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Abstract: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome
with multiple underlying mechanisms and comorbidities that leads to a variety of clinical phenotypes.
The identification and characterization of these phenotypes are essential for better understanding
the precise pathophysiology of HFpEF, identifying appropriate treatment strategies, and improving
patient outcomes. Despite accumulating data showing the potentiality of artificial intelligence (AI)-
based phenotyping using clinical, biomarker, and imaging information from multiple dimensions
in HFpEF management, contemporary guidelines and consensus do not incorporate these in daily
practice. In the future, further studies are required to authenticate and substantiate these findings in
order to establish a more standardized approach for clinical implementation.

Keywords: heart failure with preserved ejection fraction; artificial intelligence; phenotype; cluster;
machine learning; latent class analysis

1. Introduction

Heart failure with preserved ejection fraction (HFpEF) is diagnosed as heart failure
with a left ventricular ejection fraction (LVEF) of ≥50% and elevated left ventricular filling
pressures at rest or during exercise after careful exclusion of conditions that may mimic
HFpEF [1,2]. HFpEF is a complex clinical syndrome that differs from other cardiovascular
diseases, as it is defined by a combination of symptoms, signs, and other manifestations
rather than a specific diagnostic test.

There is currently little evidence supporting the effectiveness of conventional therapies
utilized for HFpEF to reduce mortality rates, such as empagliflozin in the EMPEROR-
Preserved trial and dapagliflozin in the DELIVER trial. However, emerging research
suggests that treatment should be tailored to the specific comorbidities present in each
patient [3]. Some of the most common comorbidities seen in patients with heart failure
include coronary artery disease, atrial fibrillation (AF), obesity, diabetes, renal impairment,
and pulmonary hypertension. Accordingly, HFpEF can be classified into different phe-
notypes based on various criteria, including underlying etiology, clinical characteristics,
and comorbidities [3–8]. Detailed molecular signaling, gene ontology functional analysis,
and the use of the Kyoto Encyclopedia of Genes and Genomes pathway also potentiate the
precise mechanisms of action and targets of SGLT2 inhibitors in clinical practice [9,10]. A
comprehensive understanding and the specific pathways identified from HFpEF pheno-
typing also facilitate animal experimental studies to address relevant pathophysiological
signaling [11].
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2. Clinical Entities

Several studies have examined the relationship between HFpEF and clinical entities
and comorbidities. For example, in the TOPCAT trial, it was discovered that patients
with HFpEF who had been previously hospitalized for heart failure exhibited a greater
likelihood of experiencing cardiovascular death, heart failure hospitalization, or aborted
cardiac arrest than their counterparts who did not have a history of hospitalization [12].
The utilization of clustering methods shows great potential in addressing the heterogeneity
of HFpEF and uncovering sub-phenotypes. Unbiased clustering methods have been used
in recent studies to categorize distinct phenotypes among patients with HFpEF, taking
into account their clinical characteristics, echocardiographic observations, and biomarker
concentrations (Table 1).

Table 1. Machine learning (ML) and latent class analysis (LCA) phenotyping of HFpEF.

Machine-Learning

Study Number of Subjects Classification Characteristics

Shah et al., 2015 [13] 397

Phenogroup 1 Natriuretic Peptide Deficiency Syndrome,
young, obese, relatively fewer comorbidities

Phenogroup 2 Extreme Cardiometabolic Syndrome, HTN,
obesity (typically BMI > 35), DM

Phenogroup 3 Right Ventricle-cardio-abdomino-renal
Syndrome, CKD, PH, cardiorenal phenotype

Sanchez-Martinez et al.,
2018 [14] 156

Cluster 1 Healthy cluster

Cluster 2
HFpEF: Older, higher NTproBNP, BMI,
impaired exercise tolerance at 6MWT, LV
hypertrophy, higher E/e’ ratio

Przewlocka-Kosmala et al.,
2019 [15] 228

Cluster 1 Normal CR/DR, normal increase in HR and
diastolic function during exercise

Cluster 2
Altered CR/DR, decreased exercise tolerance
at CPET; chronotropic incompetence and
diastolic dysfunction on exercise

Segar et al., 2020 [16] 654

Phenogroup 1

Older, several CV risk factors: obesity; DM,
HTN, worse renal function, significant LV
concentric remodeling, LA dilatation, diastolic
dysfunction

Phenogroup 2

Low prevalence of CV risk factors, moderate
LV concentric remodeling, moderate LA
dilatation, and higher prevalence of
moderate MR

Phenogroup 3
Intermediate burden of CV risk factors, mainly
DM and HTN, moderate LV concentric
remodeling and LA dilatation

Hedman et al., 2020 [17] 397

Phenogroup 1
HTN, IHD, DM, and CKD, marked LV
concentric remodeling, modest electric
remodeling (AF 37%)

Phenogroup 2
Older age, HTN, significant LA dilatation and
higher prevalence of RV failure, severe electric
remodeling (AF 85%)

Phenogroup 3 Younger, HTN, modest LV remodeling and
electric remodeling (AF 48%)

Phenogroup 4 HTN, significant LV and atrial remodeling,
highest electrical remodeling (AF 90%)

Phenogroup 5 HTN, IHD, moderate LV remodeling,
moderate electrical remodeling (AF 43%)

Phenogroup 6
Low BMI, severe LA remodeling, RV
dysfunction; significant electric remodeling
(AF 96%)



J. Pers. Med. 2023, 13, 746 3 of 12

Table 1. Cont.

Machine-Learning

Study Number of Subjects Classification Characteristics

Schrub et al., 2020 [18] 356

Cluster 1
Younger, HTN, DM, obesity, CKD, less electric
remodeling, LV hypertrophy, lowest rate of
severe MR

Cluster 2
Intermediate age, HTN, less LV remodeling,
but significant LA atrial dilatation and higher
severe MR rate

Cluster 3
Oldest, severe electrical remodeling (AF 87%),
severe LA dilatation, higher prevalence of
severe MR

Woolley et al., 2021 [19] 429

Cluster 1 Highest frequency of CKD and DM

Cluster 2 Elderly, high frequency of AF and HTN

Cluster 3 Young, obese, fewest comorbidities

Cluster 4 Highest rates of COPD, CAD, and smoking

Gu et al., 2021 [20] 970

Phenogroup 1 Relatively preserved NYHA class and few to
no comorbidities

Phenogroup 2 Higher proportion of women and prevalence
of AF

Phenogroup 3 Highest BMI, highest prevalence of IHD, DM,
and severe symptoms assessed with NYHA

Latent Class Analysis

Study Number of Subjects Classification Characteristics

Kao et al., 2015 [21] 4113

Subgroup A Median age 65, men, low rates of AF, CKD,
valvular disease, and high rates of alcohol use

Subgroup B Median age 65, women, low rates of AF, CKD,
valvular disease, and high rates of anemia

Subgroup C Median age 70, high rates of DM, obesity,
HLD, CAD, CKD

Subgroup D Median age 73, women, average rates of DM,
obesity, HLD, CKD

Subgroup E Median age 75, men, low BMI, high rates of
AF, CAD

Subgroup F Median age 82, women, low BMI, high rates of
AF, valvular disease, CKD and anemia

Cohen et al., 2020 [22] 3442

Phenogroup 1
Younger with mild symptoms lowest levels of
NP, DM, CKD, and LV dysfunction, highest
rates of smoking

Phenogroup 2
Older with stiff arteries, small LVs and AF,
women, highest rates of AF and CKD, low
rates of obesity and DM

Phenogroup 3
Obese diabetic with advanced symptoms,
highest rates of obesity, DM, and high rates of
CKD and depression

Uijl et al., 2021 [23] 6909

Cluster 1
Median age 59, more males, fewest
comorbidities, most had NYHA class I/ll and
normal eGFR

Cluster 2 Median age 77, higher rates of AF and HTN,
relatively normal eGFR and lowest rate of DM

Cluster 3 Median age 88, more females, highest rate of
AF, lowest BMI values

Cluster 4 Median age 71 years, most likely male, higher
BMI and almost all patients had HTN and DM

Cluster 5
Median age 82, most likely female, higher BMI
values and NYHA III/IV, IHD, AF, all patients
had HTN and most had lower eGFR values

AF: atrial fibrillation, CAD: coronary artery disease, CKD: chronic kidney disease, COPD: chronic obstructive
pulmonary disease, CPET: cardiopulmonary exercise test, DM: diabetes mellitus, HLD: hyperlipidemia, HTN:
hypertension, IHD: ischemic heart disease, MR: mitral regurgitation, PH: pulmonary hypertension. Table was
modified from reference number [24].
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Since the amount of healthcare data generated on a daily basis is overwhelming for a
contemporary doctor, far surpassing the computational capacity of the human brain [25],
machine learning (ML) and artificial intelligence (AI), which may use interchangeably, are
increasingly being used in medical research to identify sub-phenotypes of diseases such
as HFpEF. Artificial intelligence (AI) techniques are increasingly being used in medical
research to identify sub-phenotypes of diseases such as HFpEF. These methods utilize
statistical algorithms to analyze complex relationships between various patient characteris-
tics and create distinct clusters that define sub-phenotypes of the disease. One technique
is supervised learning, where an algorithm is trained on a pre-labeled dataset to predict
outcomes based on new data. For example, machine learning (ML), does not rely on
pre-labeled data and instead uses algorithms to identify patterns and relationships within
the data. Latent class analysis (LCA) is a model-based clustering technique used in medical
research to identify sub-phenotypes of diseases. LCA relies on a probabilistic model to
describe the distribution of data, which is used to derive clusters from the data based on the
probabilities that certain cases belong to certain latent classes, and relies less on a distance
measure to find the clusters. Overall, these techniques offer promising tools and research
approaches to identify sub-phenotypes of diseases such as HFpEF and can help to improve
diagnosis, treatment, and prognosis from multiple dimensions, including clinical data,
biomarkers, or imaging studies [7,13,23,26–32]. Herein, we listed several key landmark
studies unraveling AI-based learning and phenotyping among the HFpEF population.

One method to subtype HFpEF is based on the presence of underlying clinical entities
or comorbidities that contribute to the development and progression of the disease, known
as clinical phenotyping (Figure 1A) [8]. The identification of specific clinical entities and
comorbidities associated with different HFpEF phenotypes may have important clinical
implications, as it may help guide the development of targeted therapies for these subtypes.
For example, patients with HFpEF and pulmonary vascular disease may benefit from
therapies that target pulmonary hypertension, whereas patients with HFpEF and metabolic
dysfunction may benefit from weight loss and metabolic management strategies. Further, it
has been proposed that certain natriuretic peptide deficiency syndrome may exist in HFpEF
(e.g., obesity related HFpEF) [33]. Despite experiencing abnormally high left ventricular
filling pressure during exercise, patients with this condition may benefit from treatment
with a Neprilysin inhibitor, such as Entresto/Sacubitril (ARNi) [34]. Taken collectively,
the optimal management for HFpEF can be tailored and personalized, targeting precision
medicine in clinical practice [13,29].
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Table 1. Panel (A) was modified and adopted [8].
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Hwang et al. explored the implications of coronary artery disease (CAD) in HFpEF.
The authors suggested that HFpEF patients with CAD have distinct clinical and pathophys-
iological characteristics compared with those without CAD. CAD may play a significant
role in the progression of HFpEF, and a better understanding of this relationship could
lead to the development of more effective treatments. This study provides insights into the
clinical entity and underlying comorbidity of HFpEF, and it highlights the importance of
considering these factors when defining and classifying HFpEF phenotypes [29].

Shah et al. identified distinct subgroups of HFpEF patients based on their comorbidities,
including obesity-related comorbidities, metabolic syndrome, and pulmonary hypertension.
This study showed that these subtypes had distinct clinical, biochemical, and imaging profiles,
suggesting that they may represent different disease processes. The authors proposed that
this phenomapping model-based clustering approach could be used to tailor treatments to
individual patients and to improve outcomes in HFpEF [13] (Figure 1B).

Borlaug et al. investigated the associations between specific clinical entities, comor-
bidities, and HFpEF subtypes. Their study included 344 patients with HFpEF who were
classified into four subtypes, based on the clinical entities or comorbidities present, as
follows: (1) obesity-related, (2) hypertension-related, (3) diabetes-related, and (4) idiopathic.
According to this research, the HFpEF subtype associated with obesity showed a greater
prevalence of metabolic risk factors and more severe diastolic dysfunction compared to the
other subtypes. The hypertension-related HFpEF subtype had a higher prevalence of left
ventricular hypertrophy, concentric remodeling, and worse systolic function. The diabetes-
related HFpEF subtype had a higher prevalence of diabetic nephropathy, worse systolic
function, and more severe diastolic dysfunction. The idiopathic HFpEF subtype had a
lower prevalence of comorbidities and less severe diastolic dysfunction than the other
subtypes [8].

Uijl et al. proposed a five-cluster model, labeled Cluster 1 and Clusters 2–5, among
6909 HFpEF from the Swedish Heart Failure Registry (SwedeHF) and externally validated
this in 2153 patients from the Chronic Heart Failure ESC-guideline based Cardiology
practice Quality project (CHECK-HF) registry, as shown in Figure 2. Cluster 1 included
young patients with low comorbidity burdens and the highest proportion of implantable
devices. Cluster 2 included patients with AF and hypertension without diabetes. Cluster 3
included the oldest patients with the most cardiovascular comorbidities. Cluster 4 included
patients with obesity, diabetes, and hypertension. Cluster 5 included older patients with
ischemic heart disease, hypertension, and renal failure; these patients were most frequently
prescribed diuretics. With this clustering, patients in the same cluster may have more
homogeneity, which may contribute to more beneficial medical therapies. Patients in the
young–low comorbidity burden cluster had the lowest event rates, while patients in the
older–AF and cardio–renal clusters had the highest event rates [23].
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Percentage and treatment strategies of these HFpEF populations in the whole study cohort (B).
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3. Imaging

Cardiac imaging and measurement of the cardiac structure are critical aspects in diag-
nosing HFpEF, as the symptoms of this condition can be nonspecific. Non-invasive mea-
sures of cardiac structure and function can assist in improving diagnostic accuracy and
differentiating the sub-phenotypes of HFpEF. Additionally, imaging can exclude alternative
diagnoses that mimic HFpEF, such as hypertrophic cardiomyopathy, primary valvular
heart disease, cardiac amyloidosis, and pericardial disease. While two-dimensional (2-D)
transthoracic echocardiography is the most commonly used imaging modality, advanced
imaging techniques, including cardiac magnetic resonance imaging and 2-D speckle track-
ing echocardiography, are used to identify distinct HFpEF phenotypes based on left ventric-
ular structure and function [13,23,28–32,35]. Compared with standard 2-D echocardiogra-
phy, three-dimensional (3-D) echocardiography provides a more reliable and reproducible
evaluation of cardiac chamber volumes, mass, and shape, which are highly correlated with
cardiac magnetic resonance imaging (CMR) [36]. CMR provides comprehensive informa-
tion on morphology, function, perfusion, viability, and tissue characteristics. CMR can
detect fibrosis, lipid content, and energy metabolism, making it a valuable tool for assessing
suspected CAD and detecting coronary microvascular disease (CMD) in the future [37].

Several studies have investigated the use of echocardiography to identify the imaging-
based phenotypes of HFpEF. Diastolic dysfunction, a hallmark feature of HFpEF, has been
well adopted in the initial classification of HFpEF [38]. One study used a combination of 2-D
speckle-tracking echocardiography and CMR to identify three distinct phenotypes based
on left ventricular structure and function [38]. These phenotypes included left ventricular
hypertrophy with preserved global longitudinal strain (GLS), left atrial enlargement with
normal GLS, and normal left ventricular and left atrial structures with impaired GLS. The
aforementioned study found that these phenotypes were associated with different clinical
and biochemical features and may have different prognostic implications [23,35,38].

Another study evaluated left atrial function using 2-D speckle tracking echocardiogra-
phy and found that left atrial strain was significantly decreased in patients with HFpEF
compared with that in controls. The study also found that left atrial strain was inde-
pendently associated with a higher risk of adverse events, including hospitalization and
mortality [39].

Cardiac imaging and measures of cardiac structure and function are essential for diag-
nosing HFpEF, excluding alternative diagnoses, and identifying imaging-based phenotypes.
Although 2-D echocardiography remains the most commonly used imaging modality, CMR
and 3-D echocardiography offer more comprehensive information regarding cardiac struc-
ture and function. These imaging techniques may have important prognostic implications
and help guide management strategies in patients with HFpEF.

4. Management of HFpEF Phenotype Based on “SwedeHF” and “CHECK-HF” Registries

Personalized management of different HFpEF phenotypes using clustering targeting
more specific molecular or pathological etiology driving underlying mechanisms has been
proposed in several studies [27,40–42]. For example, obesity-related HFpEF with or without
hyperlipidemia or diabetes may benefit from combined sodium–glucose cotransporter-
2 inhibitors (SGLT2i), mineralocorticoid receptor antagonists (MRA), and angiotensin
receptors/neprilysin inhibitor (ARNi) due to an inner deficiency of effective natriuretic
peptide from excessive visceral adiposity [43]. Herein, we provided an example of the
possible therapeutic implications of performing phenotyping among the HFpEF popula-
tion using findings from the “SwedeHF” and “CHECK-HF” registries [23]. Despite being
promising, these studies may warrant further external validations that can be applicable
across different races with wide clinical settings to show how these findings can be inter-
preted practically and implemented from the working hypotheses (Table 2). Thus, these
findings and their implications should be discussed in the broadest context possible.
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Table 2. Simple summary table for management of specific HFpEF phenotypes based on the
“SwedeHF” and “CHECK-HF” registries.

Classification Characteristics Treatment Strategy

Cluster 1 Younger with low comorbidity Lifestyle modifications
Risk factor screening

Cluster 2 AF without T2DM Restoration of normal sinus rhythm, anticoagulation,
blood pressure control

Cluster 3 Oldest with many cardiovascular
comorbidities

Diuretics, mineralocorticoid receptor antagonists,
lifestyle interventions

Cluster 4 T2DM without AF Glycemic control, SGLT2i
Cluster 5 T2DM and AF SGLT2i

4.1. Cluster 1

Among the five clusters, patients with HFpEF in this group had a median age of
59 years and a relatively low burden of comorbidities, making them the youngest of
the cohorts. The most common comorbidities in Cluster 1 were hypertension (46%) and
obesity (42%). The principles of management for this group are to control blood pressure
and reduce body weight. It is worth mentioning that cluster 1 includes patients who have
recovered HFrEF, due to the higher percentage of implantable cardioverter-defibrillator or
cardiac resynchronization therapy.

In addition to the implantable devices, quite a few medications have demonstrated
an established efficacy in previous HFpEF trials. Those drugs were renin–angiotensin–
aldosterone system (RAAS) antagonists such as angioten-sin-converting enzyme inhibitors
(ACEis), angiotensin II receptor blockers (ARBs), mineralocorticoid receptor antagonists
(MRAs), and angiotensin receptors/neprilysin inhibitor (ARNi), which could be considered
as first-line agents for the management of HFpEF. Lifestyle modifications were strongly
suggested for this cluster. Significant improvements in quality of life and exercise tolerance
were observed as a result of weight reduction, which was found to be safe. In addition
to these benefits, weight loss in patients with HFpEF has been shown to have a positive
impact on cardiac function and metabolic parameters, potentially leading to reduced doses
of diuretics, antihypertensive agents, and diabetes medications.

4.2. Cluster 2

The individuals belonging to Cluster 2 were relatively older compared to those in
Cluster 1, having a median age of 77 years. This cluster included patients with HFpEF
characterized by AF without diabetes. Principles of management for this cluster align with
the AF Better Care (ABC) pathway, including rate/rhythm control in AF management, as
follows: (A) avoiding thromboembolic events with the use of anticoagulation. (B) better
management of symptoms with personalized, symptom-directed decisions on rate or
rhythm control. Rate control involves the use of beta-blockers/non-dihydropyridine
(DHP) calcium channel blockers (CCBs) (diltiazem or verapamil)/digoxin; rhythm control
involves the use of amiodarone/dronedarone or AF ablation. (C) Effective management
of cardiovascular and coexisting conditions, including attention to psychological factors
and lifestyle. Following the ABC pathway has been shown to lead to improved outcomes,
including decreased risks of all-cause mortality, cardiovascular mortality, stroke, and
hospitalization due to cardiovascular reasons. It is important to avoid excessive rate control
in patients with both HFpEF and AF, as it may diminish their chronotropic reserve. In a
trial comparing strict (<80 bpm) and lenient (<110 bpm) rate control in patients with AF,
which may have included individuals with undiagnosed HFpEF, no significant differences
in outcomes were observed.

4.3. Cluster 3

Among the five clusters, Cluster 3 patients were the oldest (median age, 88 years)
with the highest N-terminal pro b-type natriuretic peptide (NT-proBNP) values. It was
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reasonable to eliminate any meaningful clinical phenotyping for this cluster, as it presented
with an anticipated higher risk for an ominous outcome. Clinically, the principle of for
the elderly is to reduce hospitalization rates and improve quality of life. Decongestion of
diuretics has been shown to reduce hospitalization rates. In the TOPCAT trial, spironolac-
tone was associated with a decrease in heart failure hospitalization rates compared with
the placebo [12]. This cluster can be effectively managed with measures such as control-
ling heart rate in patients with AF, optimizing blood pressure control, and implementing
lifestyle interventions such as exercise training to enhance functional capacity. When life
comes to an end, palliative care, including symptom management and psychological,
emotional, and spiritual support, should be properly offered to patients and caregivers
throughout the disease course, not only in advanced stages.

4.4. Cluster 4

Cluster 4 was composed of patients who had a median age of 71 years and were
identified as having diabetes but not AF. Serum glucose control is the mainstay of this
cluster. SGLT2 inhibitors have emerged as a critical component of HFrEF therapy as
they possess favorable pleiotropic effects on various body parts such as the kidney, liver,
pancreas, blood vessels, and adipose tissue, apart from their primary role as an antidiabetic
medication. The EMPEROR-Preserved trial was groundbreaking in the study of HFpEF as
it compared the effects of empagliflozin with a placebo in patients with ejection fractions
above 40%, irrespective of whether they had diabetes or not. The trial demonstrated a
significant reduction in the risk of heart failure-related hospitalizations and cardiovascular
mortality, as well as an improvement in renal outcomes.

According to the DELIVER trial, dapagliflozin is superior to placebos in decreasing
cardiovascular deaths and hospitalizations due to heart failure in patients with mildly
reduced or preserved ejection fractions. Additionally, the study showed that dapagliflozin
was effective in patients who previously had ejection fractions below 40% but later saw an
increase to over 40%.

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are also associated with positive
cardiovascular effects. A recent meta-analysis involving 592 patients revealed that liraglutide
was connected with significant enhancements in the left ventricular diastolic function.

4.5. Cluster 5

Cluster 5 was a union of Clusters 2 and 4. This cluster had a median age of 82 years,
and its members had comorbidities of both diabetes and AF. In the DECLARE-TIMI 58 trial
(Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular
Events), dapagliflozin reduced the incidence of AF in patients with diabetes [44]. Efforts for
Clusters 2 and 4 should be applied to this cluster, including the ABC pathway for the
management of AF and SGLT2i for diabetes.

5. Management of Obesity-Related HFpEF Phenotype

Obesity as a common etiology and co-morbidity for HFpEF has been shown to induce
activated sympathetic system and RAAS (and thus hyperaldosteronism with sodium
retention) and further promote systemic inflammation [45,46], which may subsequently
augment impaired cardiac filling conditions and aggravate unfavorable cardiac remodeling
and HF progression [47,48]. Hence, HFrEF patients with central obesity are particularly
prone to therapeutic benefits with eplerenone use [49].

Elevated circulating levels of aldosterone, either directly from adipocytes or released
from the adrenal gland in response to leptin through the adipokines-cell-signaling molecules
secreted (from central obesity or visceral adipose tissue), along with the attenuated anti-
aldosterone effects from natriuretic peptides due to an increased neprilysin activity in
obesity, may potentiate [50] the deleterious effect of neprilysin HF patients with obesity
regardless of HF phenotypes [33]. This “leptin-aldosterone-neprilysin axis activation”,
when observed in part as natriuretic peptide deficiency syndrome, as observed in obesity-
related HFpEF pathophysiology, may exacerbate the interaction of leptin and aldosterone
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to promote sodium retention, plasma volume expansion, and regional (such as myocardial)
and systemic inflammation and fibrosis (Figure 3) [23,33,43,51].

Figure 3. Pathophysiological signaling from the leptin–aldosterone–neprilysin axis activation under-
lying obesity-related HFpEF and potential diverse phenotypes for pharmacological interventions.
ARNi: angiotensin receptor-neprilysin inhibitor; Dys.: dysregulated; GLP1-RA: glucagon-like peptide-
1 receptor agonist; MRA: mineralocorticoid receptor antagonist; NEP: neprilysin; RAAS: renin–
angiotensin–aldosterone system; SNS: sympathetic nervous system.

Importantly, an activated leptin–aldosterone–neprilysin axis with sustained increases
in aldosterone and neprilysin concentration may in turn accelerate the accumulation and
inflammation of epicardial fat [52,53]. Recently, proteomics in the LIFE-Heart study (fur-
ther verified in the Aldo-DHF validation cohort) targeting biomarkers involving volume
expansion, myocardial fibrosis, and systemic inflammation has been shown to improve
obesity-related HFpEF [54] phenotyping with a distinct biomarker signature. However,
whether there may exist some clinical features (e.g., central obesity, region-specific adipos-
ity, e.g., pericardial fat burden) with therapeutic implications using AI-assisted machine
learning or clustering may warrant further research (Figure 3).

6. Conclusions

In summary, the identification and characterization of HFpEF phenotypes are impor-
tant for guiding diagnosis, management, and research into novel treatment strategies. It
was a prerequisite for us to identify that the presence of ischemic heart disease by itself in-
duces prognostic implications. Given the complexity of HFpEF, a personalized approach to
management that considers the underlying mechanisms and comorbidities in each patient
is needed and might help to solve the puzzle of this challenging syndrome.
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et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for
the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special
contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [CrossRef] [PubMed]

2. Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.;
Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College
of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032.
[CrossRef] [PubMed]

3. Gevaert, A.B.; Kataria, R.; Zannad, F.; Sauer, A.J.; Damman, K.; Sharma, K.; Shah, S.J.; Van Spall, H.G.C. Heart failure with
preserved ejection fraction: Recent concepts in diagnosis, mechanisms and management. Heart 2022, 108, 1342–1350. [CrossRef]

4. Vasan, R.S.; Levy, D. Defining diastolic heart failure: A call for standardized diagnostic criteria. Circulation 2012, 131, 1824–1831.
[CrossRef] [PubMed]

5. Reddy, Y.N.V.; Carter, R.E.; Obokata, M.; Redfield, M.M.; Borlaug, B.A. A simple, evidence-based approach to help guide diagnosis
of heart failure with preserved ejection fraction. Circulation 2018, 138, 861–870. [CrossRef] [PubMed]

6. Pfeffer, M.A.; Shah, A.M.; Borlaug, B.A. Heart failure with preserved ejection fraction in perspective. Circ. Res. 2019, 124,
1598–1617. [CrossRef] [PubMed]

7. Lindman, B.R.; Dávila-Román, V.G.; Mann, D.L.; McNulty, S.; Semigran, M.J.; Lewis, G.D.; de las Fuentes, L.; Joseph, S.M.; Vader,
J.; Hernandez, A.F.; et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: A RELAX trial ancillary study. J.
Am. Coll. Cardiol. 2014, 64, 541–549. [CrossRef] [PubMed]

8. Samson, R.; Jaiswal, A.; Ennezat, P.V.; Cassidy, M.; Le Jemtel, T.H. Clinical Phenotypes in Heart Failure with Preserved Ejection
Fraction. J. Am. Heart Assoc. 2016, 5, e002477. [CrossRef]

9. Almengló, C.; Fu, X.; Flores-Arias, M.T.; Fernández, Á.L.; Viñuela, J.E.; Martínez-Cereijo, J.M.; Durán, D.; Rodríguez-Mañero, M.;
González-Juanatey, J.R.; Eiras, S. Synergism between obesity and HFpEF on neutrophils phenotype and its regulation by adipose
tissue-molecules and SGLT2i dapagliflozin. J. Cell. Mol. Med. 2022, 26, 4416–4427. [CrossRef]

10. Wang, A.; Li, Z.; Zhuo, S.; Gao, F.; Zhang, H.; Zhang, Z.; Ren, G.; Ma, X. Mechanisms of Cardiorenal Protection with SGLT2
Inhibitors in Patients with T2DM Based on Network Pharmacology. Front. Cardiovasc. Med. 2022, 9, 857952. [CrossRef]

11. Van Ham, W.B.; Kessler, E.L.; Oerlemans, M.I.F.J.; Handoko, M.L.; Sluijter, J.P.G.; van Veen, T.A.B.; den Ruijter, H.M.; de Jager,
S.C.A. Clinical Phenotypes of Heart Failure with Preserved Ejection Fraction to Select Preclinical Animal Models. JACC Basic
Transl. Sci. 2022, 7, 844–857. [CrossRef] [PubMed]

12. Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al.
Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [CrossRef]

13. Shah, S.J.; Katz, D.H.; Selvaraj, S.; Burke, M.A.; Yancy, C.W.; Gheorghiade, M.; Bonow, R.O.; Huang, C.C.; Deo, R.C. Phenomapping
for novel classification of heart failure with preserved ejection fraction. Circulation 2015, 131, 269–279. [CrossRef] [PubMed]

14. Sanchez-Martinez, S.; Duchateau, N.; Erdei, T.; Kunszt, G.; Aakhus, S.; Degiovanni, A.; Marino, P.; Carluccio, E.; Piella, G.; Fraser,
A.G.; et al. Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure with Preserved Ejection Fraction.
Circ. Cardiovasc. Imaging 2018, 11, e007138. [CrossRef] [PubMed]

15. Przewlocka-Kosmala, M.; Marwick, T.H.; Dabrowski, A.; Kosmala, W. Contribution of Cardiovascular Reserve to Prognostic
Categories of Heart Failure with Preserved Ejection Fraction: A Classification Based on Machine Learning. J. Am. Soc. Echocardiogr.
2019, 32, 604–615.e6. [CrossRef] [PubMed]

16. Segar, M.W.; Patel, K.V.; Ayers, C.; Basit, M.; Tang, W.W.; Willett, D.; Berry, J.; Grodin, J.L.; Pandey, A. Phenomapping of patients
with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur. J. Heart Fail.
2020, 22, 148–158. [CrossRef]

17. Hedman, Å.K.; Hage, C.; Sharma, A.; Brosnan, M.J.; Buckbinder, L.; Gan, L.M.; Shah, S.J.; Linde, C.M.; Donal, E.; Daubert, J.-C.;
et al. Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 2020,
106, 342–349. [CrossRef]

18. Schrub, F.; Oger, E.; Bidaut, A.; Hage, C.; Charton, M.; Daubert, J.C.; Leclercq, C.; Linde, C.; Lund, L.; Donal, E. Heart failure
with preserved ejection fraction: A clustering approach to a heterogenous syndrome. Arch. Cardiovasc. Dis. 2020, 113, 381–390.
[CrossRef]

https://doi.org/10.1002/ejhf.2333
https://www.ncbi.nlm.nih.gov/pubmed/35083827
https://doi.org/10.1161/CIR.0000000000001063
https://www.ncbi.nlm.nih.gov/pubmed/35363499
https://doi.org/10.1136/heartjnl-2021-319605
https://doi.org/10.1161/01.CIR.101.17.2118
https://www.ncbi.nlm.nih.gov/pubmed/10790356
https://doi.org/10.1161/CIRCULATIONAHA.118.034646
https://www.ncbi.nlm.nih.gov/pubmed/29792299
https://doi.org/10.1161/CIRCRESAHA.119.313572
https://www.ncbi.nlm.nih.gov/pubmed/31120821
https://doi.org/10.1016/j.jacc.2014.05.030
https://www.ncbi.nlm.nih.gov/pubmed/25104521
https://doi.org/10.1161/JAHA.115.002477
https://doi.org/10.1111/jcmm.17466
https://doi.org/10.3389/fcvm.2022.857952
https://doi.org/10.1016/j.jacbts.2021.12.009
https://www.ncbi.nlm.nih.gov/pubmed/36061340
https://doi.org/10.1056/NEJMoa1313731
https://doi.org/10.1161/CIRCULATIONAHA.114.010637
https://www.ncbi.nlm.nih.gov/pubmed/25398313
https://doi.org/10.1161/CIRCIMAGING.117.007138
https://www.ncbi.nlm.nih.gov/pubmed/29661795
https://doi.org/10.1016/j.echo.2018.12.002
https://www.ncbi.nlm.nih.gov/pubmed/30718020
https://doi.org/10.1002/ejhf.1621
https://doi.org/10.1136/heartjnl-2019-315481
https://doi.org/10.1016/j.acvd.2020.03.012


J. Pers. Med. 2023, 13, 746 11 of 12

19. Woolley, R.J.; Ceelen, D.; Ouwerkerk, W.; Tromp, J.; Figarska, S.M.; Anker, S.D.; Dickstein, K.; Filippatos, G.; Zannad, F.; Metra,
M.; et al. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection
fraction. Eur. J. Heart Fail. 2021, 23, 983–991, Correction in Eur. J. Heart Fail. 2021, 1802. [CrossRef]

20. Gu, J.; Pan, J.A.; Lin, H.; Zhang, J.F.; Wang, C.Q. Characteristics, prognosis and treatment response in distinct phenogroups of
heart failure with preserved ejection fraction. Int. J. Cardiol. 2021, 323, 148–154. [CrossRef]

21. Kao, D.P.; Lewsey, J.D.; Anand, I.S.; Massie, B.M.; Zile, M.R.; Carson, P.E.; McKelvie, R.S.; Komajda, M.; McMurray, J.J.V.;
Lindenfeld, J. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications
for prognosis and treatment response. Eur. J. Heart Fail. 2015, 17, 925–935. [CrossRef] [PubMed]

22. Cohen, J.B.; Schrauben, S.J.; Zhao, L.; Basso, M.D.; Cvijic, M.E.; Li, Z.; Yarde, M.; Wang, Z.; Bhattacharya, P.T.; Chirinos, D.A.;
et al. Clinical Phenogroups in Heart Failure with Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to
Spironolactone. JACC Heart Fail. 2020, 8, 172–184. [CrossRef] [PubMed]

23. Uijl, A.; Savarese, G.; Vaartjes, I.; Dahlström, U.; Brugts, J.J.; Linssen, G.C.M.; van Empel, V.; Brunner-La Rocca, H.P.; Asselbergs,
F.W.; Lund, L.H.; et al. Identification of distinct phenotypic clusters in heart failure with preserved ejection fraction. Eur. J. Heart
Fail. 2021, 23, 973–982. [CrossRef] [PubMed]

24. Rucker, D.; Joseph, J. Defining the Phenotypes for Heart Failure with Preserved Ejection Fraction. Curr. Heart Fail. Rep. 2022, 19,
445–457. [CrossRef]

25. Kresoja, K.P.; Unterhuber, M.; Wachter, R.; Thiele, H.; Lurz, P. A cardiologist’s guide to machine learning in cardiovascular disease
prognosis prediction. Basic Res. Cardiol. 2023, 118, 10. [CrossRef]

26. Casebeer, A.; Horter, L.; Hayden, J.; Simmons, J.; Evers, T. Phenotypic clustering of heart failure with preserved ejection fraction
reveals different rates of hospitalization. J. Cardiovasc. Med. 2021, 22, 45–52. [CrossRef]

27. Shah, S.J.; Kitzman, D.W.; Borlaug, B.A.; van Heerebeek, L.; Zile, M.R.; Kass, D.A.; Paulus, W.J. Phenotype-Specific Treatment of
Heart Failure with Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation 2016, 134, 73–90. [CrossRef]
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