
Citation: Zhang, C.; Qin, C.; Lin, Y.

Development and Validation of a

Prognostic Risk Model Based on

Nature Killer Cells for Serous

Ovarian Cancer. J. Pers. Med. 2023, 13,

403. https://doi.org/10.3390/

jpm13030403

Academic Editor: Luigi Della Corte

Received: 7 February 2023

Revised: 22 February 2023

Accepted: 22 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

Development and Validation of a Prognostic Risk Model Based
on Nature Killer Cells for Serous Ovarian Cancer
Chengxi Zhang 1,2, Chuanmei Qin 1,2 and Yi Lin 3,*

1 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai 200030, China

2 Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
3 Reproductive Medicine Center, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong

University, Shanghai 200233, China
* Correspondence: yilinonline@126.com

Abstract: Nature killer (NK) cells are increasingly considered important in tumor microenvironment,
but their role in predicting the prognosis of ovarian cancer has not been revealed. This study aimed to
develop a prognostic risk model for ovarian cancer based on NK cells. Firstly, differentially expressed
genes (DEGs) of NK cells were found by single-cell RNA-sequencing dataset analysis. Based on
six NK-cell DEGs identified by univariable, Lasso and multivariable Cox regression analyses, a
prognostic risk model for serous ovarian cancer was developed in the TCGA cohort. This model
was then validated in three external cohorts, and evaluated as an independent prognostic factor by
multivariable Cox regression analysis together with clinical characteristics. With the investigation of
the underlying mechanism, a relation between a higher risk score of this model and more immune
activities in tumor microenvironment was revealed. Furthermore, a detailed inspection of infiltrated
immunocytes indicated that not only quantity, but also the functional state of these immunocytes
might affect prognostic risk. Additionally, the potential of this model to predict immunotherapeutic
response was exhibited by evaluating the functional state of cytotoxic T lymphocytes. To conclude,
this study introduced a novel prognostic risk model based on NK-cell DEGs, which might provide
assistance for the personalized management of serous ovarian cancer patients.

Keywords: ovarian cancer; nature killer (NK) cell; tumor microenvironment; single-cell RNA-
sequencing; prognostic risk model; immunotherapy

1. Introduction

Ovarian cancer is a main cause of death in gynecologic cancers [1]. As the main subtype
of epithelial ovarian cancer, high grade serous ovarian cancer (HGSOC) has exhibited a disap-
pointingly low 5-year survival rate, which is only 20–30%, and has not elevated significantly in
the past several decades [2]. Recurrence after traditional surgery and chemotherapy treatment
is a major cause of poor clinical outcomes. As a promising novel approach, immunotherapy
has been improving outcomes of various cancer types [3]. However, only a part of ovarian
cancer patients have received significant benefits from immunotherapy [4,5].

As a heterogeneous system, tumor microenvironment consists of tumor cells, infil-
trating immunocytes, stromal cells, and other components. The diversity of the tumor
microenvironment is believed to be a crucial factor in influencing responses to immunother-
apy. Increasing evidence suggests that ovarian cancer is a “immunogenic tumor” [6–9],
emphasizing the importance of immunocytes in tumor microenvironment. However, in
spite of immunocytes infiltration, the response rate of immune checkpoint inhibitor in ovar-
ian cancer remain disappointingly low [10]. Thus, a deeper understanding of immunocytes
in ovarian cancer is needed to help patients derive more benefits from immunotherapy.
Natural killer (NK) cells are innate lymphocytes capable of killing pathogens and tumor
cells nonspecifically. NK cells in tumor microenvironment is related to enhanced survival
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in multiple cancer types, and anti-tumor activity of NK cells can be modified by immune
checkpoint blockade [11,12]. Recent research has reported the potential of NK cells as
immunotherapy in a mouse model of ovarian cancer [13]. Considering the complexity
and limited utilization of immunocytes like NK cells in clinical practice, a high-resolution
portrait is required to achieve better clinical outcomes of ovarian cancer patients.

Heterogeneity of immunocytes in tumor microenvironment limits the effectiveness of
immunotherapy. While traditional strategies are impotent to provide precise information
on individual cells, single-cell RNA-sequencing (scRNA-seq) technologies can analyze
immunocytes in a high-throughput and high-resolution way [14–18]. With the help of the
scRNA-seq technologies, specific types of immunocytes in tumor microenvironment can
be investigated to develop prognostic biomarkers for cancer patients. T cells [19,20] and
macrophages [21,22] have recently been utilized to construct prognostic risk models for
ovarian cancer, and NK cells have been utilized for other types of cancer [23,24]. However, as
far as we know, there has been no research focusing on NK cells in ovarian cancer up till now.
In this study, we identified differentially expressed genes (DEGs) of NK cells from a scRNA-
seq dataset of serous ovarian cancer patients, and constructed a prognostic risk model based
on the NK-cell DEGs. The model was then validated in external datasets. Moreover, in order
to explore the possible mechanism behind this model, we performed analyses focusing on
immune actives and infiltrated immunocytes in tumor microenvironment.

2. Materials and Methods
2.1. Data Collection

ScRNA-seq data from seven HGSOC samples of GSE184880 from the GEO database
was used to identify NK-cell DEGs. From the UCSC Xena website (https://xenabrowser.
net/, accessed on 7 October 2022), we obtained the Cancer Genome Atlas (TCGA) bulk
tumor transcriptomic data and corresponding clinical information of 378 samples of serous
ovarian cancer. Log2(FPKM + 1) was used for the TCGA transcriptomic data analysis.
Based on the TCGA cohort, survival-related NK-cell DEGs were identified to construct a
prognostic risk model. Afterwards, we obtained three independent microarray datasets
from the GEO database for external validation of the model, namely GSE53963 (n = 174),
GSE51088 (n = 117) and GSE49997 (n = 171). Log ratio of signal intensities was used for
microarray data analysis. Only samples classified as histotype of serous ovarian cancer
were used in these three GEO cohorts. Datasets described above are publicly available, and
ethics approval could be obtained from original studies.

2.2. Analysis of scRNA-seq Dataset and Identification of NK-Cell DEGs

Firstly, an analysis of scRNA-seq dataset was performed by using R packages “Seu-
rat” [25]. With reference to the result of Xu, J. et al. [26], we included genes that expressed no
less than five single cells, cells that expressed no less than 200 genes, and excluded cells that
expressed more than 40% of mitochondrial genes. ScRNA-seq data were then normalized
using logarithmic normalization methods. Next, the top 1500 integrated highly variable genes
were picked out, and anchors were found to integrate the data of each patient. Canonical
correlation analysis (CCA) was applied for batch effect removal. After that, the principal
component analysis (PCA) was performed based on the top 1500 integrated highly variable
genes, so that the dimension of the scRNA-seq data could be reduced. Based on the PCA
result, we picked out the first 30 significant principal components (PCs) and used them to
conduct cell clustering analysis. The k-nearest neighbor (KNN) graph was constructed to
determine the closest neighbors of each cell, and clusters of cells were then identified by a
shared nearest neighbor (SNN) modularity optimization, and manifested by T-distributed
stochastic neighbor embedding (t-SNE). Next, we identified cell types by biomarkers with
reference to the result of Xu, J. et al. [26] and the PanglaoDB database [27]. DEGs of each cell
type were identified by comparing with all of the other cell types using the “FindAllMarkers”
function of R packages “Seurat” [25], and certain cutoff threshold values were applied, namely
adjusted p-value < 0.01 and |log2(fold change)| > 0.5. Finally, NK-cell DEGs were picked
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out and limited to protein-coding genes, the list of which was downloaded from the HGNC
database (https://www.genenames.org/, accessed on 26 December 2022).

2.3. Construction and Validation of the Prognostic Risk Model Based on NK-Cell DEGs

Based on the TCGA cohort, we conducted a univariate Cox regression analysis with
the aim of revealing prognostic value of the NK-cell DEGs for overall survival by R package
“survival” [28], and NK-cell DEGs with p-value < 0.05 were selected as prognostic genes.
Based on these genes, we performed least absolute shrinkage and selection operator (Lasso)
Cox proportional hazards regression using R package “glmnet” [29] so that overfitting could
be minimized. Then we conducted 10-fold cross-validation as a means to pick out the best
model, with the tuning parameter set to minimum mean cross-validated error. Thus, candidate
genes with non-zero beta coefficients were identified. Lastly, on the basis of the Lasso Cox
regression analysis, we performed a multivariate Cox regression analysis to evaluate theses
candidate genes by the “survival” R package, and genes with p-value < 0.05 were identified
as independent prognostic genes. Thereupon, the prognostic risk model was constructed by
a linear combination of mRNA expression and the corresponding risk coefficient of these
independent prognostic genes. Next, the risk score of samples in the TCGA cohort was
calculated according to this model, and samples were then classified into low-risk or high-risk
groups by a median value of the risk score. The Kaplan–Meier method was employed for
survival analysis using R package “survminer” [30], and log-rank test was used to determine
the statistical significance of the difference between low-risk and high-risk groups. To assess
the predictive power of this prognostic risk model, area under the curve (AUC) was calculated
using R package “survivalROC” [31]. Finally, three independent cohorts were obtained from
the GEO database to validate this model’s ability of predicting prognosis.

2.4. Functional Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are two
widely used databases for functional enrichment analysis. In this study, we conducted GO
and KEGG functional enrichment analysis with the help of R package “clusterProfiler” [32].
GO analysis was annotated based on R package “org.Hs.eg.db” [33]. The latest online KEGG
database was accessed for KEGG analysis. Adjusted p-value < 0.05 was considered significant.

2.5. Immune Activities Assessment

Seven clusters of metagenes (STAT1, HCK, IgG, LCK, MHC-I, MHC-II, and Interferon)
have been widely utilized to evaluate immune and inflammatory activities in tumor mi-
croenvironment [34]. We used gene set variation analysis (GSVA) to explore expression
of these metagenes in the TCGA cohort by R package “GSVA” [35], and then conducted
correlation analysis for the GSVA scores and the risk score. p-value < 0.05 was considered
significant. Next, we conducted estimation of stromal and immune cells in malignant
tumor tissues using expression data (ESTIMATE) algorithm with the purpose of assessing
the infiltration level of immunocytes by R package “estimate” [36]. Immune score, stromal
score, and ESTIMATE score of the ESTIMATE algorithm were calculated in the TCGA
cohort, and in order to compare the difference between low-risk and high-risk groups, we
conducted t-test or Mann–Whitney U test.

2.6. Quantity and Functional State of Immunocytes Evaluation

Cell-type identification by estimating relative subsets Of RNA transcripts (CIBER-
SORT) is a useful method for obtaining the characteristics of cell types based on gene
expression profiles [37]. We conducted the CIBERSORT algorithm in the TCGA cohort
to asses infiltration levels of 22 types of immunocytes. Afterwards, we applied tumor
immune dysfunction and exclusion (TIDE). Fu et al. introduced this novel algorithm, which
is able to predict the response to immune checkpoint blocking therapy by analyzing the
dysfunction and exclusion profiles of cytotoxic T cells [38,39]. T cell dysfunction score, T
cell exclusion score, and TIDE score of the TIDE algorithm were calculated using python
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package “TIDEpy” [38,39]. t-test or Mann–Whitney U test was performed to compare
different results between low-risk and high-risk groups.

2.7. Statistical Analyses

Categorized variables between low-risk and high-risk groups were compared by t-
test or Mann–Whitney U test. The p-value < 0.05 was set as a significant threshold. The
Benjamini–Hochberg (BH) method was applied to adjust the p-value for multiple testing.
Linear correlation between two sets of numerical variables was measured by the Pearson
correlation method, which calculates a value between −1 and 1 to quantify correlation. In
the process of data analyses and figure production, we mainly used R software version
4.2.1 (http://www.R-project.org, accessed on 27 September 2022).

3. Results
3.1. Identification of NK-Cell DEGs by scRNA-seq Dataset Analysis

ScRNA-seq data of GSE184880 provided us with gene expression profiles of 33,546 cells
from seven treatment-naive HGSOC patients (Figure 1A). Based on that, we conducted PCA
using the top 1500 variable genes, and cells were thus classified into 17 clusters (Figure 1B).
These clusters were then annotated with reference to established marker genes. Figure 1C
demonstrates identified cell types, including NK cells (marked by KLRD1 and NKG7),
T cells (marked by TRBC2, CD3D, CD3G and CD3E), monocytes (marked by CD14 and
C1QA), epithelial cells (marked by EPCAM, CD24, KRT18 and KRT19), B cells (marked by
CD79A and JCHAIN), macrophages (marked by CD68 and TYROBP), endothelial cell types
(marked by PECAM1 and CLDN5), dendritic cells (marked by CX3CR1), and fibroblast
cells (marked by DCN). The expression level of these marker genes in different cell types are
shown in Figure 1D. Cells in cluster 5 were annotated as NK cells, subsequently, 576 protein-
coding genes were identified as NK-cell DEGs (Table S1). Functional enrichment analysis,
including GO and KEGG, indicated that these 576 genes are mainly enriched in immune
features, such as leukocyte mediated immunity, cytokine receptor binding, and natural
killer cell mediated cytotoxicity (Figure S1).

Figure 1. ScRNA-seq analysis identifies NK-cell DEGs. (A) t-SNE plot of 33,546 cells from seven
treatment-naive HGSOC patients. (B) Seventeen clusters identified in the 33,546 cells. (C) Cell types

http://www.R-project.org


J. Pers. Med. 2023, 13, 403 5 of 16

annotated by marker genes. (D) Bubble plot shows the expression level of marker genes in different
cell types. Color intensity of the bubble represents average expression level and size of the bubble
represents percentage of cells expressing the gene in each cell type. ScRNA-seq: single-cell RNA-
sequencing; DEGs: differentially expressed genes; and HGSOC: high grade serous ovarian cancer.

3.2. Development of a Prognostic Risk Model Based on the NK-Cell DEGs

To develop a prognostic risk model based on the 576 NK-cell DEGs, we firstly per-
form a univariate Cox regression analysis in the TCGA cohort, and 57 NK-cell DEGs were
found to be significantly related to overall survival (Table S2). Next, Lasso Cox regression
analysis was conducted as described in the Materials and Methods on these 57 prognostic
NK-cell DEGs (Figure S2A,B), and 19 genes were picked out, namely CD38, SLC11A1,
SLAMF7, GBP1, FOSB, JCHAIN, IGFBP4, THY1, CXCL13, IFI27, CXCL10, UBB, BTN3A2,
CMC1, C2orf88, CLDN4, EVL, GZMM, and TMSB4X. Lastly, we conducted a multivari-
ate Cox regression analysis (Figure S2C), and six most prognostic NK-cell DEGs were
identified to form the prognostic risk model: risk score = (0.236 × SLC11A1 expression)
+ (0.048 × THY1 expression) + (0.017 × IGFBP4 expression) + (−0.016 × EVL expression)
+ (−0.045 × UBB expression) + (−0.126 × C2orf88 expression). The risk score of each
sample in the TCGA cohort was calculated according to this model, and the median risk
score was used to classify samples into low-risk (n = 189) or high-risk (n = 189) groups.
Figure 2A exhibits the distribution of risk scores and survival status of the TCGA cohort.
Heatmap demonstrates expression level of these six genes forming the prognostic risk
model (Figure 2B). Then, a Kaplan–Meier analysis was conducted and the result revealed
that the low-risk group had significantly superior overall survival than the high-risk group
(Figure 2C). To assess the predictive accuracy of this model, area under the ROC curves for
overall survival was calculated, and 1-, 3-, and 5-year mean AUC values are 0.595, 0.620,
and 0.629, respectively (Figure 2D).

Figure 2. Development of a prognostic risk model based on the NK-cell DEGs in the TCGA cohort
(n = 378). (A) Distribution of risk scores and survival status. (B) Heatmap shows expression level
of the six genes forming the prognostic risk model. (C) Kaplan–Meier curves of survival analysis
compares overall survival between low-risk and high-risk groups. (D) ROC curves of the prognostic
risk model for predicting risk of death at 1, 3, and 5 years.
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3.3. External Validation of the Prognostic Risk Model in Independent Cohorts

In order to validate the predictive capability of the prognostic risk model, three
independent GEO cohorts were used, namely GSE53963 (n = 174), GSE51088 (n = 117), and
GSE49997 (n = 171). By the Kaplan–Meier analysis, we found that the low-risk group had
significantly superior overall survival than the high-risk group in each of these cohorts
(Figure 3A–C). To assess the predictive accuracy of the prognostic risk model, area under the
ROC curves for overall survival was calculated. In the GSE53963 cohort, mean AUC values
of 1, 3, and 5 years are 0.653, 0.567, and 0.609, respectively (Figure 3D). In the GSE51088
cohort, mean AUC values of 1, 3, and 5 years are 0.695, 0.666, and 0.641, respectively
(Figure 3E). Moreover, in the GSE49997 cohort, mean AUC values of 1, 3, and 5 years are
0.644, 0.688, and 0.693, respectively (Figure 3F).

Figure 3. External validation of the prognostic risk model in three independent GEO cohorts. Kaplan–
Meier analysis compared overall survival of the GSE53963 (n = 174) (A), GSE51088 (n = 117) (B), and
GSE49997 (n = 171) (C) cohort between low-risk and high-risk groups. ROC curves of the prognostic
risk model for predicting risk of death at 1, 3, and 5 years in the GSE53963 (D), GSE51088 (E), and
GSE49997 (F) cohort.

3.4. The Prognostic Risk Model Acted as an Independent Prognostic Factor

In order to rule out the confounding effect, we analyzed six clinical characteristics
together with the prognostic risk model in the TCGA cohort, namely age, tumor status,
clinical stage, venous invasion, lymphatic invasion, and residual disease. Firstly, we
performed a univariable Cox regression analysis on these characteristics to identify whether
they were related to overall survival of serous ovarian cancer patients. Results showed that
four characteristics were significantly associated with overall survival, namely age, tumor
status, residual disease, and risk group. Subsequently, we conducted a multivariable Cox
regression analysis on these four characteristics, and the result demonstrated tumor status
and risk group as independent prognostic factors (Table 1). The characteristic tumor status
described the state of a patient’s neoplasm in the TCGA cohort by using the value “Tumor
free” or “With tumor”. To summarize, these results validated the prognostic risk model as
an independent factor of predicting prognostic risk in serous ovarian cancer.
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Table 1. Univariable and multivariable Cox regression analyses of clinical characteristics together
with prognostic risk model in the TCGA cohort.

Characteristics
Univariable Analysis Multivariable Analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Age
≤60 reference reference
>60 1.36 (1.05–1.76) * 1.20 (0.89–1.60) ns

Tumor status
Tumor free reference reference
With tumor 8.39 (4.55–15.46) *** 9.18 (4.49–18.79) ***

Clinical stage
I + II reference
III + IV 2.13 (0.95–4.81) ns

Venous invasion
No reference
Yes 0.90 (0.49–1.65) ns

Lymphatic
invasion

No reference
Yes 1.39 (0.82–2.34) ns

Residual disease
≤10 mm reference reference
>10 mm 1.50 (1.12–2.00) ** 1.19 (0.87–1.63) ns

Risk group
Low reference reference
High 1.80 (1.39–2.34) *** 1.61 (1.20–2.15) **

*: p-value < 0.5; **: p-value < 0.01; ***: p-value < 0.001; ns: not significant.

3.5. Functional Enrichment Analysis of Genes Correlated with the Prognostic Risk Model

To elucidate the underlying mechanism of the prognostic risk model, we conducted a
functional enrichment analysis of genes, which were found to be correlated with the model.
At first, a correlation analysis was performed in the TCGA cohort to pick out protein-coding
genes closely correlated with the risk score (Pearson |R| > 0.3, p-value < 0.01), and a total
of 398 genes were selected (Table S3). Then, we performed GO and KEGG enrichment
analysis for these genes (Figure 4A–D). The GO analysis indicated that these genes were
mostly related to extracellular structure organization, while the KEGG analysis indicated
involvement in phagosome pathway. Besides that, immune features showed significance
in both GO and KEGG analysis, such as negative regulation of immune system process,
immune receptor activity, and tuberculosis. Collectively, these results suggested nonnegli-
gible association between the prognostic risk model and the tumor microenvironment of
serous ovarian cancer, especially the immune microenvironment.

3.6. Assessment of Immune Activities in Tumor Microenvironment

With a focus on the association between the prognostic risk model and tumor immune
microenvironment, we performed analyses on the activities of immune and inflammation,
and infiltration of immunocytes. Firstly, we explored the relation between the risk score
and seven clusters of metagenes (IgG, MHC-I, MHC-II, HCK, Interferon, LCK, and STAT1).
These metagenes introduced by Rody, A. et al. have been extensively used to represent var-
ious immune and inflammatory activities [34]. GSVA was conducted to analyze expression
of these metagenes in the TCGA cohort (Figure 5A). Then, correlation analysis for the risk
score and GSVA scores was carried out (Figure 5B), which disclosed positive correlation
between the risk score and four clusters of metagenes, namely IgG (Pearson |R| = 0.15,
p-value = 0.003), HCK (Pearson |R| = 0.30, p-value < 0.001), LCK (Pearson |R| = 0.25,
p-value < 0.001), and MHC-II (Pearson |R| = 0.13, p-value = 0.010). These positive correla-
tions further validated the association between the prognostic risk model and the tumor
immune microenvironment of serous ovarian cancer. Next, we conducted ESTIMATE
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algorithm, which uses gene expression signatures to infer fraction of immunocytes in tumor
samples. We found that the high-risk group had a higher immune score than the low-risk
group (Figure 5C), suggesting more immunocytes infiltrating in the high-risk group. This
result is consistent with the immunogenicity characteristic of ovarian cancer [6–9] and
impelled us to dig deeper into these immunocytes.

Figure 4. Functional enrichment analysis of 398 genes closely correlated with the prognostic risk
model identified by Pearson correlation analysis. Dot plot of GO BP (A), GO CC (B), GO MF (C),
and KEGG (D) analysis of these 398 genes. GO BP: biological process of gene ontology; GO CC:
cellular components of gene ontology; GO MF: molecular function of gene ontology; KEGG: Kyoto
encyclopedia of genes and genomes.

3.7. Association of the Prognostic Risk Model with Quantity and Functional State of Immunocytes

Considering the importance of immunocytes like NK cells in tumor [11–13], we per-
formed a detailed investigation into specific types of immunocytes. At first, we applied
CIBERSORT algorithm in the TCGA cohort to calculate infiltration levels of 22 types of
immunocytes in the tumor microenvironment. The result exhibited that, compared to the
low-risk group, the high-risk group had lower fraction of activated NK cells, resting CD4+

memory T cells, follicular helper T cells, and activated dendritic cells, but higher fraction
of CD8+ T cells and M2 macrophages (Figure 6A). NK cells and CD8+ T cells (often called
cytotoxic T lymphocytes) are both generally considered as anti-tumor immunocytes [40–43],
but the CIBERSORT algorithm revealed a complicated result with less NK cells and more
CD8+ T cells in the high-risk group. A possible explanation was provided by TIDE, an algo-
rithm for evaluating the dysfunction and exclusion profiles of cytotoxic T lymphocytes. As
is shown in Figure 6B, the T cell dysfunction score of the high-risk group was significantly
higher, whereas the T cell exclusion score exhibited no significant difference. This result
indicated more dysfunction of cytotoxic T lymphocytes in the high-risk group. However,
as for NK cells, they have also been reported as dysfunctional in ovarian cancer [44,45]. A
widely used algorithm for evaluating the functional sate of NK cells is currently unavailable
as far as we know. Thus, further research is required in the future to figure out whether less
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NK cells in the high-risk group, which was demonstrated by the CIBERSORT algorithm, is
associated with worse prognosis.

Figure 5. Association between the prognostic risk model and immune activities in tumor microenvi-
ronment. (A) Heatmap shows the GSVA score of seven clusters of metagenes representing different
immune and inflammatory activities. (B) Correlogram exhibits the correlation between the risk score
and GSVA scores of these metagenes. (C) Difference of immune score, stromal score, and ESTIMATE
score between low-risk and high-risk groups by ESTIMATE algorithm. GSVA: gene set variation
analysis; ESTIMATE: estimation of stromal and immune cells in malignant tumor tissues using
expression data. ***: p-value < 0.001.

Besides that, the TIDE score of the TIDE algorithm, which takes both T cell dysfunction
and exclusion into consideration to predict immunotherapeutic response, is significantly
higher in the high-risk group compared to the low-risk group (Figure 6C). This result
suggested that the high-risk group was less likely to benefit from immunotherapy owing to
more dysfunction of cytotoxic T lymphocytes in the tumor microenvironment, which is
consistent with the view that the immunotherapeutic response of ovarian cancer patients is
disappointingly poor [4,5].
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Figure 6. Evaluation of quantity and functional state of immunocytes in the TCGA cohort.
(A) Difference of infiltration level of 22 immunocyte types between low-risk and high-risk groups by
CIBERSORT algorithm. Names of cell types with significant differences are underlined. Difference
of T cell dysfunction and exclusion score (B), and TIDE score (C) between low-risk and high-risk
groups by TIDE algorithm. CIBERSORT: cell-type identification by estimating relative subsets of
RNA transcripts; TIDE: tumor immune dysfunction and exclusion. *: p-value < 0.5; **: p-value < 0.01;
***: p-value < 0.001; ns: not significant.

4. Discussion

Recently, the role of tumor microenvironment in progression and treatment of ovarian
cancer is increasingly appreciated. NK cells, a portion of the tumor microenvironment,
have been developed as a promising biomarker for prognosis prediction in cutaneous
melanoma [23] and lung adenocarcinoma [24]. Cursons et al. investigated marker genes of
NK cells and revealed their association with the prognosis of cutaneous melanoma [23].
Song et al. introduced a signature based on NK cell marker genes and discovered that
lung adenocarcinoma patients with lower risk scores had superior prognosis, and could
benefit more from immune checkpoint blockade therapy [24]. Inspired by their promising
findings, this study tried to explore the value of NK cells in predicting prognostic risk in
serous ovarian cancer, which has not been reported previously as far as we know. With a
combination of single-cell and bulk RNA-sequencing datasets, we developed a prognostic
risk model from NK-cell DEGs. This model was then validated in independent cohorts.
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An underlying mechanism was explored, and we found that not only quantity, but also
functional state of immunocytes in tumor microenvironment could affect prognostic risk.
In addition to superior prognosis, we revealed that a lower risk score of this model was
also associated with better response to immunotherapy.

By scRNA-seq technology, we constructed the prognostic risk model based on six
NK-cell DEGs, namely SLC11A1, THY1, IGFBP4, EVL, UBB, and C2orf88. Most of these
genes have been reported to be associated with ovarian cancer or NK cells. Hedges
et al. demonstrated the expression of SLC11A1 in NK cells, which could enhance NK-
cell activation [46]. Connor et al. suggested that THY1 (also known as CD90) was a
marker of cancer stem cells and could promote proliferation and self-renewal ability of
ovarian cancer cells [47]. However, Chen et al. got a contrary result, indicating that
THY1 was a tumor suppressor gene by inhibiting stemness properties of ovarian cancer
cells [48]. IGFBP4 was significantly elevated in all stages of ovarian cancer patients, even
in early stage without elevated CA125 [49]. Moreover, elevated expression of IGFBP4
was associated with worse overall survival in ovarian cancer patients who received platin
chemotherapeutic regimen [50]. EVL was reported to mediate adhesion and cytotoxicity of
NK cells [51]. Inhibited UBB expression was associated with poorer survival outcomes in
ovarian cancer [52,53]. C2orf88 was related to increased number of filopodia in HeLa cells,
which could promote cancer progression [54]. However, as far as we know, the relation
between C2orf88 and ovarian cancer or NK cells has not been studied. Nevertheless,
these reports suggest that further research on these six genes might provide molecular
mechanisms of NK-cell activities in serous ovarian cancer.

The prognostic model developed from the TCGA cohort was then validated in three
independent GEO cohorts and evaluated together with clinical characteristics to rule out
the confounding effect. These favorable results inspired us to explore the underlying
mechanism. The GO and KEGG analysis was performed on genes closely correlated to
this model, and the result suggested that tumor microenvironment, especially the immune
microenvironment, might play a vital role in serous ovarian cancer. Focusing on tumor
immune microenvironment, we firstly investigated the association between this model and
activities of immune and inflammation. Four clusters of metagenes (IgG, MHC-II, HCK
and LCK) representing various immune and inflammatory activities were identified to be
positively correlated with this model. IgG is a product of B cells [34,55,56]. MHC-II ex-
pression is restricted to professional antigen-presenting cells [34,57]. HCK cluster includes
genes like hemopoietic cell kinase (HCK), CD163, and CCR1, which are mainly expressed
in the monocyte/myeloid lineages and B lymphocyte lineages [34,58]. LCK cluster contains
genes like lymphocyte-specific kinase (LCK), T-cell receptor α, and T-cell receptor β, and
these genes play vital roles in T cells [34,59,60]. Collectively, these positive correlations
revealed active immune and inflammatory activities in tumor microenvironment of serous
ovarian cancer. Furthermore, we compared the abundance of immunocyte infiltration
between low-risk and high-risk groups by ESTIMATE algorithm. The immune score of
the ESTIMATE algorithm in the high-risk group suggested a higher infiltration level of
immunocytes than the low-risk group. To summarize, these results were consistent with
findings regarding ovarian cancer as a “immunogenic tumor” [6–9], and pointed out the
need to dig deeper into tumor immune microenvironment.

In spite of active immune activities, the survival rate of ovarian cancer patients remain
disappointingly low [2]. Therefore, we performed a detailed inspection into immunocytes in
tumor microenvironment. CIBERSORT algorithm was used to analyze fraction of 22 types
of immunocytes, and the low-risk group exhibited a higher fraction of activated NK cells,
but a lower fraction of CD8+ T cells than the high-risk group. Garzetti et al. reported
that the quantity of NK cells in peripheral blood was significantly lower in ovarian cancer
patients during disease progression [41]. Hoogstad-van Evert et al. obtained a similar
result, demonstrating an association between more NK cells in the ascites and an increased
survival of ovarian cancer patients [61]. As for CD8+ T cells, they are generally considered
as anti-tumor effectors [42,43], but a contrary result was also reported, whereby more CD8+
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T cells were related to an advanced stage of ovarian cancer [62]. These confusing findings
indicated that, besides quantity, other characteristics of immunocytes were required to be
dissected. Dysfunction of immunocytes has been observed in several tumors, and could
lead to both pro-tumor and anti-tumor activities [63,64]. Focusing on the functional state
of immunocytes, we conducted TIDE, an algorithm for analyzing T cell dysfunction and
exclusion. The result revealed a higher T cell dysfunction score in the high-risk group,
suggesting that cytotoxic T lymphocytes were in dysfunctional state. However, as for NK
cells, their dysfunction in ovarian cancer was also reported [44,45]. Therefore, it remains
uncertain whether more NK cells in the low-risk group demonstrated by the CIBERSORT
algorithm is related to superior prognosis. As far as we know, extensively used algorithm
for evaluating the functional state of NK cells is currently unavailable, so more efforts are
needed in the future.

In addition, the TIDE algorithm demonstrated the association between the prognostic
risk model and immunotherapeutic response. As is described above, the TIDE score
of the TIDE algorithm was significantly higher in the high-risk group compared to the
low-risk group, which indicated less potential for the high-risk group to benefit from
immunotherapy. This is consistent with the view that ovarian cancer patients respond
poorly to immunotherapy [4,5], and may be ascribed to more dysfunction of cytotoxic T
lymphocytes in the high-risk group according to the TIDE algorithm [38,39]. In recent years,
NK cells are increasingly considered important for immunotherapy [11,65], impelling us to
explore their role in predicting the immunotherapeutic response of ovarian cancer patients.
Interactions between T cells and NK cells were widely reported [66–69], and two genes
forming the prognostic risk model were found to participate in the regulating function of
both T cells and NK cells, namely SLC11A1 [46,70–72] and EVL [51,73–75]. Thus, we infer
that immunotherapeutic response might also be predicted by evaluating the functional
state of NK cells. However, no meaningful results have been achieved by us yet, and future
research is required to investigate this speculation.

In conclusion, based on NK-cell DEGs identified by scRNA-seq analysis, a prognostic
risk model was developed for serous ovarian cancer in this study, which also exhibited
the potential for predicting immunotherapeutic response. However, this study has several
limitations. Firstly, the NK-cell specificity of the prognostic risk model is limited because
the model was developed from DEGs, which are not necessarily specific marker genes
of NK cells. Secondly, the value of this model is limited due to the complexity of tumor
microenvironment. Besides, the model should be validated in larger cohorts with more
detailed clinical information. Lastly, the underlying mechanism of this model requires
to be investigated in basic experiments. Collectively, the prognostic risk model might
provide assistance for predictions of prognostic risk and immunotherapeutic response so
as to improve personalized management of serous ovarian cancer patients, and further
research is required to exploit more clinical value from immunocytes like NK cells in tumor
microenvironment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13030403/s1, Figure S1. Functional enrichment analysis of
the 576 NK-cell DEGs. Dot plot of GO BP (A), GO CC (B), GO MF (C), and KEGG (D) analysis.
Color of bubbles represents adjusted p-value and size of bubbles represents the count of genes in
each signaling pathway; Figure S2. Construction of the prognostic risk model in the TCGA cohort.
(A) Coefficient profiles of the 19 NK-cell DEGs identified by Lasso regression analysis. (B) Ten-
fold cross-validation for selecting parameter in the Lasso regression analysis. (C) Multivariable
Cox regression analysis of the six genes forming the model. *: p-value < 0.5; **: p-value < 0.01;
***: p-value < 0.001; ns: not significant; Table S1. The 576 NK-cell DEGs identified from the scRNA-
seq dataset GSE184880; Table S2. The 57 NK-cell DEGs associated with overall survival identified
by univariable Cox regression analysis in the TCGA cohort; Table S3. The 398 genes that closely
correlated with the prognostic risk model identified by Pearson correlation analysis.
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