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Abstract: Background: The characteristic magnetic resonance imaging (MRI) and the positron emis-
sion tomography (PET) findings of PCNSL often overlap with other intracranial tumors, making
definitive diagnosis challenging. PCNSL typically shows iso-hypointense to grey matter
on T2-weighted imaging. However, a particular part of PCNSL can demonstrate T2-weighted
hyperintensity as other intracranial tumors. Moreover, normal high uptake of FDG in the basal
ganglia, thalamus, and grey matter can mask underlying PCNSL in 18F-FDG PET. In order to pro-
mote the efficiency of diagnosis, the MRI-based or PET/CT-based radiomics models combining
histograms with texture features in diagnosing glioma and brain metastases have been widely estab-
lished. However, the diagnosing model for PCNSL has not been widely reported. The study was
designed to investigate a machine-learning (ML) model based on multiple parameters of 2-deoxy-2-
[18F]-floor-D-glucose (18F-FDG) PET for differential diagnosis of PCNSL and metastases in the brain.
Methods: Patients who underwent an 18F-FDG PET scan with untreated PCNSL or metastases in
the brain were included between May 2016 and May 2022. A total of 126 lesions from 51 patients
(43 patients with untreated brain metastases and eight patients with untreated PCNSL), including
14 lesions of PCNSL, and 112 metastatic lesions in the brain, met the inclusion criteria. PCNSL or
brain metastasis was confirmed after pathology or clinical history. Principal component analysis
(PCA) was used to decompose the datasets. Logistic regression (LR), support vector machine (SVM),
and random forest classification (RFC) models were trained by two different groups of datasets, the
group of multi-class features and the group of density features, respectively. The model with the
highest mean precision score was selected. The testing sets and original data were used to examine
the efficacy of models separately by using the weighted average F1 score and area under the curve
(AUC) of the receiver operating characteristic curve (ROC). Results: The multi-class features-based
RFC and SVM models reached identical weighted-average F1 scores in the testing set, and the score
was 0.98. The AUCs of RFC and SVM models calculated from the testing set were 1.00 equally.
Evaluated by the original dataset, the RFC model based on multi-class features performs better than
the SVM model, whose weighted-average F1 scores of the RFC model calculated from the original
data were 0.85 with an AUC of 0.93. Conclusions: The ML based on multi-class features of 18F-FDG
PET exhibited the potential to distinguish PCNSL from brain metastases. The RFC models based on
multi-class features provided comparatively high efficiency in our study.

Keywords: primary central nervous system lymphoma; predictive modeling; Radiomics; machine
learning; PET

1. Instruction

The use of imaging techniques to assess brain lesions is crucial in diagnosing and
managing neurological disorders. MRI and CT have commonly used imaging modalities,
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but they have limited usefulness in providing information on the metabolic activity of brain
lesions. In contrast, 18F-FDG PET-CT is a functional imaging modality that can provide
valuable information on the metabolic activity of brain lesions, particularly brain tumors.

A review of the literature suggests that 2-deoxy-2-[18F]-floor-D-glucose (18F-FDG)
PET-CT is a valuable tool in identifying metabolically active brain tumors and moni-
toring treatment response [1]. Zhao et al. (2014) reported that 18F-FDG PET-CT had
high sensitivity and specificity for detecting brain tumors and differentiating them from
non-neoplastic lesions [2].

However, the accuracy and usefulness of 18F-FDG PET-CT in CNS diagnosis are still
debated among researchers and clinicians. Some studies have reported lower accuracy rates
for differentiating between benign and malignant brain tumors. The usefulness of 18F-FDG
PET-CT may be affected by the lesion’s type and location, surrounding inflammation or
edema, and the patient’s metabolic state.

Despite these limitations and controversies, the available evidence suggests that 18F-
FDG PET-CT remains a valuable tool for assessing brain lesions, particularly in the context
of brain tumors. Yang et al. (2019) [3] reported that 18F-FDG PET-CT and MRI had similar
diagnostic accuracy in differentiating between high-grade and low-grade gliomas.

Primary central nervous system lymphoma (PCNSL) is a rare type of non-Hodgkin
lymphoma that affects the brain, eyes, leptomeninges, or spinal cord. The incidence of PC-
NSL was 7 cases per 1,000,000 people in the USA in 2013 [4]. The PCNSL accounts for 2–3%
of all brain tumors [5] (pp. 971–977). A study reported that the 2-year age-adjusted relative
survival rate of PCNSL was 33%, and the corresponding 5-year survival rate of PCNSL was
26% [6]. An accurate diagnosis is crucial for the effective treatment of PCNSL. Currently,
combination chemotherapy regimens that include high-dose methotrexate are considered
the standard of care for newly diagnosed PCNSL [7]. In contrast, patients with brain metas-
tases require a multidisciplinary approach that involves surgical resection, various radiation
treatment modalities, cytotoxic chemotherapy, and targeted molecular treatment [8].

Neuro-imaging using cranial MRI with fluid-attenuated inversion recovery (FLAIR)
and T1-weighted sequences before and after contrast injection is the preferred method
for diagnosing and monitoring PCNSL [9]. However, distinguishing between PCNSL
and brain metastases can be challenging since both present similar MRI signs, such as
non-enhancing core and perifocal edema [10]. Moreover, a particular part of PCNSL can
demonstrate T2-weighted hyperintensity as other intracranial tumors [11]. 18F-FDG PET
can be helpful for differential diagnosis, but it has insufficient specificity [9,12].

Recent, more inspiring studies of MRI-based or PET/CT-based radiomics models
combining histograms with texture features have been widely reported in diagnosing
and managing glioma and metastases in the brain [13,14]. Nonetheless, due to the low
morbidity of PCNSL, the relevant diagnosing model has not been widely investigated yet.

Therefore, we aim to establish several models based on 18F-FDG PET/CT and find an
estimator with the best-predicted performance to identify PCNSL to improve diagnosis,
affect patients’ management, decrease the number of indications to surgical interventions,
direct the patient to the most accurate therapy, and, therefore, affect their quality of life.

2. Materials and Methods

Our study follows the guideline, transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD) [15]. The statement adhered to the
supplement materials as a part of the study (Table S1).

2.1. Study Participants

The study retrospectively reviewed patients with intracranial mass who received an
18F-FDG PET/CT at Jiangsu Cancer Hospital from May 2016 to May 2022. Patients with
PCNSL confirmed by pathology and brain metastases confirmed by pathology or clinical
history without receiving systemic therapy or brain radiotherapy for the past six months.
Due to patients’ compliance, the biopsy of brain metastases cannot be feasible for all the
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patients whose primary tumor was pathologically confirmed. All the lesions were not
postoperative or post-biopsy (Figure 1).
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were included in the total.

2.2. 18F-FDG PET/CT Protocol
18F-FDG PET/CT protocol followed the European Association of Nuclear Medicine’s

guidelines [16]. Patients fasted for at least 6 h. The plasma glucose level of all the patients
was in a range from 4.0 mmol/L to 8.3 mmol/L. For patients with diabetes, additional
restrictions were applied. Only intermediate-acting or short-acting insulin was allowed
within 12 h before the administration of 18F-FDG, and the application of metformin was
compromised. The radioactivity of 18F-FDG for intravenous injection was calculated by
body weight, 4.1 ± 0.82 Mbq/kg (range from 2.96 MBq/kg to 5.55 Mbq/kg). The acquisition
of the brain starts at 77 ± 2.9 min (range from 74 to 82 min) after 18F-FDG injection when
the PET scan of the torso (from the canthus line to the thigh) was completed.
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The brain scan is a separate procedure. The PET/CT (Discover 710 STD GE Healthcare,
Waukesha, WI, USA) image acquisition consisted of a 10-min emission scanning with
one bed for the brain and low-dose CT for attenuation correction. The voxel size was
3.65 × 3.65 × 3.75 in mm with a matrix of 192 × 192. The reconstruction is Vue Point FX
with 24 subsets and 2-times iterations. Low-dose CT used 3.75 mm slice thickness, pitch
1.375:1, 140 kV with Auto-mA.

2.3. Segmentation of Images

All the PET/CT images, relevant MRI, and related contrast-enhanced CT images were
reviewed using PET VCAR with Integrated Registration, a component of the Advantage
Workstation (version 4.6, GE Healthcare, Waukesha, WI, USA).

Segmentation of lesions was performed by two clinical radiologists with over five years
of experience. The volume of interest (VOI) was checked by radiology and nuclear medicine
physicians with a career in oncological PET/CT interpretation over ten years.

Segmentation of PET volumes was based on the iterative image thresholding method
(ITM), which yielded reliable PET volume estimation as previously reported [17]. Relevant
MRI and contrast-enhanced CT were used as the reference to adjust the edge of VOIs
manually. VOIs were saved and exported as the radiotherapy structure set (RTSS).

2.4. Feature Extraction

All the characters were divided into two groups, the group of density features and
the group of multi-class features (Table S2). Briefly, the density-features group contains
10% percentile, 90% percentile, energy, maximum, minimum, and range. The multi-classes-
features group includes all first-order characters and the texture characters, such as the
gray-level co-occurrence matrix (GLCM), modification of grey-level difference matrix
(GLDM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and
neighboring gray-tone difference matrix (NGTDM), 93 features in total.

As the unit of the pixel value is Becquerel per mL, PET images were normalized by
the SUV factor Formula (1) and resampled to a uniform voxel size of 2 × 2 × 2 mm3.
PyRadiomics (V3.01) (https://pyradiomics.readthedocs.io/en/latest/index.html, accessed
on 3 May 2022) was used to extract all features [18]. The bin width of 0.5 was derived by
dividing the maximum range by 64 [19].

SUV f actor =
W

D × 2(−t/T)
(1)

Formula (1). W: Body weight (g), D: Injection dose (Bq), t: Delay between injection time
and scan time (s), T: Half-life of the isotope (s).

2.5. Model Training and Validation
2.5.1. Statistical Analysis

The present study employed a statistical analysis of three primary steps: resampling,
dimensionality reduction, and estimator establishment (Figure 2a). Specifically, to address
the issue of imbalanced datasets, the researchers utilized the synthetic minority over-
sampling technique and edited nearest neighbors (SMOTEENN) algorithm. SMOTEENN is
a hybrid approach that combines the synthetic minority over-sampling technique (SMOTE)
and edited nearest neighbors (ENN) algorithms. SMOTE generates synthetic minority
class samples to balance the class distribution, while ENN removes examples considered
noisy or belonging to the majority class. By combining these two techniques, SMOTEENN
can oversample minority class examples and remove potentially noisy or irrelevant ex-
amples from the dataset. The tools were provided by mbalanced-learn (Version: 0.9.1)
(https://imbalanced-learn.org/stable/, accessed on 18 May 2022)

https://pyradiomics.readthedocs.io/en/latest/index.html
https://imbalanced-learn.org/stable/
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Principal component analysis (PCA), a linear method known for reducing the di-
mensions of a dataset while retaining the most relevant information, was employed to
achieve the aim mentioned above. The PCA was achieved by transforming the original
n-dimensional dataset into a new dataset using an orthogonal transformation [14]. For
the last step, three classification algorithms were selected: support vector machine (SVM),
logistic regression (LR), and random forest classification (RFC). SVM is a particularly ef-
fective classifier for small machine-learning tasks [20]. The LR classifier, while running
faster, places greater emphasis on feature engineering [21]. On the other hand, RFC is
known to reduce overfitting by averaging decision trees, making it a relatively stable clas-
sification method. However, it requires more time to train the model due to its complex
calculation process [22]. All the tools above were provided by the scilearn-kit (Version:
scikit-learn 1.1.2) (https://scikit-learn.org/stable/ accessed on 6 August 2022).

2.5.2. Pre-Process of Datasets

Two groups of original datasets were separately resampled by imbalanced-learn
(Version: 0.9.1) (https://imbalanced-learn.org/stable/, accessed on 18 May 2022). The
method of SMOTEENN was used to balance the datasets [23,24].

Two datasets were divided into training sets and testing sets with a ratio of 2:1 using
the scilearn-kit (Version: scikit-learn 1.1.2) (https://scikit-learn.org/stable/, accessed on
6 August 2022. All of the data were normalized by Standard-Scaler provided by scilearn-kit.

2.5.3. Dimensionality Reduction

Principal component analysis (PCA) was used for dimensionality reduction for the
multi-class features group. PCA reduces high-dimensional features into a small number

https://scikit-learn.org/stable/
https://imbalanced-learn.org/stable/
https://scikit-learn.org/stable/
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of principal components (PCs). The PCs will be retained until the cumulative-explained
variance is over 0.9.

The dimension of the density-features group was not reduced. Because only
six dimensionalities exist in the datasets, dimensionality reduction is unnecessary.

2.5.4. Fitting the Model and Internal Cross-Validation

Two groups of data were fitted to logistic regression (LR), support vector machine
(SVM), and random forest classification (RFC) models.

Hyperparameters were determined by grid search with five-fold cross-validation
(Figure 2b,c) [25,26]. Briefly, the dataset was split into five folds. In the initial iteration, the
first fold was used to validate the model, and the rest folds were used for the training of the
model. In the second iteration, the second fold is used as the validation set, while the rest is
the training set. This process was repeated five times. The precision Formula (2) of each
iteration was averaged. All of the hyperparameters were traversed by grid search. The
hyperparameters of each model with the highest precision were selected. Finally, trained
by training sets with the best hyperparameters, the six estimators were established from
three different models with two data sets.

2.5.5. Evaluation of Estimators

The testing sets and original datasets (the dataset without resampling) were used to
evaluate the estimator.

The receiver operating characteristic curve (ROC) with the area under the curve (AUC)
is presented. The F1 score Formula (2) is a machine-learning metric used in classification
models [27]. For imbalanced data, we use the weighted average F1 score to compare the
efficiency of the estimators.

Precision =
True positives

True Positives + False positives
(2)

Recall =
True positives

True positives + False Nagetives
(3)

F1 score = 2 × Precision·Recall
Precison + Recall

(4)

Formula (2). The definition of precision (2), recall (3), and Average F1 score (4).

3. Result
3.1. Study Participants

The characteristics of patients are demonstrated in Table 1. In total, 8 patients with
PCNSL and 43 patients with metastases in the brain were included, with 14 lesions of
PCNSL and 112 lesions of metastases in the brain (Figure 1). The primary tumor of all
the brain metastases patients was pathologically confirmed. One of the patients, whose
primary tumor was adenocarcinoma of the lung, underwent a craniotomy biopsy. Finally,
the brain metastases of the lung carcinoma were confirmed. The pathology result of all
patients with PCNSL was confirmed by stereotaxic needle biopsy. There is no significant
difference in sex and age. The SUVmax of PCNSL and metastases is significantly different.

3.2. Dimensionality Reduction

The study used PCA to project 93 features in the multi-classes-features group to six
dimensions. The data of the first three principal components in the training set of the multi-
class-features group is shown in Figure 3a. The individual-explained variance ratio and
cumulative-explained variance ratio for each principal component are shown in Figure 3b.
The cumulative-explained variance ratio of the third principal component is 82.6%, and the
sixth is 91.6%, meaning the first 6 principal components contained 91.6% of the information
of all 93 features.
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Table 1. Characteristics of patients.

Characteristics PCNSL Metastases p Value

Sex 0.0986 2

Male 3 31
Female 5 12
Age 56.00 ± 13.98 59.49 ± 11.74 0.4570 3

SUVmax 1 20.14 ± 7.58 12.80 ± 4.84 0.0006 3

Pathology
B cell lymphoma 8
Squamous carcinoma 4 12
Adenocarcinoma 4 22
Melanoma 4 3
Renal clear cell cancer 4 2
Neuroendocrine carcinoma 4 2

1 The AUC of ROC is 0.78. If the cut-off of SUVmax is 14.42, the sensitivity and specificity are 71.43% and 73.21%,
and the F1 score is 0.287. 2 The statistical method is Fisher’s exact test. 3 The statistical method is the t-test.
4 No difference in the average SUVmax among different pathological types was found (p = 0.5213) (Figure S1).
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The PCA loading vectors are shown in Figure 2c and Supplement Table S3. The multi-
features dataset was converted from its original dimension to the reduced PCA dimension
by using the vectors in the linear transformation.

3.3. Modeling and Validating
3.3.1. Fit the Model and Internal Cross-Validation

The hyperparameters of all the estimators are shown in Table 2.

Table 2. Hyperparameters and precision of estimators.

Density Features Multi-Class Features

Hyperparameters Precision Hyperparameters Precision

LR

C: 1.0
dual: True
multi_class: ovr
penalty: l2
solver: liblinear

0.822 ± 0.090

C: 1.4
dual: False
multi_class: ovr
penalty: l1
solver: liblinear

0.921 ± 0.074

SVM
C: 2.81
gamma: 2.21
kernel: rbf

0.934 ± 0.060
C: 7.01
gamma: 0.21
kernel: poly

1.0 ± 0.0

RFC

bootstrap: False
max_depth: 20
max_features: log2
min_samples_leaf: 4
min_samples_split: 16
n_estimators: 500

0.932 ± 0.063

bootstrap: False
max_depth: 5
max_features: sqrt
min_samples_leaf: 2
min_samples_split: 8
n_estimators: 500.

0.962 ± 0.047

The precision between different models (p = 0.0137) and between datasets (p = 0.0174)
are discrepant. In multiple comparisons between values of precision, only the difference
between the SVM model trained by multi-class features and the LR model trained by
density features is observed (p = 0.0025). The recall of the LR model trained by density
features is lower than the others (p < 0.0001), while there is no difference was found between
the others (Figure 4).
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3.3.2. Evaluation of Estimators

The weighted average F1 score of estimators is shown in Table 3. Although all the ROC
of estimators shows a nearly perfect performance in the testing set, only SVM and RFC
trained by multi-class features exhibit acceptable results, of which the AUCs are 0.92 and
0.93 (>0.9) (Figure 5).

Table 3. The weighted average F1 scores of estimators.

Density Features Multi-Class Features

Testing Set Original Data Testing Set Original Data

LR 0.86 0.79 0.93 0.82
SVM 0.96 0.78 0.98 0.83
RFC 1.00 0.82 0.98 0.85
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4. Discussion

The study established a model to classify PCNSL and neuro-metastases, combining
histogram and high-order characteristics from lesions in 18F-FDG PET images. The tech-
nique, dimensionality reduction and the balance of data sets, was adopted to reduce the
possibility of overfitting.

The SVM and RFC models trained by the multi-class features data set and the RFC
models trained by density features show the highest F1 scores and AUCs validated by the
testing set. However, evaluated by the data sets without resampling, the F1 scores and
AUCs’ reduction of all six estimators can be observed. Nevertheless, the F1 score and AUC
of the RFC models trained by the multi-class features were still acceptable and relatively
higher than others evaluated by the testing and original data set.

18F-FDG PET-CT is a sensitive screening tool for PCNSL patients suspected of systemic
involvement [7]. However, A low diagnostic yield of PCNSL for initial staging has been
reported [28]. Even if the limitation of 18F-FDG PET in neuro-oncology is widely accepted,
some studies argued that the different SUVmax and tumor-normal ratios could be observed
in PCNSL and metastases in the brain [12,29]. A similar result can also be drawn from
our data; sensitivity and specificity are 71.43% and 73.21%, with a cut-off of 14.42. How-
ever, the change SUVmax and tumor-normal ratios may not be conspicuous in atypical
PCNSL [30]. Precisely as we noticed, some lesions of PCNSL can be concealed by the high
metabolism of the cerebral cortex. In recent years, 18F-FDG PET or MRI-based radiomics
features have been reported to distinguish the PCNSL and glioblastoma, which provides a
reliable noninvasive method [31–34]. The multi-feature-based diagnosing method should
potentially promote the performance in the differential diagnosis between PCNSL and
brain metastases. It is just what we discussed in our study to establish a method based on
radiomics to increase the diagnosis accuracy of the PCNSL and brain metastases interpreted
from 18F-FDG PET.

Due to the disparate incidence of PCNSL and brain metastases, the data set can be
highly unbalanced. The incidence of PCNSL was 7 cases per 1,000,000 people in the USA
in 2013 [4]. The PCNSL accounts for 2–3% of all brain tumors [5] (pp. 971–977). Relatively,
brain metastases develop in approximately 10% to 30% of adults and 6% to 10% of children
with cancer [35]. Training with unbalanced datasets may lead to overfitting and underfitting.
The synthetic minority over-sampling technique (SMOTE) can be an appropriate option
for dealing with imbalanced datasets [24]. The SMOTE is a way to deal with the minority
classes in a dataset. This algorithm’s fundamental idea is to analyze, simulate, and add
the new sample simulated artificially into the original dataset to balance the classes in the
original data. In our study, the hyper-sampling method was used. The method combines
SOMTE with edited nearest neighbors (ENN), an under-sampling technique that removes
the majority class to match the minority class [36]. The method has been used in several
clinical studies [37–40].

Actually, for the sure size of the training set, the predictive performance of models
decreases with increasing dimensionality [41]. The six visually recognizable features were
defined as the group of density. Ninety-three features in the multi-class features group were
extracted for PET imaging. The multi-class features can be redundant, and some features
can be highly related, which may lead to the over-fitting of the models. It is vital to reduce
dimensionality without losing information. PCA determines a set of orthogonal vectors
called principal components, defined by a linear combination of the original variables and
ordered by the amount of variance explained in component directions [42]. The cumulative-
explained variance ratio, the summary of explained variance ratio, has been set to 0.9,
which means more than 90 percent of variation from the 93 features has been retained.

In our study, besides the AUCs of ROCs, the weight-average F1 scores were used to
evaluate the predicted performance of estimators. While ROC was unaffected by skew,
precision–recall curves suggest that ROC may mask poor performance [43]. The weight-
average F1 score is the harmonic mean of precision (also called positive predictive value)
and recall (indicated the sensitivity), widely used in information retrieval and information
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extraction evaluation [44]. In our study, the weighted average F1 scores were used to evalu-
ate the performance of estimators, which calculates the weighted mean of all per-class F1
scores while considering each class’s support, eliminating the effect of unbalanced data sets.

For the five sixths estimators, the F1 scores resulting from the testing set are more
prominent than 0.9. The result indicated that precision and sensitivity could be excellent
in the testing set. ROC and AUC can also display similar results. In order to evaluate the
predicted performance in the real world and the generalization ability of the estimators, we
used the original data sets (without resampling) to re-evaluate all estimators. We noticed
that all estimators’ F1 scores or AUCs have a decrease in a certain degree tested by original
data sets (without resampling) while considering the class imbalance. Especially in the
RFC model trained by density features, the F1 score is 1.00 in the testing set and decreases
to 0.82 in the original data. We conjecture that overfitting this estimator may decrease
the estimators’ performance, as reported [45].On the other hand, the estimator generated
from the RFC model trained by multi-class features performs well for both the testing data
set and the original data set (without resampling). We conjecture that the characters of
the random forests algorithm decrease the possibility of overfitting. Because the random
forests deal with the problem of overfitting by creating multiple trees, with each tree trained
slightly differently, it overfits differently. The sufficient diagnostic information provided
by the multi-class features and the combination of each decision tree offset the effect of
overfitting each decision tree.

The low incidence of PCNSL and restricted enrollment criteria restrict the sample size,
and further multicenter studies are urgently required. The utilization of various machine
learning algorithms has significantly enhanced the efficacy of identifying primary central
nervous system lymphoma (PCNSL) and brain metastases. However, it has concurrently
augmented the complexity of the practical implementation of these techniques in clinical
settings. The random forest model exhibits superior accuracy when dealing with high-
dimensional data. Nevertheless, the random forest model’s interpretability is greatly
diminished by the utilization of multiple decision tree models to determine the final
classification outcome through voting.

The ML model based on 18F-FDG can improve the diagnosis of brain lesions by
providing clinicians with more precise and consistent information, which can lead to faster
and more effective treatment decisions. Radiomics models, which use AI algorithms to
analyze medical images, have shown promise in differentiating between brain lesions,
including PCNSL and brain metastases.

However, while The ML model based on 18F-FDG has shown potential in improving
the diagnosis of brain lesions, more research is needed to fully understand their clini-
cal impact and how to integrate them into clinical practice. Clinicians must be aware
of these tools’ limitations and potential biases and ensure their use is evidence-based
and clinically relevant.

5. Conclusions

The SUVmax of 18F-FDG PET is a proven semi-quantitative indicator; the combina-
tion of radiomics and machine learning promotes the performance of PCNLS and brain
metastases diagnosis. The F1 score and AUC of the RFC model trained by multi-class
features are 0.85 and 0.93. The RFC model trained by multi-class features has the potential
to revolutionize brain lesions diagnosis and improve patient outcomes. However, they
need to integrate into clinical practice cautiously and consider their limitations and biases.
More research is needed to fully understand the clinical impact of the model and how it
can be best utilized in clinical settings.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jpm13030539/s1, Figure S1: The SUVmax of brain metas-
tases with different pathology; Table S1: The TRIPOD checklist, Table S2: The features list of the group
of density characters and the group of multi-class characters; Table S3: The PCA loading vectors.
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