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Abstract: Purpose: to predict vestibular schwannoma (VS) response to radiosurgery by applying
machine learning (ML) algorithms on radiomic features extracted from pre-treatment magnetic
resonance (MR) images. Methods: patients with VS treated with radiosurgery in two Centers from
2004 to 2016 were retrospectively evaluated. Brain T1-weighted contrast-enhanced MR images were
acquired before and at 24 and 36 months after treatment. Clinical and treatment data were collected
contextually. Treatment responses were assessed considering the VS volume variation based on pre-
and post-radiosurgery MR images at both time points. Tumors were semi-automatically segmented
and radiomic features were extracted. Four ML algorithms (Random Forest, Support Vector Machine,
Neural Network, and extreme Gradient Boosting) were trained and tested for treatment response
(i.e., increased or non-increased tumor volume) using nested cross-validation. For training, feature
selection was performed using the Least Absolute Shrinkage and Selection Operator, and the selected
features were used as input to separately build the four ML classification algorithms. To overcome
class imbalance during training, Synthetic Minority Oversampling Technique was used. Finally,
trained models were tested on the corresponding held out set of patients to evaluate balanced
accuracy, sensitivity, and specificity. Results: 108 patients treated with Cyberknife® were retrieved; an
increased tumor volume was observed at 24 months in 12 patients, and at 36 months in another group
of 12 patients. The Neural Network was the best predictive algorithm for response at 24 (balanced
accuracy 73% ± 18%, specificity 85% ± 12%, sensitivity 60% ± 42%) and 36 months (balanced
accuracy 65% ± 12%, specificity 83% ± 9%, sensitivity 47% ± 27%). Conclusions: radiomics may
predict VS response to radiosurgery avoiding long-term follow-up as well as unnecessary treatment.

Keywords: machine learning; radiomic; vestibular schwannoma; Cyberknife; personalized medicine

1. Introduction

Vestibular Schwannoma (VS) is a rare benign primary tumor that develops from
Schwann cells of the eighth cranial nerve and has an incidence of 1.1/100,000 inhabitants,
representing 7% of all intracranial tumors [1]. It is generally a slow-growing tumor, appear-
ing more frequently during the fifth decade and its symptoms are related to the size. The
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first symptoms can be hearing decrease or loss, tinnitus, face numbness, and decreased
balance, while larger VS can cause more disabling symptoms such as facial paralysis or
intracranial hypertension in extremely severe cases [1].

Nowadays, there are no randomized trials to guide the management of patients with
VS, but the current guidelines suggest three different clinical approaches for VS [2]: obser-
vation through follow-up, surgical removal, and stereotactic radiotherapy/radiosurgery
(SRS). The choice of treatment depends on the tumor size and the severity of symptoms
with the primary objective to preserve the patient’s quality of life.

Surgery is usually the treatment of choice for large (more than 3 cm diameter) and
symptomatic lesions. Patients with small tumors are usually monitored through scheduled
magnetic resonance imaging (MRI) investigations. In this way, should the tumor grow or
become symptomatic, it can be treated with surgery or SRS [3,4]. The latter can also be
considered in cases where traditional surgery is not indicated, for example, in patients with
neurofibromatosis, comorbidities, or elderly patients [5]. The use of SRS is increasing and
nowadays is the treatment choice for small- to medium-sized VS, with favorable overall
tumor control rates around 90% at five years depending on series [6,7].

SRS for VS can be performed using different systems and machines, all producing a
high rate of functional sparing of the facial and trigeminal nerves [8,9]. However, complica-
tions of SRS may cause mild side effects (e.g., tinnitus, worsening of hearing or balance) or
severe ones such as trigeminal neuralgia, delayed hearing loss, and facial palsy showing
potential cranial nerves dysfunctions in a few patients [10,11].

Currently, it is not possible to identify patients who do not respond to treatment, and
it is necessary to wait at least two years to assess whether the SRS has been effective or not,
causing diagnostic uncertainty and delays in any further treatments [8,12].

This issue could be addressed and solved by applying artificial intelligence methods
to the MRI images acquired during the pre-treatment phase, especially using Radiomics.

Radiomics is one of the emerging research fields of the greatest interest in the diagnos-
tic imaging world. Machine learning (ML) and deep learning algorithms have been used
to analyze a large amount of data from images and integrated into predictive models to
improve and refine the radiological diagnosis and the clinical management of prognostic
property patients.

In neuro-oncology, radiomics is mainly based on the analysis of conventional MRI.
Several studies have investigated the usefulness of radiomics for classification, molecular
characterization, differentiation of treatment-related changes from tumor progression, and
prediction of local response primarily in patients with gliomas and brain metastases [13–15].

Recent studies evidenced the potential of applying radiomics combined with a Gamma
knife, but, to the best of our knowledge, there are no publications on predicting VS response
to Cyberknife treatment using a radiomic approach [16–19].

Therefore, the purpose of this study is to examine the prognostic properties of radiomic
features extracted in pre-SRS contrast-enhanced T1-weighted MRI to predict VS outcome
at 24 and 36 months after SRS Cyberknife treatment.

2. Materials and Methods
2.1. Patient Cohort

In this retrospective observational multicenter study, we collected a cohort of 108
patients diagnosed with VS who underwent a Cyberknife radiosurgery in single or multiple
sessions at both institutions, CDI Centro Diagnostico Italiano S.p.A. and Fondazione IRCCS
Istituto Neurologico Carlo Besta (Milan, Italy) from 2004 to 2016.

We included all patients with unilateral VS of the eighth cranial nerve with a pre-
treatment T1-weighted contrast-enhanced MRI and follow-up MRI exams performed both
at 24 and 36 months. Patients with an incomplete examination, imaging artefacts, neurofi-
bromatosis, bilateral lesions, and those who underwent previous brain radiotherapy were
excluded. The Ethics Committee of Fondazione IRCCS Istituto Neurologico Carlo Besta
approved this study (Approval date: 3 April 2019) and informed consent was obtained from
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all patients. Data were shared between Centers and managed following the international
guidelines and GDPR regulation [20].

We collected the following baseline clinical data for each patient: age, sex, presence of
symptoms, chronic diseases, 5th or 7th cranial nerve deficit, audiometric data (if present),
and previous surgery. Moreover, tumor-specific aspects (intra- or extra-canalicular extent,
tumor volume and diameters, and tumor laterality) and radiation parameters (total dose,
number of fractions, fractioned dose, isodose, and collimators) were recorded. Audiometric
data were collected to describe the hearing function which was assessed according to
the guidelines of the American Academy of Otolaryngology–Head and Neck Surgery
Foundation (AAO–HNS) [21].

The characteristics of the collected patients are summarized in Table 1. The mean age
was 61 years, and 62/108 (57%) patients were women.

Table 1. Characteristics of 108 patients included in the study.

Variable Value (No. or Mean)

Age, mean (range) 61 years (34–83)

Sex
Female 62

Male 46

Symptoms 77

Chronic diseases 41

5th or 7th cranial nerve deficit 16

Audiometric data

A 1

B 13

C 45

D 20

Previous surgery 19

Intra- or extra-canalicular
disease

Intra 17

Extra 13

Intra and Extra 78

Tumor volume, mean (range) mm3 3108 (154–16,239)

Tumor laterality
Left 52

Right 56

According to the volume outcome and diameters measurement, comparing the pre-
treatment and the follow-up MR images, and considering both follow-up times indepen-
dently, each patient was assigned to one of the following classes: “decreased”, “increased”,
and “stable”. The first class named “decreased” included all patients with any reduction in
lesion size. The second class named “increased” included all patients with an increase in
lesion size, while the third group included all patients with volume stability.

An increased volume was observed for 12 out of 108 patients at 24 months; 7 of those
12 patients had an increased volume also at 36 months, while the other 5 were assigned to
the “stable” class; at 36 months, 5 patients showed an increased volume for the first time,
therefore, a total of 12 patients had increased volume at 36 months.

For each of the two-time points, the classes “decreased” and “stable” have been
merged into a “non-increased” class to train the ML algorithms in identifying patients not
responding to treatment (the “increased” class).
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2.2. Images Acquisition

Brain images were acquired with 1.5T MRI systems at both institutes. The common
MRI protocol included 3D T1-weighted MR images acquired pre- and post-contrast ad-
ministration (Gadovist, Bayer 1.0 mmol/mL; Magnevist, Bayer 0.2 mmol/kg; ProHance,
Bracco 0.1 mmol/kg). The sequence parameters of each scanner are reported in Table 2.

Table 2. Sequence parameters used by the different MR scanners.

Characteristics

Magnetic Resonance System

CDI Centro Diagnostico Italiano IRCCS Istituto Carlo Besta

GE Signa Excite 1.5 T Philips Achieva 1.5 T Philips Achieva 1.5 T

Pulse sequence T1-w 3D ST1w-3D-Iso sense T1 3D TFE mdc

TR [ms] 15.27 25 7.16

TE [ms] 6.93 4.5 3.21

Slice thickness [mm] 1 1 1

Slice spacing 0 0 0

Pixel spacing [mm/mm] 0.97/0.97 1/1 1/1

2.3. Radiosurgical Treatment

Radiosurgery was performed using a Cyberknife system (Accuray, Inc., Sunnyvale, CA,
USA). In our cohort, two treatment schedules were applied: 57 patients (53%) were treated
with a median total dose of 12 Gy in a single fraction (range 12–13 Gy) and 51 patients
(47%) were treated with a median total dose of 18 Gy (range 18–21 Gy) in three fractions
(median 6 Gy/fraction), according to the VS size and patient clinical status. The median
isodose surface was 80% (range 75–86%). Furthermore, 7.4% of patients were treated with
a multi-leaf collimator, while the others with a fixed collimator with sizes going from 5 mm
to 20 mm.

2.4. Segmentation

Semi-automatic segmentation of the tumor was performed by an expert Radiation
Oncologist on the post-contrast T1-weighted image using 3D Slicer image analysis software
(https://www.slicer.org/, accessed on 9 May 2023) [22]. By performing this segmentation
process for each image layer (slice), the lesion volume of interest (VOI) was obtained.

2.5. Image Pre-Processing

We performed multiple steps of image pre-processing, to use the images for the
subsequent radiomic feature extraction. First, all the post-contrast T1-weighted 3D images
were resampled to have isotropic voxels of dimensions of 1 × 1 × 1 mm3. Second, the
T1-weighted 3D images were processed to correct low-frequency intensity non-uniformity
(also known as bias field) using N4BiasFieldCorrection, a tool belonging to the ANTs
package (http://stnava.github.io/ANTs/ accessed on 9 May 2023). Bias fields are due
to inhomogeneity in the magnetic fields of MRI machines. Visually, the image appears
blurred, with less evident edges, and with altered intensity values of image pixels, so that
the same tissue appears with different gray level distributions across the image. Though
low variation does not impact clinical diagnosis, it can degrade the performance of image-
processing algorithms that are based on the spatial invariance of the processed image.
Thus, it is common practice to perform a correction of this bias before proceeding with the
analysis [23]. Third, the brain image was segmented into 3 tissue classes (Gray matter, White
matter, CSF) by the unified segmentation tool integrated into the Statistical Parametric
Mapping v12 tool (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/ accessed on 9 May 2023)
for deskulling [24]. The brain mask was obtained as the union of the three tissue masks and
applied to the corrected T1 volumes to estimate the mean value and standard deviation

https://www.slicer.org/
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of the brain parenchyma. Finally, to standardize voxel intensities across multiple MRI
scanners, images were z-transformed (i.e., the brain mean value was subtracted from each
voxel value, and then this difference was divided by the brain standard deviation) z-score
maps were obtained.

2.6. Features Extraction

Radiomic features of the volume of interest were extracted from z-score maps of T1-
weighted images using the open-source Python package “Pyradiomics” [25]. Gray value
discretization of the maps was performed using fixed bin counts equal to 32. Next, the
following classes of features were extracted: shape (n = 14), first-order (n = 18), gray level
co-occurrence matrix (GLCM, n = 24), gray level dependence matrix (GLDM, n = 14), gray
level run length matrix (GLRLM, n = 16), gray level size zone matrix (GLSZM, n = 16),
and neighboring gray tone difference matrix (NGTDM, n = 5). More details on these
features are available online at the Pyradiomics website (https://pyradiomics.readthedocs.
io/en/latest/features.html accessed on 9 May 2023). All features except those of the shape
class were also extracted from wavelet-transformed z-score maps, based on the 8 possible
combinations of applying either a high or a low pass filter in each of the three dimensions
of the image.

2.7. Feature Selection, Model Development and Test

The whole dataset was split into a development set and a test set according to a
5-fold cross-validation scheme (outer loop), stratifying the folds to have similar outcome
distribution. For each data split, three rounds of analysis were performed: (1) data cleaning,
(2) feature selection, and (3) training four ML algorithms to predict an increase in the
lesion at 24 or at 36 months after radiosurgery. Of note, in the second and the third rounds
of analysis, a further split of the development set was performed according to a 3-fold
cross-validation scheme (inner loop); this procedure is also called nested cross validation.
Details on the three rounds of analysis are reported below.

In the first round, missing clinical data were inputted using bootstrap aggregating
(bagging) regression trees; the trees were trained on the development set and then used to
predict missing data in the test set to avoid any data leakage. No radiomic feature was miss-
ing for any patient. Next, radiomic features acquired from each Centre were standardized
to account for possible differences due to the use of multiple MRI scanners. Standardization
of each radiomic feature was performed in the development set by subtracting the mean
value and dividing by the standard deviation. Then, using the means and the standard
deviations computed from that set, radiomic features were standardized also in the test set.

The second round of analysis was conducted only on the development set and entailed
a feature selection step performed through a logistic regression model with the Least
Absolute Shrinkage and Selection Operator (LR-LASSO). This model allowed the removal
of irrelevant or redundant features before the classifier training. To fit the LR-LASSO model,
the development set was further split into the training and validation sets according to a
3-fold cross-validation scheme (inner loop). For each data split, the two classes (“increased”
or “not increased”) were first balanced in the training set using a synthetic minority over-
sampling technique (SMOTE) [26,27]. This allowed for augmenting the training set with
plausible synthetic examples that were relatively close in feature space to existing examples
from the minority class (“increased”). The LR-LASSO model was then built on the training
set changing the parameter lambda over a set of 100 possible values in the range 0.001–0.300.
Each lambda value led to a different set of selected features; the corresponding fitted LR-
LASSO model was used to predict the class of the patients in the validation set. The lambda
value (and consequently the set of features) that yielded the highest balanced accuracy
(i.e., average between sensitivity and specificity) on the validation set was selected.

In the third round of analysis, the following four ML algorithms were chosen: Random
Forest (RF), Neural Network (NNet), Support Vector Machine (SVM) with radial kernel,
and eXtreme Gradient Boosting (XGBoost). These algorithms were fitted on the features

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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selected at the previous step by LR-LASSO on the development set. Hyperparameter tuning
was performed on another partition of the development set into the training and validation
set, based on a 3-fold cross-validation procedure (inner loop). In a similar way to the second
round of analysis, for each internal split of the development set, a SMOTE procedure was
used to balance the classes on the training set. Next, the 4 algorithms were fitted on the
training set based on different sets of hyperparameters, and the best hyperparameters for
each algorithm were selected based on the highest balanced accuracy that was obtained on
the corresponding validation set. The fine-tuned models were finally evaluated on the test
sets. The final classification metrics (balanced accuracy, sensitivity, and specificity) of the
models were computed as the average (±standard deviation) metrics across the 5 test sets
of the outer loop. Of note, a different set of features was used for each test set, because it
was generated by a different development set. We recorded the frequency in which each
feature appeared across the 5 runs of (external) cross validation to evaluate the features
that contributed the most to the classification. All statistical analyses were performed in R
(version 4.2.1) with the “caret” package.

3. Results

A total of 851 radiomic features were extracted for each of the 108 patients included
in the present study. Increased tumor volumes concerning the pre-treatment evaluation
were observed in a group of 12 patients at 24 months after treatment and in a group of
12 patients (seven already present at 24 months and five with a novel increase) at 36 months,
as described in the “Patient Cohort” section. Figure 1 recapitulates the analysis pipeline
and shows a brief summary of the main results obtained in the present study.
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Figure 1. Analysis pipeline and summary of results. Abbreviations: MR = magnetic resonance;
CV = cross-validation; LR-LASSO = logistic regression with least absolute shrinkage and selection
operator; SMOTE = synthetic minority oversampling technique; SVM = support vector machine with
radial kernel; RF = random forest; NNet = neural network; XGBoost = extreme gradient boosting.
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The top clinical and radiomic features selected more than once to predict the response
at each time point and their frequency over the five runs of (external) cross validation are
reported in Table 3. When analyzing images obtained at 24 months after treatment, the
most selected features were five clinical (age, tumor laterality, total dose, intra-, or extra-
canalicular disease, fifth or seventh cranial nerve deficit) and ten radiomic features (six
texture and four first-order features). As for the 36 months response prediction, age, fifth
or seventh cranial nerve deficit and four of the radiomic features selected at twenty-four
months (“Zone Entropy”, “Energy”, “MCC”, and “Small Area High Gray Level Emphasis”)
were frequently chosen. Moreover, isodose, the shape feature “Flatness”, three textures,
and four first-order features were also selected.

Table 3. Top selected predictive features.

Feature Type

Most Frequently Selected Features for Predicting Response to Treatment:

at 24 Months at 36 Months

Name Frequency Name Frequency

Clinical

Age
Laterality right
Laterality left
Total dose
Deficit 5–7th
Extra-intra canalicular

5
5
4
2
2
2

Isodose
Deficit 5–7th
Age

3
3
2

Radiomic Shape - - Flatness 3

Radiomic
First order

HHL-Median
HHH-Median
LHL-Minimum
LLH-Energy

4
2
2
2

LHL-Skewness
HHL-Maximum
LLH-Energy
HLH-Kurtosis
LLH-90Percentile

4
3
2
2
2

Radiomic
Texture

HHL-GLSZM-
SmallAreaHighGrayLevel-
Emphasis

HLH-GLSZM-
HighGrayLevelZoneEmphasis

HHL-GLSZM-
SmallAreaLowGrayLevel-
Emphasis

HHH-GLSZM-ZoneEntropy

Original-GLCM-MCC

HHL-GLCM-MCC

4

3

2

2

2

2

HHH-GLSZM-ZoneEntropy

HLH-GLRLM-RunEntropy

HHL-GLCM-ClusterShade

HHL-GLRLM-ShortRunHigh-
GrayLevelEmphasis

HHL-GLSZM-SmallAreaHigh-
GrayLevelEmphasis

HHH-GLSZM-SmallArea-
Emphasis

HHH-GLCM-MCC

3

3

3

2

2

2

2

The top selected features for predicting the response to treatment at 24 and 36 months after radiosurgery. The
number of times a feature was selected among the folds of the cross-validation procedure is also reported
(maximum is 5). Radiomic features were extracted from the original processed images and the processed images
after wavelet transformations (8 possible combinations of high [H] and low [L] pass filters along the 3 dimensions).
The description of each radiomic feature is available at https://pyradiomics.readthedocs.io/en/latest/features.
html# accessed on 9 May 2023.

Classification results of the four ML algorithms on the test set are reported in Table 4
for the prediction of the increase in tumor size at 24 months and 36 months. The Neural
Network was the best ML algorithm for predicting the response at 24 months (average test
set balanced accuracy 73%, sensitivity 60%, and specificity 85%) and 36 months (balanced
accuracy 65%, sensitivity 47%, and specificity 83%).

https://pyradiomics.readthedocs.io/en/latest/features.html#
https://pyradiomics.readthedocs.io/en/latest/features.html#
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Table 4. Summary of classification performance.

Time Point Classification Metric
Machine Learning Algorithms

SVM RF NNet XGBoost

24 months

Balanced Accuracy % 56.5 ± 15.9 55.3 ± 14.1 72.6± 17.7 57.4 ± 22.2

Sensitivity % 20.0 ± 27.4 20.0 ± 27.4 60.0 ± 41.8 30.0 ± 44.7

Specificity % 92.9 ± 7.7 90.6 ± 3.2 84.7 ± 12.2 84.7 ± 12.2

36 months

Balanced Accuracy % 52.4 ± 13.2 56.9 ± 17.8 64.9± 11.8 51.7 ± 10.5

Sensitivity % 13.3 ± 18.3 20.0 ± 29.8 46.7 ± 27.4 16.7 ± 23.6

Specificity % 91.5 ± 09.2 93.9 ± 8.7 83.2 ± 9.4 86.7 ± 13.0

Performance of our four ML algorithms on the held-out test set, for predicting the response to treatment at 24 and
36 months after radiosurgery. Numbers are Mean ± Standard Deviation across 5 folds of the outer loop. Numbers
in bold indicate the ML algorithm with the highest balanced accuracy at the two time points. ML = machine
learning; SVM = Support Vector Machine with radial kernel; RF = Random Forest; NNet = Neural Network;
XGBoost = eXtreme Gradient Boosting.

4. Discussion

In this work, quantitative radiomic analysis on pre-treatment MR images and ML
algorithms were combined to predict tumor volume increase at two different time points
(24 and 36 months after SRS) in patients affected by VS treated with Cyberknife. Classifi-
cation results with NNet were satisfactory for the prediction at 24 months (73% balanced
accuracy, with 60% sensitivity and 85% specificity), while they decreased at 36 months (65%
balanced accuracy, with 47% sensitivity and 83% specificity).

To the best of our knowledge, there are no previous studies on predicting VS response
after Cyberknife treatment using a radiomic approach. Therefore, we compared our meth-
ods and results with similar works where patients underwent Gammaknife treatment. The
obtained balanced accuracy of 73% is comparable with the result of Langenhuizen et al. [16]
who obtained an accuracy of 70% in distinguishing patients with volumetric response from
patients without analyzing 85 patients treated for unilateral VS.

The developed methods and results obtained in our work were also compared with
those described by Lee et al. [17] who included 330 patients and distinguished between
responders and non-responders. After using a LASSO followed by an SVM model, they
obtained higher accuracy values (AUC = 0.91) than ours for distinguishing tumor response
from non-response at 24 months after treatment, likely due to the larger number of patients
included in their study.

Our results showed that 72% and 65% of the patients were correctly classified at
the two time points, 24 and 36 months, respectively, with a specificity of 85% and 83%.
However, the corresponding sensitivities were lower (60% and 47%, respectively), probably
due to the small “increased” population which contains only 5% of the dataset.

Given the size of the available dataset and the high imbalanced distribution, particular
attention was given to increase the sample size during training using SMOTE as a minority
class oversampling technique and to develop the algorithms using nested cross-validation,
so that classification results could be reliably estimated, and their generalizability could be
fairly assessed.

As for the most relevant features selected by LASSO, a set of common features were
selected across the five external folds and for the two target points, such as the age at the
time of treatment, the fifth or seventh cranial nerves deficit, and both first order and texture
features. Interestingly, among the radiomic features, the maximal correlation coefficient
(MCC, a GLCM feature), related to the complexity of the texture, and the “Small Area High
Gray Level Emphasis”, which measures the proportion in the image of the joint distribution
of smaller size zones with higher gray-level values (i.e., areas of the tumors that are more
enhanced by the contrast) were selected in most of the combinations.

Traditional Machine Learning models, such as Random Forest and Support Vector
Machine, proved insufficient to model the complexity of the data. The Neural Network,
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having a more complex architecture, demonstrated greater potential in learning how to
discriminate patients with increased tumor volume from the others.

Although the achieved results are promising, further research is needed for several reasons.
One of the main limits of this study is the restricted dataset and the class with increas-

ing tumor volume that represented only 5% of the entire cases. A SMOTE algorithm has
been used to produce synthetic samples from the minority class, estimating both clinical
and radiomic features. The literature also reports promising methods for the synthesis
of MR images [28]. Further research should be performed to assess if such methods can
further improve models’ performance and provide synthetized data with more realistic
radiomic features in terms of distribution and variability.

Furthermore, expanding the training dataset would allow the testing of more complex
architectures, such as end-to-end Deep Learning frameworks. Being very data hungry,
such approaches had to be excluded from the current work, but they could be investigated
to assess if treatment outcomes could be predicted directly from the MR image without
explicit feature extraction.

Another confounder is the retrospective design. The first patients were treated in 2004:
MRI intensities can vary between subjects and protocols have improved over time. Despite
our attempt to minimize the impact of these variations, they may still be present albeit at a
reduced level. It is, therefore, possible that the currently used conventional MRIs exhibit
more detailed radiomic features, leading to improved SRS outcome prediction.

Furthermore, we analyzed only T1-weighted images with contrast enhancement;
Yang et al. [18] achieved an accuracy of 88.4% in the prediction of long-term outcomes after
radiosurgery based on five radiomic features describing, in addition to inhomogeneity
of contrast enhancement, the variation of T2-weighted intensity. Due to the information
contained in T2-weighted images, in a future prospective study, information from other
MRI sequences could be added and analyzed, since they were not included in our treatment
planning protocol.

Moreover, Langenhuizen et al. [16] noted that the most predictive features and the
most reliable results in prediction were obtained in tumors larger than 5 cm3. Since in our
dataset, the volume ranged broadly from 0.15 to 16 cm3, we believe further analysis would
benefit from volume size stratification.

It would also be important from a clinical point of view to increase the number of
patients and collect MRI data at other time points to improve the robustness of the ap-
proach and to evaluate both the possible role of the pseudoprogression and late response to
treatment. Moreover, a delta-radiomic approach (i.e., the evaluation of changes in radiomic
features over time) could also be tested, as conducted by Zhang and colleagues to distin-
guish radiation necrosis from tumor progression in brain metastases after radiosurgery [29].

5. Conclusions

The current work shows the feasibility of a radiomic approach to discriminate patients
with tumor volume increase from patients without after a Cyberknife® treatment on an
individual basis by analyzing routinely collected MRI images. From these results, further
research could be conducted to create a clinical decision support system for physicians and
patients which would facilitate the management of vestibular schwannoma. To this end,
the inclusion of untreated cancer cases in the analysis pipeline can also result in a benefit.
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