]. Specifically, classifying the retinal vessels
into veins and arteries will act as an important biomarker for various eyesight-related
disorders [3]. Some cardiovascular diseases, diabetes, and various other diseases will
cause variations in the natural diameters of these veins and arteries in the early stages
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of these diseases [4,5]. However, if these diseases are diagnosed in their early stages, the
survival rate of the patients can be drastically increased [6]. During the early stages of
the classification of arteries and veins, traditional image processing techniques were used
along with artificial neural networks (ANN) [7–10]. After the introduction of deep learning,
convolution neural networks (CNN) greatly increased the accuracy of the models [11–13].
However, in recent years, fully convolution neural networks (FCNN) have begun being
employed along with various architectures such as U-net, Res-net, and Fusion-net for
segmentation of arteries and veins in fundus imaging [14–17].

However, one of the optical imaging applications that have not been employed in
fundus imaging is hyperspectral imaging (HSI). In HSI, the data from the image are not
only processed in the three visible colors but in the whole electromagnetic spectrum. HSI
has been previously employed in agriculture [18], astronomy [19], military [20], biosen-
sors [21–23], air pollution detection [24,25], remote sensing [26], dental imaging [27], envi-
ronment monitoring [28], satellite photography [29], cancer detection [30–32], forestry mon-
itoring [33], security [34], food security [35], natural resources surveying [36], vegetation
observation [37], and geological mapping [38]. DR (DR) is one of the major complications
of microvascular injury [39]. In its initial stages, DR is asymptomatic. However, as in
its latter stages, it can cause complete loss of vision. Currently, almost 28 million people
around the world have lost their vision due to DR and by the year 2030, 51 million people
out of the 155 million people affected by DR will lose their vision [40]. One of the major
reasons for the loss of vision is DR in the working ages between 20 and 60 [41]. Therefore,
early diagnosis and medication of DR are necessary to avoid vision loss. DR can be usually
classified into three stages: BDR, PPDR and PDR.

This study proposes a novel technique of using hyperspectral imaging to collect the
database of spectra combined with a Gabor filter for vessel classification; finally, principal
component analysis is carried out to train the model to distinguish between the different
stages of DR. In this study, the images are classified into four different categories based
on the recommendations of the International Council of Ophthalmology (ICO); normal,
background DR (BDR), pre-proliferative DR (PPDR), and proliferative DR (PDR) [42,43].

2. Materials and Methods

In this study, a total of 91 patients with 28 BDR, 28 PPDR, 35 PDR and 35 images with
normal vision (without associated systemic or ophthalmological pathology) were utilized.
Out of the 126 images, 58 images are from male patients (15 in normal, 13 in BDR, 10 in
PPDR and 20 in PDR), while 68 images are from female patients (20 in normal, 15 in BDR,
18 in PPDR and 15 in PDR). The major exclusion criterion was images being blurred or
having noise caused by the light source, leading these to be omitted from the study. The
second exclusion criterion is that the patients who had cataract-related or any other forms
of surgery are excluded. The major inclusion criteria for this study is that patients within
the age range of 20 and 60 years treated with DR are accepted. In this study, all the patients
had type II diabetes, which is relatively more common than type I [44]. In this study, the
longest time a patient had been diagnosed with diabetes was 25 years and the shortest
was 1 year, while the median was 7 years, thereby encompassing different years since the
diagnosis of diabetes. The data from the test set constituted thirty percent of the total data
in the study. The images of the fundus were captured with the help of a Zeiss fundus
camera (Carl Zeiss AG, Jena, Germany). The principle of retinal fundus camera is shown
in Supplementary Materials Figure S1 [45]. Imaging, lighting, and observational systems
are all contained within the fundus camera. The design of the imaging system consisted of
three components: the eye objective lens, the imaging objective lens, and the negative film.
These components were designed in a manner that was distinct from the imaging mode
of conventional cameras. This was carried out to prevent the influence of other factors,
such as reflected light on the cornea. The lighting system comprised two different light
sources, the first of which was used for lighting the fundus while the camera was being
focused, and the second of which was the flash, which was used to increase the brightness
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of the fundus lighting when the picture was being taken. Other methods used to observe
fundus images include fundus fluorescein angiography, and optical coherence tomography
as shown in Supplementary Materials Sections S2 and S3 [46].

The experimental flow diagram for this study can be found in Figure 1. First, the blood
vessels in the fundus images were captured, and then the background was removed from
the image so that the blood vessels could be seen more clearly. After that, spectral data
were constructed with the help of the HSI technique. At the same time, PCA was utilized
to obtain principal components score plots for retinopathy in arteries and veins at all stages.
In the final step, arteries and veins in the original fundus images were separated using the
principal components score plots for each stage.
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Figure 1. Experimental flow diagram.

In this particular study, Matlab (The MathWorks, Inc., Natick, MA, USA) was utilized
for the pre-processing of images, while other parts were performed in Python 3.11, (the
Python Software Foundation, Wilmington, DE, USA), which was utilized for PCA training.
In order to obtain only the required data, it is necessary to process the image first in order
to obtain the distribution diagram of all blood vessels in the retina so as to obtain the
spectral data of the arteries and veins in the fundus image. The entirety of the experimental
procedure can essentially be broken down into three distinct stages. The first component
is the algorithm for processing images of the retina. After the blood vessels in the fundus
image have been preprocessed, the blood vessels of the fundus will be segmented by
removing the background. Following this, HSI technology will be used to obtain the
spectral data in order to analyze and simulate the overall reflection spectrum of the retinal
image. A linear transformation of the reflection spectrum that was obtained in the second
part is then used in the final step of the PCA process, which is used to reduce the original
feature dimension while retaining as much as possible. After obtaining the arterial and
venous principal component score maps of each stage of retinopathy using the differences
in the original features, the arterial and veinous structures in the original fundus image
were differentiated using the principal component score maps of each stage.
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Figure 2 demonstrates that the algorithm can be broken down into these four distinct
steps. In the first step of the process, pre-processing was used to emphasize the blood
vessels, small noise was binarized and removed (as it is in RGB images), and the green
component of the image was extracted for pre-processing. This was carried out because
the green component of the image has obvious contrasting characteristics in comparison to
the other two different components. In the second step of the process, a Gabor Filter was
applied to the image in order to improve the data on blood vessels so that they could be
seen more clearly. The schematic diagram of a two-dimensional Gabor Filter was shown
in Supplementary Materials Section S4 [47]. Gabor filter is a linear filter commonly used
for edge detection. A two-dimensional Gabor filter is a Gaussian function modulated by
sinusoidal plane waves. Given that its representation in the spatial domain and frequency
domain is similar to human biological vision specificity, it can intuitively describe the
structural information, such as the spatial position of images, directional selectivity, and
spatial frequency.
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The mathematical equation of the Gabor filter can be expressed as Equations (1) and (2).
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In particular, g(x, y) is the response value of the image that is processed by the Gabor
filter; f0 is the frequency of the curve; and σx and σy are the standard deviations in the x
and y directions, respectively.

For the edge extraction of fundus images, a series of filter responses can be obtained
from the results of all angles in the range of

[−π
2 , π

2
]

through the Gabor filter. The results
of the coordinate transformation formula at different angles of rotation are shown in
Equations (3) and (4).

x’ = xcosθ + ysinθ (3)
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y’ = −xsinθ + ycosθ (4)

In this equation, (x′, y′) are the corresponding coordinates after the rotation of θ values.
Various filter responses Gθ(x, y) can be obtained using Gabor filters g(x, y) with different
θ values in fundus images. Then, the absolute values of the real and imaginary components
of each angle are added, and the square root is taken, as shown in Equation (5).

sqrt(Gθ
γ

2
+Gθ

i
2
) = Gθ (5)

In the equation, Gθ
γ is the real component response, and Gθ

i is the imaginary component
response. In order to obtain the vascular position more easily, only the maximum response
R(x, y) is retained in each pixel point (x, y), as shown in Equation (6).

R(x,y) = Max(Gθ(x,y)), θ = [−π

2
:

π

180
:
π

2
] (6)

In the third step of the process, an iterative binarization technique was utilized to
locate image thresholds and differentiate vascular regions. In the end, some small white
spots and noise were removed by filtering the image using the equations that were provided
by the program. In this particular investigation, an iterative-based binarization method is
utilized in order to locate the image’s threshold (Supplementary Section S5). Because the
grayscale image ranges from 0 to 255, a threshold needs to be selected that not only isolates
the area containing the blood vessels but also minimizes the influence of the background
and any noise that may be present. If the grayscale distribution of the pixels in the target
area is uniform, and the pixels in the background area are also uniformly distributed in
another grayscale, then the corresponding gray value in the middle of these two peaks are
chosen to be used as the threshold value, and the iterative method is to obtain this result
by repeatedly applying the fixed sigma value. When the image to be processed consists
of a target with a large difference in gray value and the rest of the background, then the
initial threshold value is calculated by averaging the gray value of the entire image to get a
starting point. Secondly, by dividing the image into two groups, the average gray value of
each group can be calculated separately and these can then be averaged to obtain a new
starting point. Finally, the previous steps are repeated in order to continuously generate a
new threshold to obtain the difference between the thresholds that have come before. The
final threshold is obtained when the difference is smaller than a parameter that has been
set in advance. It is unavoidable that there will be some small white spots due to uneven
brightness or poor quality in the image when setting the threshold value in the fourth step.
Because of this, it will be divided into the same area as the blood vessels, which will have
an effect on the identification that is ultimately performed. This will have an effect on the
final result. This function can be used to set the connected objects with a number of pixels
that is lower than the number of many pixels to delete, and the pixel connectivity is present
when the function is first called.

After that, the hyperspectral image processing was carried out in three distinct stages,
as can be seen in Figure 3. In the first step toward obtaining the relationship matrix between
the fundus camera and the spectrometer, the data of the light source spectrum for the
two instruments as well as the data of the reflection spectrum for the light source and
24 color-checker in the visible band (380–780 nm) were collected. This was carried out
so that the relationship matrix could be obtained. In addition to the data, the standard
24-point color checker was used as the subject for measurement, which contributed to
the increased accuracy of the transformation. Second, spectral analysis was carried out,
and PCA was utilized in order to simplify the data. For the purpose of determining the
eigenvalues, the eigenvectors of the first six groups were chosen to serve as the reference
spectrum. After that, the linear regression technique was applied in order to determine the
nature of the connection that exists between the eigenvalues and the fundus images. In the
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end, a transformation matrix was constructed in order to simulate the spectrum of each
pixel value present on the image.J. Pers. Med. 2023, 13, x FOR PEER REVIEW 6 of 13 

 

 
Figure 3. Algorithm flow diagram of the hyperspectral fundus camera. 

PCA is a method that is frequently employed in the field of multivariate statistics. 
Even though multivariate data undoubtedly provides a wealth of information for a 
study, if each indicator is analyzed on its own, much of the useful information that the 
data contains will typically not be fully utilized and will be lost. This will result in incor-
rect conclusions. As a result, the purpose of PCA is to transform high-dimensional data 
into low-dimensional data in order to lessen the amount of computation required while 
maintaining the same level of data accuracy. 

Following the completion of the procedures described in the previous section of the 
experiment, the final step of the experiment was carried out, which consisted of differen-
tiating arteries and veins using the principal components score plots. Following the ap-
plication of PCA to the data in order to lessen the number of dimensions, a principal 
component score plot for the first and second principal components of each stage was 
generated, as is demonstrated in Figure 4. The manually classified images of arteries and 
veins were contrasted with the unclassified data points on the fundus image and the 
principal components’ score plot. The veins were shown in blue, and the arteries were 
shown in red so that the data points could be differentiated. After PCA, the data were 
normalized so that the distribution could fall between zero and one. This was carried out 
in order to make the subsequent differentiation of arteries and veins easier. The distribu-
tion points of arteries and veins could be distinguished from one another once a thresh-
old was established on the x-axis to serve as the distinguishing condition. After that, the 
arteries and veins were differentiated based on the conditions for differentiation, and the 
results were presented on the initial fundus image. It was determined that the portion of 
the picture that was blue represented a vein, while the portion that was red represented 
an artery. 

Figure 3. Algorithm flow diagram of the hyperspectral fundus camera.

PCA is a method that is frequently employed in the field of multivariate statistics.
Even though multivariate data undoubtedly provides a wealth of information for a study, if
each indicator is analyzed on its own, much of the useful information that the data contains
will typically not be fully utilized and will be lost. This will result in incorrect conclusions.
As a result, the purpose of PCA is to transform high-dimensional data into low-dimensional
data in order to lessen the amount of computation required while maintaining the same
level of data accuracy.

Following the completion of the procedures described in the previous section of
the experiment, the final step of the experiment was carried out, which consisted of
differentiating arteries and veins using the principal components score plots. Following
the application of PCA to the data in order to lessen the number of dimensions, a principal
component score plot for the first and second principal components of each stage was
generated, as is demonstrated in Figure 4. The manually classified images of arteries
and veins were contrasted with the unclassified data points on the fundus image and the
principal components’ score plot. The veins were shown in blue, and the arteries were
shown in red so that the data points could be differentiated. After PCA, the data were
normalized so that the distribution could fall between zero and one. This was carried out in
order to make the subsequent differentiation of arteries and veins easier. The distribution
points of arteries and veins could be distinguished from one another once a threshold was
established on the x-axis to serve as the distinguishing condition. After that, the arteries and
veins were differentiated based on the conditions for differentiation, and the results were
presented on the initial fundus image. It was determined that the portion of the picture
that was blue represented a vein, while the portion that was red represented an artery.
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3. Results
Average Reflectance Spectrum

In this study, hyperspectral imaging technology was used to analyze the average
reflection spectrum of arteries and veins in the retina of patients with DR at different stages,
as shown in Figure 5a, based on the degree of lesion (normal, BDR/PPDR, PDR). The
results of this analysis were compared to those of patients without DR at the same stages.
The average reflectance spectrum of retinal veins can be seen in Figure 5b, which depicts
the progression of DR through its various stages. The spectral reflectance intensity of all
stages is relatively lower as a result of the difference in thickness between the arteries and
veins, which causes the veins to appear darker in fundus images. According to the findings
of previous studies, it was observed through other spectral measurement methods that
as DR becomes more severe, the venous oxygen saturation will increase in a manner that
is proportional to the progression of the condition. From what can be seen in Figure 5b,
the difference is most readily apparent during the PDR stage. It is possible to draw the
conclusion that the blood vessel blockage causes a reduction in the amount of oxygen
that is delivered to the retinal tissue, and that this results in an increase in the blood
oxygen concentration of the venous return. As a consequence of this, the overall reflectance
trend will gradually increase as the severity of the lesion increases within the red-light
frequency band.
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veins, respectively.

The principal components score plots of DR at each stage were used as the basis
for distinguishing between arteries and veins, as shown in Figure 6. One of the fundus
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images of the lesions at each stage was selected to illustrate the results of classifying arteries
and veins, as shown in Figure 7. As the severity of the condition worsens, there is a
corresponding decrease in the difference in PCA results between the arteries and veins.
As a result, it is challenging to determine a threshold that can accurately differentiate
between arteries and veins. In addition, when the results of the normal and PDR categories
were compared, it was found that there were significant differences between them. These
varying results were then analyzed based on three parameters: sensitivity, precision, and
F1-scores were utilized in order to evaluate the distinguishment results.
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Sensitivity represents the hit rate of the correct judgment, also known as true positive
rate (TPR), which is defined in Equation (7).

Sensitivity =
The number of pixels judged as arteries/veins correctly

The original number of pixels of arteries
veins in the fundus images

(7)

Precision is also known as positive predictive value (PPV), whose values represent the
proportions where the locations of arteries and veins are judged correctly. The computation
method is shown in Equation (8).

Precision =
The number of pixels judged as arteries and veins correctly

The number of all pixels judged asarteries and veins
(8)

F1-score is a harmonic mean, and the computation method is shown in Equation (9).

F1− score =
2 ∗ Sensitivity ∗ Precision

Sensitivity + Precision
(9)
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The findings of the investigation are presented in Table 1. The level of DR that was
considered normal, BDR, PPDR, and PDR were taken into consideration when selecting the
analysis indicator. In the normal, BDR, PPDR, and PDR conditions, the sensitivity values of
the arteries are, respectively, 82.4%, 77.5%, 78.1%, and 72.9%. The sensitivities of veins are
as follows: 88.5% in the normal range; 85.4% in the BDR range; 81.4% in the PPDR range;
and 75.1% in the PDR range.J. Pers. Med. 2023, 13, x FOR PEER REVIEW 9 of 13 
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Table 1. The analysis indicator results of the distinguishment test for arteries and veins.

Artery Sensitivity (%) Precision (%) F1-Score (%)

NORMAL 82.4 88.4 85.3
BDR 77.5 83.5 80.3

PPDR 78.1 80.7 79.4
PDR 72.9 73.4 73.1

Veins Sensitivity (%) Precision (%) F1-Score (%)

NORMAL 88.5 82.6 85.4
BDR 85.4 81.2 83.2

PPDR 81.4 79.2 80.3
PDR 75.1 74.6 74.8

4. Discussion

In this study, the retinal images are classified into four different categories based
on a novel HSI algorithm into normal, BDR, PPDR, and PDR. The artery and veins had
a precision of more than 80% in the BDR and PDR category, while there was a drop in
a precision to 73.4% in PDR in arteries and to 74.6% in veins. There is a general trend
toward a gradual decrease in the reflection spectrum as the degree of lesions increases.
The development of lesions in the retinal arteries can be attributed to diabetes, which
is the cause of this phenomenon [48]. Long-term hyperglycemia in blood vessels causes
hemoglobin and platelet aggregation to block blood vessels [49]. Additionally, blood vessels
will gradually lose pericytes, basement membranes will gradually thicken, and endothelial
cells will be damaged and proliferated as a result of the condition [50]. As a consequence of
this, the general trend of spectral reflectance will show a significant decrease in the middle
wavelength range (495–570 nm) as the severity of the lesion increases. In addition, it has
been discovered that the reflectance of PDR is significantly higher in the higher wavelength
(620–780 nm). Because the retinal artery remains in an environment with high blood sugar
for an extended period of time, the oxygenated hemoglobin in the blood coagulates, which
lowers its oxygen carrying capacity. On the other hand, the non-oxygenated hemoglobin’s
capacity to absorb light is improved in the red band. Therefore, as the severity of the
disease progresses, there is an increase in both the blood glucose concentration in blood
vessels and the proportion of hypoxic hemoglobin. This results in a decrease in the spectral
reflectance of retinal arteries in PDR patients within the red band. As the severity of the
retinopathy increases, the difference in reflectance between the arteries and veins gradually
decreases. This makes it increasingly difficult to differentiate between the two using the
PCA results in later stages, as both their precision and sensitivity are reduced. As a direct
consequence of this, the precision and sensitivity of HSI algorithm in DR patients who
are still in the normal stage or in the PDR stage are, respectively, the highest and lowest
levels. In the meantime, the indicator values are comparable between the BDR stage and
the PPDR stage because the clinical-pathological severity characteristics of both stages are
comparable to one another. In the same stages, the precision of arteries is typically higher
than that of veins. This is because arteries contain more hypoxic hemoglobin, which gives
them a relatively dark color in fundus images. Veins, on the other hand, contain less of
this type of hemoglobin. These factors are easily influenced by the camera, which also
results in a poor quality of images captured by the fundus. Additionally, some non-ideal
dark areas, which appear in arteries and decrease the value of the hyperspectral algorithm,
are misjudged as vein areas. This occurs because arteries tend to have darker areas than
ideal. Therefore, the precision of the arteries is superior to that of the veins in each of the
four stages of the process. However, due to the relatively higher precision of arteries in
comparison to veins, the number of pixels judged as veins in the area of arteries in fundus
images is greater than the number of pixels judged as arteries in the area of veins in fundus
images. This is because arteries have a relatively higher precision than veins do. Because
of this, the sensitivity of arteries is significantly lower compared to that of veins. The
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number of pictures that were used to train our model is one of the aspects of the study
that can be considered a limitation. A total of only 126 images were used in this research.
The expansion of the dataset in the future is one of the objectives of this study, which will
ultimately result in improvements to the model’s sensitivity and precision.

5. Conclusions

In conclusion, the HSI method can be used to distinguish between arteries and veins in
retinal images, as well as locate the distribution of arteries and veins within the retina itself.
This is possible because of the method’s ability to locate the distribution of arteries and
veins within the retina. This function contributes to the establishment of a database for the
shifts in blood oxygen concentration that take place across the board in DR’s progression
through its various stages. According to the findings, the sensitivity values of arteries are
as follows: 82.4% in the normal condition; 77.5% in the BDR condition; 78.1% in the PPDR
condition; and 72.9% in the PDR condition. On the other hand, the sensitivity values of
veins are as follows: 88.5% in the normal condition; 85.4% in the BDR condition; 81.4% in
the PPDR condition; and 75.1% in the PDR condition.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jpm13060939/s1. Figure S1 is a schematic diagram of the Zeiss fundus
camera. Xe refers to the xenon flash; L1 refers to the concentrator; S1 refers to the light source of
the observation system; L2–7 refers to the optical element of the imaging system; BS refers to the
spectroscope; f refers to the filter; M1–4 refers to the reflector; F refers to the negative film of the
camera; R refers to the aiming target; the dotted line is the input path of the light source, and the solid
line is the observation path; Figure S2.The Schematic Diagram of a Two-dimensional Gabor Filter;
Section S1. The principle of retinal fundus camera; Section S2. Gabor filter; Section S3. Equations
used for evaluating the metrics; Section S4. Principal Component Analysis; Section S5. Binarization.
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