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Abstract: Bladder cancer (BC) is characterized by significant histopathologic and molecular hetero-
geneity. The discovery of molecular pathways and knowledge of cellular mechanisms have grown
exponentially and may allow for better disease classification, prognostication, and development of
novel and more efficacious noninvasive detection and surveillance strategies, as well as selection of
therapeutic targets, which can be used in BC, particularly in a neoadjuvant or adjuvant setting. This
article outlines recent advances in the molecular pathology of BC with a better understanding and
deeper focus on the development and deployment of promising biomarkers and therapeutic avenues
that may soon make a transition into the domain of precision medicine and clinical management for
patients with BC.

Keywords: precision medicine; bladder cancer; molecular biomarkers; histologic subtypes/variants;
heterogeneity; targeted therapy; immune checkpoint inhibitors

1. Introduction

Bladder cancer (BC) is the tenth most commonly diagnosed cancer with an age-
standardized incidence rate (per 100,000 person/years) of 9.5 in men and 2.4 in women;
globally, the age-standardized mortality rate (per 100,000 person/years) is 3.3 for men
and 0.86 for women [1–4]. It is a major cause of cancer-related morbidity and mortality.
According to the GLOBOCAN 2020 data, 573,278 new cases and 212,536 deaths of BC
are added each year [5]. It typically affects patients in the fifth to seventh decade with
a fourfold higher incidence among males [5]. BC exhibits significant morphological and
molecular heterogeneity. However, despite its highly characterized molecular signature
and high rate of potentially actionable genomic alterations, there has been limited success
in various promising biomarker therapies [6]. Thus, this highlights the importance of
a detailed and systematic validation of the various promising therapeutic modalities in
precision medicine available for BC. This may soon translate to clinical management, with
efforts to review the ongoing work in this area, address the obstacles in the advancement,
and highlight potential solutions for implementation in clinical practice.

2. Pathological Staging and Histological Grading Systems

BC has been traditionally divided into non-muscle-invasive BC (NMIBC) and muscle-
invasive BC (MIBC). NMIBC includes tumors confined to the mucosa and invading the
lamina propria; classified as noninvasive papillary carcinoma (pTa), carcinoma in situ
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(CIS, pTis),or carcinomas invading the subepithelial connective tissue (pT1). A significant
proportion (75%) of BC patients represent this category, characterized by frequent tumor
recurrence, limited tumor progression, and higher survival rate with a lower cancer-
specific mortality [2,7]. The second category of MIBC represents high-grade tumors, either
locally advanced invading the muscularis propria (pT2), or invading the perivesical soft
tissue (pT3), and extravesical tumors involving the adjacent organs or pelvic wall or
abdominal wall (pT4) or metastatic tumors (pM1) [7]. MIBC typically receives neoadjuvant
chemotherapy (NACT) followed by radical cystectomy, with a need for biomarker-guided
immune checkpoint inhibitors (ICIs), as well as targeted and conjugate therapies in the
locally advanced and metastatic setting.

BC represents a morphologically and genomically heterogeneous disease with a wide
spectrum of subtype histologies and associated molecular alterations. The classical urothe-
lial carcinoma (UC) is the most common type, but a diversity of morphological appearances
can be displayed. The WHO fifth edition reclassified the histologic subtypes of UC as
follows: infiltrating urothelial carcinoma with divergent differentiation; nested, including
large nested; microcystic; micropapillary; lymphoepithelioma-like; plasmacytoid/signet
ring cell/diffuse; sarcomatoid; giant cell; poorly differentiated; lipid-rich; clear cell [8].
Recognizing each subtype is critical as each carries a unique prognostic or therapeutic
implication [9,10]. Recent technological advances have increased our knowledge on the
genomic landscape of UC and have enhanced our understanding of the molecular features
associated with the disease, as well as its subtypes. Molecular analysis of UC and its
subtypes has revealed intratumoral and intertumoral heterogeneity at the genomic and
cellular levels. Subtype histology are extreme examples of tumor heterogeneity, each with
distinct molecular characterization. This heterogeneity ultimately translates to a variable
choice and response to therapy, drug resistance, and relapse rate. As heterogeneity occurs
on multiple levels, addressing these diverse alterations is crucial for clinical drug trials in
order to enable appropriate targeted therapy. The discovery of molecular pathways may
allow for better disease classification, prognostication, and development and deployment
of novel noninvasive detection and surveillance approaches, as well as the selection of
efficacious therapeutic targets.

3. Molecular Pathogenesis

NMIBC and MIBC display two distinct clinicopathologic and molecular phenotypes
with reference to their prognosis and biologic behavior, as well as supporting evidence
for two divergent pathways in their pathogenesis (Figure 1). The former is thought to
originate from a benign hyperplastic urothelium, with only a minor proportion of 10%
cases progressing to high-grade noninvasive and subsequently invasive UC [11]. The
primary genetic alterations, known to consistently be associated with this group of tumors,
include alterations in the receptor-associated tyrosine kinases for FGFR3, HRAS, KDM6A,
KMT2D, and PIK3CA. Chromosome 9 deletion occurs in the early phase of BC tumori-
genesis. FGFR3/HRAS mutations are most frequently noted during the development of
hyperplasia and low-grade (Ta) carcinoma [11–16]. FGFR3 is one of the most common ge-
netic alterations, and FGFR-targeted therapy has become a promising treatment strategy in
BC; FGFR1-4 alterations in UC patients respond well to FGFR inhibitors such as erdafitinib
and rogaratinib, and similar therapeutic results have been achieved targeting the PI3K
pathway [17,18]. Activating mutations in the RAS gene activate the mitogen-activated pro-
tein kinase (MAPK) and PIK3 pathways. Moreover, exclusive activating mutations noted
in upstream FGFR3 and RAS suggested the possibility of a common downstream path-
way in the carcinogenesis of BC [11]. Furthermore, the coinciding occurrence of PIK3CA
and FGFR3 mutations suggests a potential synergetic oncogenic effect for PIK3CA muta-
tions [19]. The most common genetic alterations in MIBC include TP53, KMT2D, KDM6A,
and RB1 [16]. Most MIBC originates from a dysplastic urothelium, evolving into a flat CIS
and finally into a high-grade noninvasive UC (pTa) through the acquisition of CDKN2A
alterations, further progressing to pT1 carcinomas through additional genetic instability
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with TP53/RB1 inactivation and finally to MIBC through the accumulation of multiple
genetic and epigenetic alterations [16,20,21]. The molecular pathogenic pathway for MIBC
chiefly involves alterations in the tumor suppressor genes involved in the regulation of
the cell cycle, e.g., TP53, P16INK4a, and RB1 [16,22–24] (Figure 2). The telomerase reverse
transcriptase (TERT) promoter defect has been recently recognized to be the key driver
mutation in BC, known to affect 60–80% of BC patients [25–28]. TERT mutations have been
detected in a wide range of urothelial pathologies, including benign urothelial prolifer-
ations and tumor-like lesions, benign urothelial neoplasms, premalignant and putative
precursor lesions, urothelial carcinoma and its subtypes across gender, tumor grade, and
stage, and nonurothelial malignancies [25]. The TERT gene is located on the chromosome
5p15.33 (chr5:1,253,147-1,295,069) and encodes a subunit of telomerase with the telomerase
RNA component (TERC) involved in telomere replication. Telomerase is active in gametes
and cancer cells, and it helps in maintaining the length of telomeres by adding telomere
repeat 50-TTAGGG-30 to the end of telomeres. Telomerase is inactivated in somatic cells;
however, TERT promoter mutation and telomerase reactivation allow the somatic cells to
bypass senescence when the telomere is critically short [25,29–31]. Elderly patients with BC
are known to harbor a higher frequency of TERT mutations as compared to those younger
than 50 years [25,32,33]. There are inconsistent reports of the association of TERT promoter
mutations with stage, grade, and prognosis of patients with BC [24–38].
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Figure 2. Genetic alterations in the pathogenic pathways of NMIBC and MIBC.

In a recent multiplatform analysis by The Cancer Genome Atlas (TCGA) bladder cancer
group, using apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC)-
mediated mutagenesis was identified as the principal mutation signature within MIBC [39,40].
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The APOBEC family consists of seven evolutionally conserved deaminases, including
activation-induced cytidine deaminase, APOBEC1, APOBEC2, and APOBEC4. These en-
zymes are responsible for DNA editing caused by the deamination of cytidines (C) to
uridines (U), which are repaired to guanines (G) or thymidines (T) [40–43]. These mu-
tational signatures are prevalent in bladder cancer, as well as cervical, breast, head and
neck, and lung cancers [41,44]. There is evidence of a definite role of APOBEC mutations in
all stages of BC, especially during the tumor progression and evolution from early stage
to MIBC [40,45]. TCGA analysis revealed that APOBEC3A and APOBEC3B signatures
were present in 67% of single-nucleotide variations (SNVs) among the MIBC cohort [40,41].
Although it was shown that patients in TCGA cohort with APOBEC3-enriched tumors
showed an improved survival and better prognosis, clear-cut elucidation of this mutation
as a favorable prognostic marker has not yet been established. Moreover, there is evidence
that APOBEC-induced mutagenesis is enriched in UC treated with chemotherapy [46].
The role of APOBEC3 enzymes in the promotion of treatment resistance in UC remains
to be determined. Another mutational signature detected in approximately 20% of SNVs
was associated with ERCC2 mutations. ERCC2 encodes a DNA helicase, known for its
role in the nucleotide-excision DNA repair pathway. ERCC2 mutations were shown to
be associated with an improved response to cisplatin-based chemotherapy, as well as to
immune checkpoint blockade and radiation therapy, in advanced BC. The lack of normal
ERCC2 function and somatic ERCC2 mutational status correlated with complete response
to cisplatin-based chemosensitivity in MIBC [41,47–51]. The third signature associated with
8% SNVs in TCGA analysis was related to 5-methylcytosine deamination [41].

4. Molecular Taxonomy of Urothelial Carcinoma

BCs are biologically, clinically, and pathologically heterogeneous. Multiple recent
studies have identified a number of molecularly distinct gene expression clusters ex-
plaining their heterogeneity and have focused on improvising a potentially useful model
based on the molecular classification of BC to prognostically stratify these tumors into
relevant categories. This could be potentially useful to correlate and predict response to
chemotherapy and immunotherapy, guide novel therapeutic modalities, and provide a
better framework for clinical management along with enhancement of current scientific
knowledge [39–41,52–66].

Over the past decade, there have been several molecular classification systems in-
dependently identified by various groups (Figure 3). These classifications are based on
RNA and/or immunohistochemistry (IHC) expression characteristics [40,41,56–58,63–67].
There exists a significant overlap among all efforts to amalgamate the terminology and
systems [64]. The most comprehensive working classifications include those proposed
by the Lund University group, TCGA group, MD Anderson Cancer Center Group, and a
simplified four-gene signature-based molecular classification with Nano Stringn Counter
assay proposed by Lopez-Beltran and colleagues [39,40,52,55,56,63,65–67].

The earliest classification developed by the Lund University by Lindgren et al. com-
prised two molecular subgroups of BC: MS1, which included pTa tumors, enriched with
FGFR3 mutations (55% in MS1 vs. 7% in MS2, p < 0.05); MS2, which included high-grade
tumors and those where TP53 mutations were more common [64]. Subsequently, this analy-
sis was expanded by Sjödahl et al., in their study on a larger cohort of tumors, wherein they
described five distinct molecular subtypes: urobasal A type characterized by features of the
normal urothelium such as keratin 5 (KRT5), P-cadherin (P-Cad), cell-cycle activity (CCNB1)
restricted to the tumor–stroma interface, and FGFR3 overexpression in the basal cells with
a relatively favorable prognosis; genomically unstable type of high-grade MIBC showing
proliferation throughout the tumor parenchyma and harboring TP53, E-cadherin (E-Cad),
and ERBB2 overexpression with absence of KRT5, P-Cad, and FGFR3 expression; squa-
mous cell carcinoma-like (SCC-like) type illustrating a squamous cell differentiation and
overexpression of basal keratins with a relatively poorer prognosis; urobasal B type sharing
combined features of all three aforementioned subtypes; infiltrated type characterized by
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infiltration of immune cells with extracellular matrix gene expression. In the following
years, this group continued to modify and refine this classification with the inclusion of two
more types: small-cell/neuroendocrine-like subtype, similar to the genomically unstable
type but with expression of high levels of neuroendocrine (NE) markers such as chromo-
granin, synaptophysin, neuron-specific enolase (NSE), and CD56; mesenchymal-like type
characterized high expression of mesenchymal markers such as vimentin and ZEB2 and
differed from other subtypes by showing low expression of FOXA1, GATA3, KRT5, and
KRT14. A careful analysis of the molecular types and morphological classification revealed
that pTa tumors were mainly of the urobasal A subtype, whereas pT1 tumors were of the
urobasal A and genomically unstable subtypes, and all subtypes accounted for a certain
proportion of MIBC [56,64–67].
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Figure 3. Evolving schemes of molecular classification of urothelial carcinoma of the bladder. Modi-
fied from Lopez-Beltran A, Cimadamore A, Montironi R, Cheng L. Molecular pathology of urothelial
carcinoma. Hum Pathol 2021; 113:67–83 [26].

TCGA 2017 formulated a classification for MIBC into five different categories: luminal,
luminal–infiltrated, luminal–papillary, basal–squamous, and neural. All luminal subtypes
highly express luminal marker genes (KRT20, GATA3, UPK1A, UPK2, FGFR3, PPARG,
FOXA1, and ELF3). The luminal–papillary subtype is characterized by predominant papil-
lary tumor morphology with a lower stage, while the luminal infiltrated subtype expresses
extracellular matrix and smooth muscle genes with lymphocytic infiltrate. These tumors
are also reported to have an increased expression of immune markers such asPD-L1 and
PD-1. The basal–squamous subtype comprises tumors with squamous differentiation and
expresses basal and stem-like markers (CD44, KRT5, KRT6A, and KRT14), squamous differ-
entiation markers such as desmocollins (DSC1–3), desmogleins (DSG1–4), TGM1 (transglu-
taminase 1), and PI3 (elafin), and immune marker genes (CXCL1 and L1CAM). Furthermore,
this group is also enriched in TP53 mutations and shows a female predominance and a
strong immune gene signature expression, along with lymphocytic infiltrate. The neural
subtype is associated with the worst clinical outcome and includes tumors with or without
NE/small-cell histology, but with high expression of genes involved in neural differentia-
tion, along with expression of NE/neural differentiation markers such as chromogranin,
PEG10, PLEKHG4, and TUBB2B. Concurrent mutations in both TP53 and RB1areconsidered
the characteristic genetic alteration in this group of tumors [39,40,57,60–71].

The MD Anderson Cancer Center Group in 2014 devised a three-tier subtyping system
with prognostic implications after analyzing the mRNA of 73 MIBC tumors and labeled
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them as luminal, p53-like, and basal subtypes [16,63]. The basal MIBCs were characterized
by a high expression of squamous differentiation markers such as p63, were more invasive
and aggressive tumors at presentation, and were associated with a dismal prognosis. The
luminal group was enriched with epithelial markers, features of activated PPAR-γ, estrogen
receptor, activating FGFR3 mutations, and potential sensitivity to FGFR blockers, and they
had a relatively good prognosis. The p53-like subtype shared a similar profile to the
luminal subtype, along with a high frequency of TP53 mutation. Furthermore, this group of
tumors was resistant to NACT, and all drug-resistant MIBCs adopted a p53-like phenotype
following chemotherapy, suggesting that the p53 gene may play an important role in
chemotherapy-induced mutagenesis [16,63].

In an attempt to harmonize all the various overlapping classification systems, Zhu et al.
(2020) attempted to establish a relationship and address the interrelating overlay among
the various molecular subtypes [16]. They suggested that the Lund “urobasal A” subtype
can be further classified into the MDA “luminal” subtypes, that the Lund “infiltrated” and
MDA “p53-like” subtypes share common features of enriched extracellular matrix markers,
and that the Lund “SCC-like” subtype and MDA “basal” subtype are both enriched in SCC
differentiation markers.

In a most recent classification by Lopez-Beltran and colleagues (2021), three subtypes of
BC were identified using a Nano String-based four-gene panel expression analysis on a series
of 91 BC cases, both NMIBC and MIBC, with classical and subtype histology [26]: luminal
subtype (KRT20+/GATA3+), basal subtype (KRT5+/KRT14+/GATA3low/−/KRT20low/−), and
null/double negative (non-luminal/non-basal) subtype (KRT14−/KRT5−/GATA3−/KRT20−).
All three categories were meaningful for overall cancer-specific survival. The luminal subtype
was consistent with low aggressiveness and enriched in NMIBC, with the morphology of
conventional UC, low PD-L1 expression, and low bladder cancer-related mortality. Conversely,
the basal subtype was consistent with high aggressiveness, enriched in pT2–4 disease and with
chiefly micropapillary, plasmacytoid, and nested subtypes. This category was also enriched
in high PD-L1 expression, thus creating an opportunity for these patients to be treated with
ICI [26,72,73].

5. Molecular Characterization of Subtype Histology of Urothelial Carcinoma and
Pure Adenocarcinoma
5.1. Plasmacytoid Urothelial Carcinoma

The plasmacytoid UC represents an aggressive subtype of UC, composed of infiltrating
plasma cell-like single discohesive tumor cells, admixed with cells containing intracytoplas-
mic vacuoles, resembling signet ring cells. These tumors have an overall low survival, with
patients typically presenting at an advanced stage, high mortality rate, high propensity for
relapse, and frequent peritoneal carcinomatosis, with some response to chemotherapy. This
subtype shares IHC and molecular alterations with classical UC, such as staining for KRT7,
p63, GATA3, and uroplakins, along with genetic mutations in TP53, RB1, KMT2D, and
ARID1A [39,41,74–78]. However, the development of these tumors is additionally driven
by loss-of-function mutations in CDH1 and promoter hypermethylation of CDH1, which
possibly also contribute to its aggressive nature [39,41,74]. These mutations are considered
the defining feature specific to this histologic subtype of UC [74]. The CDH1 loss further
contributes to the higher rate of cellular migration and peritoneal spread, along with a
higher incidence of local recurrence due to cell discohesion and stromal invasion, thus also
contributing to a higher cancer-specific mortality [74]. Of note, in contrast to the germline
CDH1 mutations seen in diffuse hereditary gastric cancers and a subset of lobular breast
cancer, no germline CDH1 mutations were identified in plasmacytoid UC [74] (Figure 4a).
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5.2. Micropapillary Urothelial Carcinoma

Micropapillary UC represents another rare but aggressive subtype of UC. Many
clinicians advise an early cystectomy in these tumors, even in the absence of invasion
into the muscularis propria layer. Morphologically, this tumor is characterized by small
tight clusters of high-grade tumor cells, lacking a true fibrovascular core, with a reverse
cellular polarization and lack of cohesion between the tumor and stroma [39,41,79–81]. This
tumor is most commonly associated with higher rates of ERBB2 mutations, more commonly
amplifications than mutations [82,83]. Higher rates of ERBB2 amplification are observed in
micropapillary UC as compared to classical UC. This amplification confers worse cancer-
specific survival following radical cystectomy associated with this subtype [41,84,85].
Morphological intratumoral heterogeneity, as well as intratumoral heterogeneity of ERBB2
amplification, is noted in tumors with mixed micropapillary and NOS UC, withERBB2
amplification being more common in micropapillary rather than NOS UC areas; moreover,
therate of ERBB2 amplification was higher in these mixed tumors as compared to pure
NOS UC, not mixed with micropapillary component [40,86–88]. These findings do point
toward a possible role of ERBB2 activation in the development of the aggressive subtype of
UC (Figure 4b).

5.3. Small-Cell/Neuroendocrine Carcinoma of the Bladder

Small-cell carcinoma (SmCC) is a rare subtype of BC, morphologically identical to its
counterpart in the lung. It can occur in its pure form, but is more usually admixed with a
urothelial (invasive or noninvasive), glandular, squamous, or sarcomatous component [10].
SmCC commonly harbors combined alterations in both TP53 and RB1 [71,89]; however,
whether this genomic instability actually favors lineage switching from oncogene-addicted
urothelial cells to NE-like tumor cells, along with a decreased response to targeted therapy,
is still debated. These genetic alterations have also been detected in UC that does not exhibit
features of SmCC or NE differentiation. Furthermore, other alterations have also been
detected in SmCC of the bladder and include TERT promoter mutations and truncating
alterations within chromatin-remodeling genes such as CREBBP, EP300, ARID1A, and
KMT2D, along with APOBEC somatic mutational burden and whole-genome duplication.
All these events are presumed to arise early in the process of oncogenesis and reflect an
evolutionary point toward small-cell lineage differentiation; however, they are unlikely to
be the only transforming event, as there were multiple prior driver mutations, many of
which are common in bladder urothelial cancers [39,41,71]. Moreover, the phenomenon
of NE differentiation as an outcome of trans differentiation post androgen deprivation
therapy, as occurs in NE carcinoma of the prostate, is not observed in SmCC of the bladder;
NE differentiation in the bladder seems to develop de novo [39,41,90–92]. More studies are
awaited to explain the association of SmCC with the neuronal/NE molecular subtype of
BC, as defined by TCGA and Lund group classifications (Figure 4c).

5.4. Sarcomatoid Urothelial Carcinoma

Sarcomatoid carcinoma is another extremely rare aggressive tumor subtype com-
prising about 0.3% of all primary urinary bladder tumors; it carries an overall dismal
prognosis [10,41,93,94]. The presence of a mesenchymal component in UC is designated as
sarcomatoid UC. This subtype can also exist with other subtype histologies such as glandu-
lar, squamous and/or small-cell, or NE differentiation [10,41]. The most common morphol-
ogy is that of a spindle-cell proliferation; others include myxoid, pseudo-angiosarcomatous,
and undifferentiated pleomorphic sarcoma-like morphology, as well as true heterologous
elements such as chondrosarcoma, osteosarcoma, fibrosarcoma, leiomyosarcoma, and
rhabdomyosarcoma [41,94,95]. A monoclonal cell origin has been suggested for both sarco-
matous and urothelial components within the same tumor due to significant overlap in
the molecular events, such as loss of heterozygosity. The clonal divergence might occur
during tumor progression and differentiation [41,96]. At a molecular level, this tumor



J. Pers. Med. 2023, 13, 756 9 of 31

type is enriched with mutations in TP53, RB1, and PIK3CA, and is associated with the
dysregulation of the epithelial–mesenchymal transition pathway [41,96,97] (Figure 4d).

5.5. Urothelial Carcinoma with Divergent Differentiation

The most common divergent histologies in UC are squamous and/or glandular differ-
entiation [8,41]. Squamous differentiation represents the more common subtype (Figure 4e).
Expression profile analysis of such tumors with divergent differentiation revealed urothelial
areas as the luminal subtype and squamous areas as the basal/squamous subtype [41,98,99].
Although the association of squamous differentiation with human papilloma virus infection
has been investigated, very little genomic information exists [10,41,99]. The presence of a
glandular component in UC is less common than squamous differentiation [41,100]. The
glandular component in UC closely resembles enteric or colonic adenocarcinoma. Molec-
ular analysis of the glandular component revealed an increased prevalence of hotspot
mutations in the TERT promoter region, which was not seen in other glandular lesions of
the bladder, including primary adenocarcinoma of the bladder [41,101] (Figure 4f).

5.6. Nested Urothelial Carcinoma

Nested UC represents a rare, morphologically deceptively bland tumor, associated
with an aggressive clinical course [41,102]. These tumors exhibit small, closely packed,
poorly defined, and haphazardly arranged, confluent irregular nests of bland-appearing
tumor cells without cytologic atypia, infiltrating the lamina propria and the muscularis
propria with an associated stromal reaction [41,102]. A high rate of TERT promoter mutation
is the only molecular finding detected in this subtype of UC to date [41,103] (Figure 4g).

5.7. Adenocarcinoma

This group represents tumors characterized by a pure glandular morphology, and it
also includes the entity urachal adenocarcinoma [41,104]. Morphologically, these tumors
resemble colorectal adenocarcinomas. At a molecular level, these tumors are genetically
distinct from UC and lack mutations in the TERT promoter region, as well as in chromatin-
modifying genes involved in UC carcinogenesis. They are enriched in mutations in TP53,
KRAS, and SMAD4,along with EGFR and ERBB2 amplifications, thus resembling a subset
of colorectal adenocarcinomas [41,105–107] (Figure 5).
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6. Molecular Heterogeneity and Systemic Targeted Therapy

Tumor heterogeneity can foster tumor evolution, as well as tumor adaptation. This
usually presents major challenges and can hinder personalized medicine strategies, as
well as biomarker development, which depend on results from single tumor-biopsy sam-
ples [41,108,109]. An increased relapse rate has often been associated with intratumoral
heterogeneity and the presence of natively resistant stem-cell populations [41,110,111].
Thus, molecular classification of MIBC and NMIBC, along with a detailed genetic analysis
of the subtypes of UC, provides an opportunity for personalized medicine, biomarker devel-
opment such as FGFR3 inhibitors, and targeted therapy. The future lies in the advancement
of investigational promising biomarkers and innovative trial designs, all ultimately relying
on molecular subclassification. Moreover, a prognostic stratification of the various subtypes
into well-defined groups remains a priority.

6.1. Neoadjuvant Chemotherapy (NACT) and Chemoradiotherapy

Molecular subtyping may have a therapeutic benefit, as it is the complexity at the
cellular level that would have the maximum impact on the choice of therapeutic agent.
Systemic cisplatin-based chemotherapy (CT), as well as cisplatin-based NACT, is the most
effective treatment in advanced UC, and immunotherapy is emerging as the most viable
and effective salvage treatment option in patients of UC in cases of failure of first-line CT.
Major advancements in the past decade have shed light on the various genetic classes and
subtypes of UC, which might vary in response to various therapeutic modalities [41,112].
Determining the response of each tumor subtype to NACT and/or immunotherapy will be
critical in deciding the most efficacious targeted therapy. Genomics can also help identify
patients who are more likely to have an aggressive disease phenotype with an extravesical
spread; thus, identifying these patients may provide a maximum therapeutic benefit in the
administration of NACT prior to surgery [113]. Furthermore, the basal subtype molecular
group of BC may show maximum benefit and improved overall survival following NACT
compared with surgery alone, while the luminal subtype molecular group may have the
best overall survival and lowest rate of upstaging as compared to other tumors with or
without administration of systemic therapy [113,114].

6.2. Targeted Therapy

The main gene drivers in MIBCs are FGFR3, RAS, PPARG, and TERT promoter muta-
tions, predominantly found in the luminal subtype of bladder tumors [40]. The response to
therapies targeting FGFR3 mutations depends on intratumoral heterogeneity. Targeting
PPARG in UC cell lines showed that inverse agonism of PPARG reduced proliferation
rates of PPARG-mutant cells but not PPARG wildtype cells, thus pointing toward another
strategy inwhich patients with luminal tumors might gain additional benefit from targeted
therapy following chemotherapy [115].

6.3. Immunotherapy

Response to immunotherapy is dependent upon the intra- and peritumoral T-cell infil-
tration in response to neoantigen expression on tumor cells. Mutation load is an important
biomarker to assess response to immunotherapy in patients of advanced UC [116].

6.4. Clinical Trial Considerations

With the expansion of our understanding about the molecular heterogeneity among
the subtypes of UC, biomarkers are more likely to have a promising role in future clinical
trials. The reliability of both prognostic and predictive biomarkers in the setting of tumor
heterogeneity is being currently investigated. Therapeutic and clinical management deci-
sions are made depending on the presence or absence of a particular biomarker, and the
accuracy of the biomarker in predicting therapeutic response is significantly dependent on
tumor heterogeneity.
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7. Precision Medicine in Bladder Cancer
7.1. Biomarker

A biomarker is a measured substance or variable whose presence is indicative of or
a surrogate for a disease outcome. The potential roles of a biomarker in MIBC include
(1) identifying high-risk patients, e.g., patients planned for radical cystectomy ± neo
adjuvant therapy, (2) predicting resistance to chemotherapy/immunotherapy, and (3) iden-
tifying pathways involved in targeted therapy. A biomarker may be prognostic (in that it
provides information about the patient’s overall cancer outcome, regardless of the therapy),
predictive (in that it provides information about the effect of a therapeutic intervention and,
hence, can be a target), or both. An ideal biomarker is one which is reproducible, accurate,
validated in multiple datasets, and most importantly, easy to use.

7.2. Biomarkers for Advanced Urothelial Cancers
7.2.1. Biomarkers for Response to Chemotherapy (Table 1)

Cisplatin-based chemotherapy (MVAC: methotrexate, vinblastine, doxorubicin, and
cisplatin; GC: gemcitabine, cisplatin/carboplatin) is the treatment of choice in patients
with metastatic UC of the bladder. The overall response rates (ORRs) range from 60% to
70%, overall survival (OS) ranges from 14 to 15 months, and 5year OS ranges from 13%
to 15% [117]. In patients who relapse after platinum-based chemotherapy, ORRs range
from 5% to 29% with a median OS of 6.9 months (based on clinical trials of second-line
chemotherapy with paclitaxel and vinflunine) [118]. In the neoadjuvant and adjuvant
settings in UC, similar regimens are used to those in the metastatic setting. Most data on
chemotherapy biomarkers are available for MIBC, since a pathological complete response
(pCR) to platinum-based chemotherapy is prognostic in this setting.

Table 1. Biomarkers for response to chemotherapy.

Molecular Target Study [Ref.] Results Comments

DDR Genes

NER pathway
ERCC1 expression levels Bellmunt et al. [119]

Reduced levels of ERCC 1 mRNA
expression were associated with
improved survival to
cisplatin-based chemotherapy
in mUC.

DDR genes are not validated
biomarkers for response to
chemotherapy (not routinely used
in clinical practice). Clinical trials
are evaluating the role of PARP
inhibitors in DDR gene mutated
UC [126].

Urun et al. [120]

ERCC1 positivity was associated
with poor survival in mUC
treated with cisplatin-based
chemotherapy.

ERCC2 mutations Van Allen et al. [50],
Liu et al. [121]

ERCC2 mutations were associated
with pCR and improved OS to
neoadjuvant cisplatin-based
chemotherapy in MIBC.

Kim et al. [122]

ERCC2-associated mutation
signature single-base substitution
5 (SBS5) was associated with
improved responses in mUC.

HRR pathway
BRCA mutations Taber et al. [123]

BRCA2 mutations were associated
with SBS5 signature and
responses to platinum-based
chemotherapy in MIBC

RAD51 mutations

Mullane et al. [124]

High nuclear staining for
RAD51was associated with poor
outcome (worse OS) for mUC
patients treated with
cisplatin-based chemotherapy.
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Table 1. Cont.

Molecular Target Study [Ref.] Results Comments

Other DDR genes
ATM/RB1/FANCC mutations Plimack et al. [125]

ATM/RB1/FANCC mutations were
associated with improved
pathologic responses and survival
in MIBC treated with neoadjuvant
platinum-based chemotherapy.

HER2/ERBB2 alterations

Groenendijk et al. [127]

HER2 missense mutations (not
amplifications) were associated
with response to neoadjuvant
chemotherapy with platinum
in MIBC.

Molecular subtypes of bladder cancer Kamoun et al. [128]
None of the subtypes were found
to be associated with neoadjuvant
chemotherapy response.

Choi et al. [63] The p53-like subtype was
chemo resistant.

McConkey et al. [129]

The basal subtype was associated
with the most optimal OS in the
trial of neoadjuvant
chemotherapy MVAC
with bevacizumab.

Taber et al. [123]
The basal/squamous consensus
subtype was associated with
reduced neoadjuvant
chemotherapy response.

7.2.2. Cisplatin Eligibility

Cisplatin ineligibility is defined as an Eastern Cooperative Oncology Group perfor-
mance status > 2, neuropathy/hearing loss grade ≥ 2, creatinine clearance < 60 mL/min,
and New York Heart Association heart failure grade ≥ 3 [130,131]. Treatment with cisplatin
may be prognostic in metastatic UC (mUC). Patients eligible for cisplatin and treated with
cisplatin-based chemotherapy had an improved OS as compared to eligible patients not
treated with cisplatin [132]. Thus, treatment with cisplatin in eligible patients (cisplatin
utilization) rather than cisplatin eligibility may be a clinical biomarker for improved OS
and is of paramount importance, as, even in eligible patients, around one in four is not
exposed to this chemotherapy. Cisplatin-ineligible patients treated with carboplatin have a
better outcome as compared to non-platinum-based chemotherapy. Lastly, the receipt of
any chemotherapy leads to improved survival in comparison to no receipt of chemother-
apy [132]. These data are primarily based on retrospective analysis and, hence, should be
interpreted with caution.

7.2.3. DNA Damage Repair Genes (DDR Genes)

Platinum-based chemotherapy leads to DNA damage through the formation of adducts
and ultimately apoptosis. In a normal cell, in response to DNA damage, the DDR pathway
is activated to repair the damage. This pathway comprises the nucleotide excision repair
(NER) for single-stranded DNA damage, the homologous recombination repair (HRR) for
double stranded DNA damage, and the Fanconi anemia pathway. Most importantly, muta-
tions in the DDR genes lead to increased susceptibility of cancer cells to platinum-based
therapy [133].

7.2.4. NER Pathway

The excision repair cross-complementation group 1 (ERCC1) protein heterodimerizes
with ERCC4 to form an endonuclease complex. This participates in the excision of the dam-
aged DNA. Lower ERCC1 levels (mRNA expression or IHC) are correlated with cisplatin
sensitivity in MIBC and mUC, with improved outcomes in these patients [119]. Conversely,
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ERCC1 overexpression is associated with worse OS in mUC [120]. ERCC 2 mutations are
associated with pCR and improved OS to neoadjuvant cisplatin-based chemotherapy in
MIBC [50,121]. ERCC2-associated mutation signature single-base substitution 5 (SBS5) is
associated with improved responses in mUC [122]. In another study on neoadjuvant GC
chemotherapy in MIBC, alterations within a panel of 29 DDR genes were correlated with
chemotherapy response. Deleterious DDR gene alterations include nonsense, frameshift,
and splice site alterations orERCC2missense mutations. The positive predictive value of a
somatic deleterious DDR gene alteration for response was 89%, and the 2 year relapse-free
survival was higher in patients whose tumors had a deleterious DDR gene alteration [134].

7.2.5. HRR Pathway

HRR is a DNA repair mechanism, involved in the repair of double-stranded breaks and
interstrand crosslinks. The undamaged homologous chromosome serves as a template for
the repair of the damaged strand. BRCA1 and BRCA2 are prototypes for HRR genes, known
for their roles as cancer predisposition genes and as predictive biomarkers for sensitivity to
poly ADP-ribose polymerase (PARP) inhibitors and platinum-based chemotherapy [135].
Somatic BRCA1/2 alterations were present in 19% of MIBC samples in TCGA, and germline
BRCA1/2 variants were observed in 2–4% of UC patients [40,136,137]. In a recent multi-
omics analysis of 300 patients with MIBC or mUC, BRCA2 mutations were associated with
the SBS5 mutation signature and with chemotherapy response [135].

7.2.6. ATM Serine/Threonine Kinase, Retinoblastoma Transcriptional Corepressor 1, or FA
Complementation Group C (ATM/RB1/FANCC) Mutations

While ATM and RB1 are cell-cycle regulators in response to DNA damage, FANCC is
critical in interstrand crosslink repair [135]. Among other DDR genes, ATM/RB1 mutations
are considered as biomarkers of poor prognosis in unselected UC patients and may correlate
with higher mutational load. ATM/RB1/FANCC mutations are associated with p < T2
response to NAC and improved OS in MIBC [125,138]. An association was also observed
between high mutation burden and deleterious DDR genes. However, DDR alterations
have no prognostic impact in the absence of NAC [127].

7.2.7. Other Alterations

ERBB2 (erb-b2 receptor tyrosine kinase 2) missense mutations were associated with
response to platinum-based neoadjuvant therapy in MIBC [50,127]. Some other studies
found no benefit of HER2 alterations and response to chemotherapy [125]. Therefore,
further analysis is required to determine the above association.

7.2.8. Molecular Classifications

A gene expression profile (GEP) for a tumor is derived from the extraction and quantifi-
cation of tumor RNA. GEP may open up avenues for response assessment for antitumoral
therapy at the molecular level. On the basis of similarities in the GEP, clustering algorithms
may be used to group tumors into molecular subtypes [135]. Accordingly, six consensus
molecular subtypes for MIBC have been suggested: basal/squamous, luminal papillary,
luminal unstable, luminal non specified, stroma-rich, and neuroendocrine-like; accord-
ing to their similarity to basal and luminal breast cancer subtypes [40]. The utility of
molecular subtypes as predictive biomarkers of chemotherapy response is unclear, and
studies have produced conflicting results. The p53-like subtype included under the stroma-
rich consensus subtype has been reported as chemoresistant in UC.The basal/squamous
consensus subtype has been suggested to be chemoresistant in others. The basal-type
tumors were shown to be the most chemosensitive in some studies [63,129]. Lastly, none
of the consensus subtypes were found to associate with NAC response in the study by
Kamoun et al. [128]. Co-expression extrapolation (COXEN) is a gene expression-based
predictive biomarker analysis that identifies gene expression signatures in cancer cell lines
associated with in vitro chemotherapy sensitivity and extrapolates those signatures to
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predict chemosensitivity in vivo. This model has not been shown to predict response to
platinum-based chemotherapy in UC [139,140].

7.3. Biomarkers for Response to Immunotherapy in UC (Table 2)

In the front-line setting, ICI monotherapy has demonstrated activity in cisplatin-
ineligible patients [50,130]. The choice between ICIs and carboplatin chemotherapy in this
setting is not straightforward. For patients who are platinum-ineligible, ICI monother-
apy is a reasonable option. However, for those who are eligible for carboplatin-based
chemotherapy, a maintenance ICI approach (per JAVELIN Bladder 100) may be favored
over upfront ICI monotherapy, given its proven OS benefit, as described below [141]. PD-L1
expression is used as a biomarker among cisplatin-ineligible patients to choose between
ICI monotherapy and carboplatin-based chemotherapy. For patients with PD-L1low tu-
mors, upfront ICI monotherapy may be deleterious according to data on early mortality
in the IMvigor130 and KEYNOTE-361 trials [142,143]. Cisplatin-ineligible patients with
PD-L1-positive tumors may be considered for upfront ICI or chemotherapy followed by
maintenance ICI; these options have not been directly compared in clinical trials. Currently,
the strongest evidence for ICI benefit in mUC is in the post-platinum-based chemother-
apy setting. Two randomized trials—KEYNOTE-045 and JAVELIN Bladder 100—have
demonstrated OS benefits for single-agent ICIs as either second-line or maintenance ther-
apy after platinum chemotherapy [141,144]. Both trials met their primary endpoint of
OS in biomarker-unselected, all-comer population. Notably, the use of ICI at progression
was permitted in the control arm of JAVELIN Bladder 100, and around one-third of the
patients received it [145]. On the basis of these data, a strategy using maintenance ICI is
preferred after platinum-based chemotherapy rather than ICI at progression. This is also
the preferred approach per National Comprehensive Cancer Network (NCCN) guidelines,
although there exists a risk of over-treatment in some patients.

Table 2. Biomarkers for response to immunotherapy.

Biomarker Study [Ref.] Results Comments

PD-L1

IMvigor 130 [142];
Keynote 361 [143]

Rui et al. [146],
Litchfield et al. [147]

Cisplatin-ineligible mUC with
PD-L1lowdid not benefit from ICI
monotherapy as compared
to chemotherapy.

Cisplatin-ineligible patients with
PD-L1-positive tumors benefited
from ICI monotherapy.

Meta-analyses of prospective trials
showed that, overall, PD-L1
expression was associated with
radiographic response to ICIs in
mUC patients.

PD-L1 is a biomarker in
cisplatin-ineligible patients to guide
the choice of upfront ICI
monotherapy vs.
carboplatin chemotherapy.
In this population, therapeutic
choices are carboplatin-based
chemotherapy followed by
maintenance immunotherapy.

In this population, options are
upfront ICI or chemotherapy
followed by maintenance ICI; these
options have not been directly
compared in clinical trials.

PD-L1 expression is the only ICI
biomarker that has been
incorporated into mUC regulatory
approvals and treatment guidelines.

PD-L1 as a biomarker is dynamic in
both space and time.
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Table 2. Cont.

Biomarker Study [Ref.] Results Comments

Tumor mutational burden

Galsky et al. [148]

Litchfield et al. [147]

Exploratory analyses of prospective
trials in mUC suggested that the
combination of TMB and PD-L1
could more effectively distinguish
ICI responders and non-responders
than either biomarker alone.

Clonal TMB and the APOBEC
signature were among the most
important features associated with
response in a multivariable model
predicting ICI response in
bladder cancer.

Challenges in implementing TMB as
a biomarker include selecting an
optimal cutoff and
harmonizing assays.

Somatic alterations

TRAF2

CCND1 amplification

DDR genes

Litchfield et al. [147]

Litchfield et al. [147]

Mariathasan et al. [149],
Powles et al. [150]

Loss of TRAF2 was associated with
ICI response.

CCND1 amplification was
associated with ICI resistance.

Mutations in DDR pathway genes
were associated with improved
outcomes in exploratory analyses of
both the IMvigor210 and JAVELIN
Bladder 100 trials.

DDR genes alone are probably not
predictive of response to ICI.The
combination of DDR gene mutation
and TMB is likely to be predictive.

Gene expression

TGFβ response signature
(F-TBRS)

Mariathasan et al. [149]

Galsky et al. [151]

In IMvigor210, both a TGFβ ligand
(TGFB1) and a TGFβ receptor
(TGFBR2) were associated with
nonresponse and reduced OS to ICI.

F-TBRS was associated with
response in
immune-excluded tumors.

A higher F-TBRS signature was also
associated with worse OS with
atezolizumab in the
IMvigor130 trial.

7.3.1. PD-L1

PD-L1 is expressed in 20–30% mUC patients [135,152,153]. In BC, it is both a prog-
nostic (increased expression PD-L1 by 20–30% correlates with advanced stage and worse
outcomes) and a predictive marker for response to anti-PD-1 and anti-PD-L1 therapy [154].
Meta-analyses of prospective trials showed that, overall, PD-L1 expression is associated
with radiographic response to ICIs in mUC patients [146,147]. At the same time, benefits
from ICIs occur, regardless of PD-L1 expression. However, even among PD-L1-positive
patients, single-agent ICI response rates are low and variable across randomized trials,
ranging from 20% to 40% [142,143,155,156]. Although most trials analyzed the data using
a prespecified cutoff for PD-L1 on IHC, the results did not consistently show improved
responses with higher PD-L1 expression, which is not a very surprising observation, given
that PD-L1 assays are not uniform across clinical trials (nonuniformity in the assays or
scoring). While pembrolizumab and nivolumab clinical trials used the DAKO assays,
Ventana assays were used for durvalumab and atezolizumab. In the pembrolizumab and
nivolumab trials, PD-L1 tumor cell staining was used, whereas the IM vigor trial used
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PD-L1 immune cell staining. The cutoffs for PD-L1 staining were also different. Variabil-
ity in the staining platforms and cutoffs, including cell types and scoring system, may
have been responsible for variability in the observed responses with different immune
checkpoint inhibitors [153]. Other important factors which should be considered in using
PD-L1 as a standalone biomarker to assess response to immunotherapy is the intratumoral
heterogeneity with regard to PD-L1 expression and its dynamic nature in space and time
during the disease course [154,157]. Attempts were made to harmonize PD-L1 assays in
non-small-cell lung cancer and found consistent staining across some assays, but not with
the others [158,159]. Limited inter-observer reliability in scoring PD-L1 staining on immune
cells was also described [160]. The application of liquid biopsy and immune-targeting
tracers for positron emission tomography (ImmunoPET) [161–163], may be a possible and
more efficient way for serial monitoring of PD-L1 or other ICI biomarkers.

7.3.2. Tumor Mutation Burden

The tumor mutational burden (TMB) is defined as the total number of mutations per
coding area of a tumor genome. A higher number of mutations increase the chances of
generating neo-tumor-antigens, which can be recognized by the host immune system as
immunogenic neoantigens [164–166]. TMB is quantified as the number of coding somatic
mutations per megabase (MB) of DNA [165]. Tumors with high TMB have been demon-
strated to have a microenvironment rich in immune cells and associated cytokines [167].
Bladder cancer is the most highly mutated cancer [168]. TMB has been linked to ICI re-
sponse in mUC [149,169,170]. Pembrolizumab is approved as a therapeutic option across
solid tumors with TMB ≥10 mutations/Mb without satisfactory treatment alternatives [171].
In the IMvigor210 trial, TMB assessed by targeted genomic profiling of 315 cancer-related
genes (Foundation Medicine) correlated with a longer OS and ORR with atezolizumab
independent of PD-L1 expression. Patients whose tumors had the highest mutation load
(≥16/MB)) had a significantly longer survival compared with patients whose tumors had
lower mutational loads (<16/MB) [HR 0.37, (95% CI 0.21–0.64)] [130,172]. TMB did not cor-
relate with PD-L1 expression; however, it may be useful as an adjunct to other biomarkers
in predicting outcomes with ICIs [173]. The combination of TMB and PD-L1 may be more
efficacious together than either biomarker alone in predicting response to ICI [151,174].
Mutational signatures (denoting underlying tumor mutation) attributed to the APOBEC
family of cytidine deaminases are frequently seen in BCs [40,175]. These were predictive of
favorable responses to ICIs in mUC [147,149,151]. Recently, a meta-analysis across multiple
cancer types including mUC suggested that clonal TMB (in all cancer cells in the clone)
followed by total TMB was most predictive of response to ICIs. In addition, clonal TMB and
the APOBEC signature were among the most important features associated with response
on multivariate analysis [147]. As with PD-L1, selecting an optimal cutoff and harmonizing
assays have been the common challenges in implementing TMB as a biomarker. In addition
to the quantity (cutoff), the quality of the mutations (short insertions/deletions), clonality
(clonal versus sub clonal), and the association of the neo antigens with the patient’s HLA
may be considered while assessing TMB as a biomarker [147].

7.3.3. Molecular Subtypes of Bladder Cancer

Basal type tumor cells have higher PD-L1 expression [176]. In the IMvigor 210 trial with
atezolizumab, the luminal cluster II subtype had a statistically significant higher response
rate compared to luminal cluster I, basal cluster I, and basal cluster II subtypes [117].
According to the results from this study, combining the Lund molecular classification
scheme with TCGA scheme could lead to better prediction of responses. Tumors that
were both genomically unstable (GU) in the later classification and luminal II had high
TMB and better responses to ICI. On the contrary, tumors that were luminal II but not
GU had low TMB and lower responses [149]. In the CheckMate 275 trial with nivolumab,
improved responses were seen in basal I subtype followed by luminal II subtypes [177]. In
the JAVELIN Bladder 100 trial of maintenance avelumab, however, there was no association
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between the TCGA subtypes and OS [141]. There is, thus, a heterogeneity in the outcomes
with immunotherapy with respect to molecular subtypes. It may be plausible that the
current molecular classifications of UC may not be adequately representative of appropriate
molecular signatures predictive of response to ICIs; hence, further research is needed.

7.3.4. Gene Expression Profiling of the Tumor and Microenvironment

Tumor immunity is the result of a complex interaction between the tumor cells and
immune cells in the tumor microenvironment (TME). A comprehensive immune gene
expression profiling of these cell types, along with their chemokine and cytokine repertoire,
may represent the ongoing interactions resulting in tumor immunity. As gene expression
profiling is a dynamic display of ongoing cellular processes in the tumor and cells in the
TME, it is more reflective of the molecular pathways involved at the time of sampling [135].
Two broad categories of gene expression signatures have been linked to ICI response in
prospective mUC cohorts: a group of genes reflecting cytotoxic T-cell activity associated
with ICI response; a group of genes reflecting immunosuppressive stromal signaling
associated with ICI resistance. These signatures remain exploratory pending validation in
additional prospective cohorts [135]. A variety of inflammatory gene signatures reflecting
CD8+T-cell activity and/or interferon-gamma signaling have been associated with ICI
response in mUC. Some recurrent genes in these signatures include CCL5, CD27, CD8A,
CXCL9, CXCL10, CXCR6, GZMA, GZMB, IDO1, IFNG, LAG3, PRF1, STAT1, and TBX21 [135].
In the IMvigor 210 trial in mUC, a higher CD8+T effector signature (PD-L1 positivity on
the immune cells was associated with the expression of genes in a CD8+T effector set)
correlated with higher complete response rates to atezolizumab. Similarly, CXCL-9 and
CXCL-10 (chemokines representative of the T effector signature) expression had a higher
response to immunotherapy [149]. Notably, CXCL9 expression was one of the strongest
predictors of ICI response in the Litchfield et al. meta-analysis of ICI biomarkers across
tumor types [135]. In the Checkmate 275 study, a higher value of 25-gene interferon-gamma
(IFN-γ) signature was associated with a higher response to nivolumab [177]. While IFN-γ
is known to have favorable effects on antitumor immunity, persistent signaling has been
associated with adaptive resistance to checkpoint therapy. One of the most important
IFN-γ mediated effects is the increased expression of PD-L1 and PD-L2 [178]. Prolonged
exposure of cancer cells to IFN-γ signaling leads to expression of a number of ligands for
T-cell inhibition, which in turn leads to resistance to ICIs independent of the PD-1/PD-L1-
pathway [179]. An eight-gene subset of that signature focused on CD8 T effector activity
was positively associated with response in IMvigor210 [149]. TGF-β signaling in the tumor
stroma creates an immunosuppressive phenotype or immune-excluded phenotype in that
the cytotoxic T cells are separated from the tumor cells by a dense fibrous stroma, promoting
angiogenesis and metastases. On the basis of data from the IMvigor210 study, Mariathasan
et al. showed that increased pan fibroblast TGF-β response signature (F-TBRS), TGF-β
ligand (TGFB1), and a TGF-β receptor (TGFBR2) in fibroblasts within the peritumoral
stroma were associated with a lack of response and poorer survival to atezolizumab,
especially in patients where CD8+ T cells were excluded from the tumor parenchyma [149].
A higher F-TBRS signature was also associated with worse OS for patients treated with
atezolizumab rather than platinum chemotherapy in the IMvigor130 trial [151].

7.4. Biomarkers for Targeted Therapy in UC

The basis of targeted therapy is the specificity of treatment directed against a target that
is preferentially altered in the cancer cells as compared to the normal cells. Three such tar-
geted therapies have been approved in mUC (Tables 3 and 4),although many other targets
have been evaluated but not yet approved. The targeted therapeutic molecules approved
in UC include FGFR inhibitor erdafitinib, Trop 2 inhibitor sacituzumab govitecan, and
Nectin-4 inhibitor enfortumumab vedotin (EV). Each of these molecules is approved in the
second-line setting after progression on first-line platinum/non-platinum-based chemother-
apy. As of now, only erdafitnib is recommended on the basis of the FGFR alteration status
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(mutation/fusion); thus, FGFR alterations serve as a biomarker for benefit from FGFR in-
hibitors. The other two molecules are approved irrespective of the biomarker results. There
are no head-to-head trials comparing second-line chemotherapy, immunotherapy, and
targeted therapy. Historically, responses with second-line chemotherapy have been dismal
at around 10% with a median survival of 7–9 months [118,180,181]. Even in the second
line, the response rates with immunotherapy are to the tune of 13–20% with amedian OS
of 10 months [144,155,177,182,183]. In that context, most of these targeted therapies have
been approved on the basis of their superior response rates as compared to the histori-
cal results, although the overall survival also compares favorably with immunotherapy.
Erdafitinib, a pan-FGFR-kinase (FGFR 1–4) inhibitor, was approved in 2019 for patients
with locally advanced or mUC with progression after platinum-based chemotherapy with
known susceptible FGFR2/3 alterations. The specific alterations include FGFR3 mutations
or FGFR2/3 gene fusions. The approval was based on a phase II trial demonstrating overall
response rates of 30–40% in a biomarker-driven population [17,184]. EV consists of a
monoclonal antibody specific for Nectin-4 conjugated to monomethyl auristatin E (MMAE),
a microtubule-disrupting agent [185,186]. Approval was also granted for locally advanced
or mUC after prior platinum-based chemotherapy and ICI as a result of the phase II EV-201
trial. In the confirmatory phase III EV-301 trial, EV conferred a significant survival benefit
over standard chemotherapy in the post-chemo/post-ICI setting, leading to regular FDA
approval [187]. Notably, EV has shown benefit and is approved for treatment without
regard to Nectin-4 levels. Considering recent data supporting a maintenance strategy with
avelumab after platinum-based chemotherapy for advanced UC, as well as results from the
EV301 study, EV may be a reasonable option at the time of the first relapse after maintenance
immunotherapy [141]. EV in combination with pembrolizumab has been accorded a break-
through therapy designation as first-line treatment for metastatic disease on the basis of a
higher response rate and duration of response [188,189]. Regimens containing EV are being
evaluated in the first-line (ClinicalTrials.gov numbersNCT04223856andNCT03288545) and
perioperative (NCT03924895) settings. The third targeted therapy approved in mUC is SG
(a monoclonal antibody specific for Trop-2 conjugated with SN-38), the active metabolite
of irinotecan [190]. Approval for SG was recently granted in April 2021 after the phase II
TROPHY-U-01 trial. This demonstrated a 27% ORR and 10.9 months median OS in the
post-chemo/post-ICI setting [191]. Similar to EV, SG has been tested and approved without
regard to the levels of its target, Trop-2.

Table 3. Targeted therapy approved in bladder cancer.

Molecular Target Targeted Therapy Clinical Trial [Ref.] Patient Eligibility Study Arms Results Comments

FGFR Erdafitinib BLC2001 [17,184]

Advanced UC and
progression on prior
platinum-based
chemotherapy, with or
without prior
immunotherapy and
with FGFR alterations
(mutations/fusions)

Phase II
single-arm study

ORR: 40%
Median PFS:
5.5 months
Median OS:
13.8 months
Adverse events:
stomatitis,
hyponatremia,
hyperphosphatemia

Accelerated FDA
approval based
on ORR.
First gene-targeted
therapy approved
in UC.

Nectin-4 (a cell
adhesion
molecule)

Enfortumumab
vedotin (an
antibody targeting
Nectin-4 linked to a
microtubule
inhibitor conjugate
(monomethyl
auristatin E)

EV 201 [192]

Locally advanced or
metastatic disease
ineligible for cisplatin,
not having received
prior platinum-based
chemotherapy, and
previously treated
with either a PD-1 or a
PD-L1 inhibitor; no
biomarker
assay needed

Phase II
single-arm study

ORR: 52%
Adverse events:
Neutropenia
Rash
Pneumonitis

Nectin-4 levels on
tumor tissue are
assessed with IHC.
An H score is
assigned with a
range of 0–300,
where 0 means no
expression and
300 means maximal
IHC staining.
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Table 3. Cont.

Molecular Target Targeted Therapy Clinical Trial [Ref.] Patient Eligibility Study Arms Results Comments

EV301 [187]

Locally advanced
unresectable or
metastatic UC
(including those
with squamous
differentiation or
mixed cell types)
previously treated
with platinum-based
chemotherapy and
PD-1/PD-L1 inhibitor;
no biomarker
assay needed

Enfortumab vedotin
or investigator’s
choice of
chemotherapy
(docetaxel,
paclitaxel,
or vinflunine)

Significant
improvement in
Median OS: 13 vs.
9 months,
Median PFS: 6 vs.
4 months
ORR: 41% vs. 18%
Adverse events:
Rash
Peripheral
neuropathy
Hyperglycemia

FDA-approved for
locally advanced or
metastatic UC
progressed on both
platinum-based
chemotherapy and
immunotherapy.

Trop-2
(a transmembrane
glycoprotein
highly expressed
in most UC)

Sacituzumab
govitecan
(antibody–drug
conjugate that
targets Trop-2, and
is coupled with
SN-38, an active
metabolite
ofirinotecan)

TROPHY-U-01 [191]

Advanced UC
previously treated
with platinum-based
chemotherapy or
immunotherapy; no
biomarker
assay needed.

Single-arm phase II
study

ORR: 27%
Median PFS:
5 months
Median OS:
11 months
Adverse events:
Neutropenia
Anemia
Thrombocytopenia

Advanced UC
previously treated
with platinum-
based
chemotherapy or
immunotherapy.

Table 4. Other biomarkers for response to targeted therapy.

Biomarker Study [Ref.] Results Comments

AKT/PI3K/mTOR
and MAPK pathway Bellmunt et al. [193]

Responders to everolimus and
MTOR inhibitor in mUC had
mutations in TSC1, TSC2,
and mTOR.

HRR pathway

Grivas et al. [194]

Powles et al. [195]

In the phase II ATLAS study,
rucaparib was not efficacious
in mUC.

Olaparib did not confer
additional benefit when
combined with durvalumab,
even among those with
HRR mutations.

HER family genes Necchi et al. [193]

Responders to sorafenib in
mUC demonstrated higher
mutations in the HER family of
genes, DDR genes, and
RAS/RAF pathway.

Table 4 enumerates biomarkers for response to targeted therapy.

7.4.1. FGFR

FGFR alterations are ubiquitous in UC. The most common FGFR3 alterations are
mutations which account for 80% of the FGFR alterations in NMIBC and almost half of the
alterations in MIBC [196,197]. FGFR alterations occur in 20% of the patients with advanced
urinary bladder UC and up to 37% of the upper tract (UT) UC [24,198]. Of these, FGFR3
alterations (mutations and fusions) are significant from a therapeutic perspective and are
more common in UTUC than UBC [199,200]. Of the FGFR3 mutations, S249C is the most
common, accounting for up to half of these mutations [17,201]. FGFR 2/3 mutations are
enriched in the luminal type 1 molecular subtypes of UC, which are usually immune-
excluded. These tumors show reduced T-cell infiltration, as well as low PD-L1 expression
on TILs; hence, they are postulated to be resistant to immunotherapy [17]. Mutations in
FGFR, which belongs to the family of tyrosine kinase receptors, bestow the cancer cells a
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clear survival advantage in that the receptor functions in a ligand-independent manner
and the constitutive tyrosine kinase activity leads to incessant downstream signaling via
the RAS/MAP3K/PI3K pathway, ultimately leading to cell proliferation [202]. FGFR fusions
and amplifications are less common alterations in the FGFR pathway [203]. In the BCLC
001 trial of erdafitinib, up to three-fourths of the alterations were FGFR2/3 mutations, and
the remaining were FGFR2/3 fusions [17]. As with driver mutations in lung cancer, it has
been postulated that immunotherapy may not be an appropriate option for FGFR mutated
UC. Data show that, in the immune-excluded luminal type 1 UC, limited responses are seen
with immunotherapy [177,204]. In this subset enriched with FGFR alterations, durable re-
sponses have been seen with FGFR inhibitors after progression on immunotherapy [17,205].
On the contrary, the pivotal second-line immunotherapy trials in UC have shown responses
irrespective of the FGFR alteration status, thus putting to question the notion that FGFR
alterations are a biomarker for lack of response to immunotherapy [206]. A longer median
duration of response (68% of patients with a response for at least 12 months) with fewer
toxic effects of grade 3 or more (15% vs. 46%) suggests that immunotherapy may provide
a better safety and efficacy profile than FGFR targeted therapy [144]. Thus, the optimal
sequencing of therapy in FGFR-mutated mUC is debatable. We may expect an answer about
the optimal sequencing from the phase III THOR trial that has a 1:1:1 randomization into
three arms with chemotherapy, immunotherapy, and erdafitinib in FGFR-mutated mUC
[ClinicalTrials.gov numberNCT03390504]. Lastly, although FGFR mutations are biomarkers
for response to erdafitinib, the same cannot be said for FGFR fusions/alterations. FGFR
mRNA expression and ctDNA levels of FGFR have also been evaluated as biomarkers for
response to FGFR inhibitors. The bottom line is that FGFR somatic mutations are a better
predictor of response to FGFR inhibitors compared to other alterations [197]. There is a fair
degree of concordance between ctDNA and somatic FGFR alterations. According to the
results from the BISCAY trial, baseline increased levels of ctDNA are predictive of worse
OS, and serial ctDNA can be used for response assessment [195]. Resistance to FGFR TKIs
has been observed most commonly due to mutations in the ATP-binding pocket of the
FGFR. Both primary and secondary resistance have been observed. K650E gatekeeper muta-
tions demonstrate primary resistance to infigratinib [207,208]. Other mechanisms of FGFR
TKI resistance include activation of alternate RAS/MAPK and PI3K/AKT pathways, lyso-
some mediated TKI sequestration, activating gene fusions/ and epithelial-to-mesenchymal
transition [207].

7.4.2. Nectin-4

Nectin-4 is a cell-adhesion molecule that is highly expressed in UC and may contribute
to tumor-cell growth and proliferation [185,209]. EV consists of a monoclonal antibody
specific for Nectin-4 conjugated to monomethyl auristatin E (MMAE), a microtubule-
disrupting agent. The delivery of the microtubule payload into the tumor cells leads to
cell-cycle arrest and apoptosis [185,186]. According to the phase III randomized controlled
trial, EV significantly prolonged survival as compared with standard chemotherapy in
patients with locally advanced or mUC who previously received platinum-based treatment
and a PD-1 or PD-L1 inhibitor [187]. However, Nectin-4 expression was not mandatory for
enrolment as high expression was observed in a vast majority of patients with advanced
UC [192,209].

7.4.3. Trop 2

Erdafitinib is limited to patients with FGFR2/3 mutation or fusion [210]. Many patients
will still need newer therapies. Trophoblast cell-surface antigen 2 (Trop-2) is a transmem-
brane cell surface glycoprotein that is expressed extensively on most carcinoma cells and
plays an important role in cell transformation and proliferation [211,212]. Thus, increased
expression is associated with poor outcome, including mUC [190]. Sacituzumab govitecan
(SG) is a Trop-2-directed molecule composed of an anti-Trop-2 humanized IgG mono-
clonal antibody coupled to SN-38, the active metabolite of the topoisomerase 1 inhibitor
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irinotecan with a high drug-to-antibody ratio (7.6 molecules of SN-38 per antibody) [213].
Internalization of Trop-2-bound SG delivers SN-38 inside tumor cells, thus killing the
tumor cells, whereas the hydrolyzable linker enables SN-38 to be released into the tumor
microenvironment, killing adjacent cells (bystander effect) [214,215]. Approval for SG
was recently granted in April 2021 after the phase II TROPHY-U-01 trial, and it demon-
strated a 27% ORR and 10.9 months median OS in the post-chemo/post-ICI setting [191].
Similar to EV, SG has been tested and approved. A benefit with SG was even observed
in a small subgroup with prior exposure to EV. Responses in patients previously treated
with EV suggest various nonoverlapping mechanisms of action and resistance between
the two antibody–drug conjugates [190]. The results from this phase II trial will be cor-
roborated in the ongoing phase III confirmatory trial of SG versus taxane or vinflunine
in mUC (TROPiCS-04; ClinicalTrials.govidentifier NCT04527991). Additional cohorts of
TROPHY-U-01 continued to evaluate the role of SG in mUC. Cohort 2 is investigating the
role of SG in platinum-ineligible patients with mUC who progressed after immunotherapy.
Cohort 3 is evaluating SG in combination with pembrolizumab in patients with mUC
who progressed after prior platinum-based chemotherapy and are immunotherapy-naïve.
Both cohorts 4 and 5 are evaluating SG as induction and maintenance therapy in mUC
patients who responded to induction platinum-based chemotherapy in the neoadjuvant
setting, comprising chemotherapyeither alone (cohort 4) or in combination with avelumab
(cohort 5) [190].

7.4.4. Other Targeted Therapies

HER2 is amplified in a subset of patients with UC. HER2 amplification is an adverse
prognostic event in UC. Yet, anti-HER2 therapy has not been proven to improve outcomes
in mUC. One of the reasons is the heterogeneity in HER2 testing in trials with anti-HER2
therapy. In a retrospective analysis performed by our group, comparing HER2 IHC and
HER2 FISH results demonstrated that ASCO/CAP HER2 testing guidelines for breast
cancer could be implemented in UC [153]. Hence, patients with true amplification of HER2
can be evaluated in future clinical trials utilizing anti-HER2 therapy in UC.PARP inhibitors
have not been found to improve outcomes in BRCA-mutated/HRR-deficient UC [194].
The incidence of BRCA1/2 mutations is about 1.5% and 1.4%, respectively, in UC [136].
Previously, it has been mentioned that defects in the DDR pathway may predict responses
to chemotherapy. An innovative approach could be the combination of chemotherapy and
PARP inhibitors in DDR-deficient UC. Other therapies that target PI3K/AKT/mTOR, MAPK,
and VEGF pathways have also been investigated in UC. The RANGE study found that
ramucirumab, a monoclonal VEGFR-2 antibody with docetaxel, improved the progression-
free survival, but not OS in previously treated mUC patients [216].

8. Conclusions

Bladder cancer is a major malignancy, causing a great percentage of cancer-related
morbidity and mortality. Improving systemic treatment strategies for UC patients has
been a challenge in recent years. Furthermore, due to its significant molecular and clini-
copathologic heterogeneity, there is a huge clinical need for new promising therapeutic
approaches. Ongoing efforts in bladder cancer have yielded significant improvements in
the care of patients, especially in the metastatic setting, through FGFR2/3 targeting, as well
as with immunotherapy options with PD-L1 inhibitors. Furthermore, due to the molecular
diversity in UC, there is vast potential for promising biomarkers in both neoadjuvant and
metastatic settings. Although there are various hurdles to the advancement of precision
medicine in UC, we are currently in the era of hope and promise with innovative clinical
trials, multi-omics platforms, and increasingly refined methods for the future.

After decades of paucity in the therapies available, particularly in the metastatic
setting, the advancement in genetics and increasing understanding of the biology of UC
promise a future of truly efficacious treatments for our bladder cancer patients.
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