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Abstract: Screening patients with precancerous lesions of gastric cancer (PLGC) is important for
gastric cancer prevention. The accuracy and convenience of PLGC screening could be improved
with the use of machine learning methodologies to uncover and integrate valuable characteristics
of noninvasive medical images related to PLGC. In this study, we therefore focused on tongue
images and for the first time constructed a tongue image-based PLGC screening deep learning
model (AITongue). The AITongue model uncovered potential associations between tongue image
characteristics and PLGC, and integrated canonical risk factors, including age, sex, and Hp infection.
Five-fold cross validation analysis on an independent cohort of 1995 patients revealed the AITongue
model could screen PLGC individuals with an AUC of 0.75, 10.3% higher than that of the model with
only including canonical risk factors. Of note, we investigated the value of the AITongue model in
predicting PLGC risk by establishing a prospective PLGC follow-up cohort, reaching an AUC of 0.71.
In addition, we developed a smartphone-based app screening system to enhance the application
convenience of the AITongue model in the natural population from high-risk areas of gastric cancer
in China. Collectively, our study has demonstrated the value of tongue image characteristics in PLGC
screening and risk prediction.

Keywords: precancerous lesions of gastric cancer; tongue image; deep learning; disease screening;
risk prediction; artificial intelligence

1. Introduction

Gastric cancer is the second leading cause of cancer death in China, and more than
80% of patients are diagnosed at an advanced stage [1]. Patients with precancerous lesions
of gastric cancer (PLGC), including intestinal metaplasia and dysplasia [2,3], suffer a higher
risk of gastric tumorigenesis, with an annual incidence of 0.25–6% [4–6]. Screening and
conducting reasonable health surveillance for patients with PLGC in the natural population
would make great contribution to facilitating the early prevention of gastric cancer.

Current screening methods suffer from some challenges, including invasiveness and
relatively low accuracy, which limits their applications in population screening. On
the one hand, although gastroscopy and biopsy are the gold standards for gastric dis-
ease diagnosis [7], these methods remain inefficient and unfeasible for gastric disease
screening [8]. As previous studies indicated, approximately half of the patients screened
with gastroscopy are non-atrophic gastritis, and the early diagnosis rate of gastric cancer
remains less than 20% [1,9]. On the other hand, the application of serum markers that
are commonly used as screening factors in various gastric cancer risk assessment meth-
ods, such as pepsinogen I/II and gastrin-17 [10–12], has been limited for risk screening
in natural populations due to the high sensitivity and specificity thresholds required [13].
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In addition, it is not cost-effective to use either serum pepsinogen test screening or en-
doscopy as they difficulty in their practical application [14]. Screening high-risk groups
for gastroscopy could triage patients and effectively improve the utilization efficiency of
medical resources. Thus, considering the requirements of large-scale screening, screening
methods with a high cost-effectiveness ratio and high accuracy are urgently needed to
enhance their popularization [15].

As non-invasive indicators, tongue image characteristics have been used for the
surveillance of a broad spectrum of diseases, inspired by the diagnosis experience in
traditional Chinese medicine (TCM) [16–20]. Tongue image characteristics, including shape,
color, and tongue coating, are believed to reflect the health condition, or the severity
and progress of disease, especially for digestive diseases as the tongue is anatomically
connected to the digestive system organs. For example, recent studies have indicated
that tongue image characteristics show correlations with gastroscopic observations and
could be used to predict gastric mucosal health [21,22]. In addition, it was revealed that
tongue surface and color characteristics could be used as indicators to assist in gastric
cancer diagnosis [23,24]. Moreover, morphological markers based on tongue images are
considered to be valuable for risk screening for other diseases, such as diabetes, fatty liver
disease, and COVID-19 [17,25–27]. From the pathologic and etiologic perspectives, the
distribution of microorganisms on the tongue coating has also been found to be related to
gastric diseases, which helps uncover non-invasive microbial markers for gastric disease
risk screening [28–30]. The above studies demonstrate the great potential of tongue image
characteristics in assisting disease screening. Therefore, uncovering the risk characteristics
of tongue images is potentially valuable for constructing PLGC screening models.

Recently, deep learning techniques are widely used in building biomedical image-
based disease screening and prediction models [31–37]. For example, some studies have
applied deep learning to predict diverse cancer types, including prostate cancer and rectal
cancer, based on medical images [33,38]. Using tongue images, some studies have applied
deep learning techniques to identify risk features in tongue images for the detection of
diseases such as stomach cancer and diabetes [23,39]. Therefore, deep learning techniques
could be a pivotal tool to uncover the risk characteristics from tongue images, and further
constructed a machine learning-based screening model.

Therefore, to improve the efficiency of screening patients with PLGC, particularly in
natural populations, this study aimed to build a machine learning-based PLGC screening
model which introduces tongue image information on the basis of existing risk indicators.
In detail, we firstly explored the tongue image characteristics of patients with PLGC
and integrated them with canonical screening indicators to develop a PLGC screening
model called AITongue. We then evaluated its screening effect by external validation in
an independent cohort and finally explored its potential value as a risk predictor of PLGC
in a follow-up cohort. To our best knowledges, the AITongue model we have developed
should be the first tongue image-based machine learning model for PLGC screening and
risk prediction. We believe that our study will pave the way to addressing the urgent need
for non-invasive PLGC screening in clinical practice.

2. Materials and Methods
2.1. Patient Enrollment, and Data Collection

Patients were enrolled in this study at the China-Japan Friendship Hospital and Yijis-
han Hospital of Wannan Medical College from 2015 to 2022. The experimental protocol was
established according to the ethical guidelines of the “Declaration of Helsinki” and was
approved by the Human Ethics Committee of the Institution Review Board of Tsinghua
University (protocol code 20200069). Inclusion criteria: At least 18 years of age, clear lan-
guage skills, no barriers in communication and willingness to accept clinical investigation
and sign informed consent. Exclusion criteria: The presence of heart, cerebrovascular, liver,
kidney, hematopoietic system diseases.
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2.2. Gastroscopy and Histological Examination

Using video endoscopes (Olympus Corp), upper gastroscopic examinations were
performed by two gastroenterologists. Tissue samples for biopsy were reviewed blindly
by the two pathologists according to the criteria proposed by the Updated Sydney System
and the Chinese Association of Gastric Cancer [40,41]. The results of each biopsy were
reported as normal, superficial gastritis, chronic atrophic gastritis, intestinal metaplasia,
intraepithelial neoplasia, or gastric cancer, and each participant was assigned a global diag-
nosis based on the most severe gastric histologic finding among any biopsy. Helicobacter
pylori (Hp) infection status was determined by enzyme-linked immunosorbent assay for
plasma IgG [42].

2.3. Data Pre-Processing and Data Structuring

As the pivotal step for data pre-processing, a deep-learning model was constructed to
identify and segment tongue bodies in raw images while excluding face and background
information. Here, we trained the tongue body recognition and locating model using
the YOLOv5 model and 180 tongue images that were labeled by TCM physicians with
a square frame using “labelImg” software [43]. The YOLOv5 model is a common deep
learning model for target detection which can accurately identify and locate the position of
specific objects after training. Furthermore, using this model, we carried out tongue body
recognition and cutting on tongue images, reshaped the images to 224 × 224, and formed a
pre-processed tongue body image dataset. In this way, we could segment the tongue from
the complex background to reduce the impact of the background on classification and im-
prove accuracy. Python (3.7.0) and PyTorch were used for the tongue image preprocessing.
Using this model, the tongue images were detected and cut into tongue body images for
subsequent analysis.

Additional clinicopathological characteristics of the enrolled patients were obtained
from electronic medical records. The obtained characteristics included basic information
(gender, age) and symptom characteristics (xerostomia, bitter taste, gastric distention,
stomach pain, etc.). All the above indicators were structured as two-category labeled
data. Among them, age was divided into >50 and ≤50 years based on the median of age
distribution. Multiple interpolation methods were used to fill in the missing data. Tongue
labels (fissure, etc.) were assigned by physicians.

2.4. PLGC Screening Model Construction

The PLGC screening model was constructed following two main steps: image classifi-
cation with a deep learning model, and data integration with a logistic regression model.

Firstly, the image classification model was constructed with the ResNet50 deep learn-
ing model [44]. The ResNet50 model has a wide range of applications and good perfor-
mance in the field of image classification as it can introduce the residual blocks. In our
study, the residual blocks of the ResNet50 model are structured as two bottlenecks (BTNK),
designated as BTNK 1 and BTNK 2. Their structure diagram is shown in Supplementary
Figure S1, where CONV is the convolution block, BN is the batch normalization block, and
Relu is an activation function in the bottleneck. After the ResNet50 module, tongue images
were classified into two categories: high-risk and low-risk.

A logistic regression model was then used to predict the PLGC screening results by
integrating the tongue image classification results and the clinicopathological indicators.
Logistic regression models have good performance in the integration of a small number of
variables and robust prediction of classification tasks, resulting in their wide application in
disease classification and risk prediction research.

2.5. Statistical Analysis

All analysis procedures were performed using Python (3.7.0) and the sklearn package.
Tongue diagnostic labels (TDL) and clinical symptoms with statistical significance (p < 0.05)
by both univariate and multivariate analyses were included in the model. The significance
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of each factor adjusted for gender and age was calculated in the multivariate analysis.
Binary logistic regression was used to construct the screening models. Chi-square tests
were applied to calculate the significance of the independent variables for PLGC. Pearson’s
correlation coefficient was applied to evaluate the correlation between the independent
variables. Accuracy, sensitivity, specificity, recall, precision, receiver operating characteristic
(ROC) curve, and area under the curve (AUC) were used as evaluation metrics to evaluate
model performance.

AUC-ROC curves are performance measures for classification problems under various
thresholds. ROC is a probability curve, and AUC represents the degree or measure of
separability. The horizontal coordinate of the ROC curve is the false positive rate (FPR), and
the vertical coordinate is the true positive rate (TPR). The calculation formula is as follows.

TPR = TP
TP+FN

FPR = FP
FP+TN

TP, FP, TN, and FN represent true positives, false positives, true negatives, and false
negatives, respectively. In the classification task, the model represents the prediction and
ground truth. The higher the AUC, the better the classification performance of the model.

3. Results
3.1. The Overall Design of Our Study

In our study, a total of three cohorts of patients were enrolled with undergoing
gastroscopy and pathology. These included a development cohort, validation cohort, and
follow-up cohort. Here, two categories, including PLGC and non-PLGC, were derived
for each patient based on pathological diagnosis (Table 1). In detail, we developed the
PLGC screening model and performed an internal cross-validation on the development
cohort, which consisted of 325 patients, including 55 PLGC and 270 non-PLGC patients.
We then performed external validation on the validation cohort, which had a total of
1995 patients, including 171 PLGC and 1824 non-PLGC patients. It should be noted that
we also evaluated the risk prediction value of the PLGC screening model on the follow-up
cohort, in which only non-PLGC patients were enrolled at the baseline timepoint, and were
further classified as Pro or non-Pro according to the pathological lesions at the endpoint
after a mean follow-up time of 22 months (Figure 1).

3.2. Construction of AITongue Model with Integrating Tongue Image Characteristics

After preprocessing the tongue images with deep learning (Figure 2a), a PLGC screen-
ing model, which we named the AITongue model, was constructed in the development
cohort by integrating the tongue image and clinicopathological characteristics, as shown
in Figure 2b. Here, the tongue images were classified into two categories: high-risk and
low-risk. The AITongue model took the categorized results, and canonical gastric cancer
risk indicators (age, gender, and Hp infection) as the input, and the PLGC prediction results
as the output.

Table 1. Basic information of three cohorts.

Cohorts Groups Counts Age (Mean ± SD) Gender (Male/Female)

Development
cohort

PLGC 55 58.6 ± 10.5 31/24
non-PLGC 270 48.0 ± 13.6 135/135

Validation
cohort

PLGC 171 58.5 ± 9.3 100/71
non-PLGC 1824 49.9 ± 13.1 685/1139

Follow-up
cohort

Pro 26 51.7 ± 8.7 14/12
non-Pro 69 46.1 ± 11.9 24/45

SD: Squared deviation.
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Figure 2. Construction of the AITongue model and results for PLGC screening based on tongue
images. (a) Example of tongue images of PLGC and non-PLGC patients. (b). ResNet50-based deep
learning screening model AITongue. (c). Boxplot of classification score comparisons with and without
the inclusion of tongue images for PLGC screening. (d). ROC curves and AUC comparisons for
PLGC screening. (***: p < 0.001).
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We then further investigated and interpreted the tongue image characteristics with
PLGC screening potential. Through performing correlation analysis between image risk
classification (high vs. low-risk) obtained by the deep-learning model and TDL labels gener-
ated by TCM experts, we found that five of the TDLs were statistically significant (p < 0.05),
namely greasy, fissured, dark, coating (yellow), and coating (thick). This indicated, to some
extent, the medical significance of the risk features found in tongue images and suggests
that there may also be some value of TDLs for PLGC screening (Table 2).

Table 2. TDL analysis of high and low-risk tongue images classified by AITongue model.

Characteristics
High Risk (94) Low Risk (233)

p Value
Counts Ratio Counts Ratio

Coating (Yellow) 16 0.17 16 0.07 9.6 × 10−3

Greasy 28 0.30 34 0.15 2.6 × 10−3

Fissured 19 0.20 26 0.11 4.8 × 10−2

Coating (Thick) 14 0.15 15 0.06 2.6 × 10−2

Dark 12 0.13 7 0.03 1.6 × 10−3

p value refer to the comparison between high risk and low risk groups by Pearson’s chi squared test.

3.3. External Validation of PLGC Screening

We then validated the performance in PLGC screening of the AITongue model in the
independent validation cohort. To enhance the robustness and application value of our
model, the five representative TDLs that included greasy, fissured, dark, coating (yellow),
and coating (thick), rather than the whole image characteristics, were selected as inputs
for the AITongue model. Of note, it was found that these five TDLs, along with gender
and age, showed significant correlations with PLGC in both univariate and multivariate
analyses (Table 3, Table S2), supporting their value as input parameters for AITongue.

It was found that the AITongue model showed a comparably discriminative perfor-
mance in the independent validation cohort compared with that of the development cohort.
Here, the AITongue model exhibited an accuracy of 0.64 and AUC of 0.75 in distinguish-
ing PLGC from non-PLGC patients. In contrast, the model with only including baseline
indicators (age, sex, Hp) showed an accuracy of 0.53 and AUC of 0.68 (Figure 3). Thus,
we could conclude that the discriminative performance between PLGC and non-PLGC
has been significantly enhanced by 10.3% (0.68 vs. 0.75, p < 0.01, Figure 3) by introducing
tongue image characteristics. The results furtherly validated the effectiveness of tongue
image characteristics for PLGC screening.

In addition, we also focused on clinical symptom characteristics and investigated their
screening value for PLGC and confounding effects for the AITongue model [45].

First, we investigated the screening value of symptom characteristics by analyzing
their associations with PLGC. As a result, three symptom characteristics (xerostomia,
bitter taste, belching) showed significant correlations with PLGC in both univariate and
multivariate analyses, whereas the others, including stomach pain, bloating, chilliness, and
loose stools, did not show significant correlations (Supplementary Table S2).

Further, we incorporated these three symptom characteristics into the AITongue model
to evaluate the enhancement of introducing symptom characteristics for PLGC screening.
The validation cohort was used as training data to construct a logistic regression model
and a five-fold cross-validation was performed. It showed a small improvement in the
discrimination between PLGC and non-PLGC after introducing symptom characteristics
(0.76 vs. 0.73, Figure 4). These results indicate that the introduction of clinical symptom
characteristics could improve the screening efficiency of PLGC, with a slightly lower effect
than tongue image characteristics. In addition, there was a low correlation between tongue
image and symptom characteristics (Supplementary Figure S2), which indicates that tongue
image characteristics might be independent factors from clinical symptom characteristics
in terms of PLGC screening.
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Table 3. Univariate and multivariate analyses of baseline factors and TDLs in PLGC screening.

Variable Total (N = 1995)
No. (%)

Non-PLGC (N = 1824)
No. (%)

PLGC (N = 171)
No. (%) p Value * Adjusted OR

(95% CI) † p Value #

Baseline Factors

Age, Years 3.7× 10−15

>50 1067 (0.53) 926 (0.51) 141 (0.82) 4.14
([2.59,6.61]) 2.9 × 10−9

≤50 928 (0.47) 898 (0.49) 30 (0.18)
Gender 1.3 × 10−7

Male 785 (0.39) 685 (0.38) 100 (0.58) 1.47
([1.00,2.14]) 4.8 × 10−2

Female 1210 (0.61) 1139 (0.62) 71 (0.42)
Hp 0.71

Yes 174 (0.24) 142 (0.24) 32 (0.22) 1.15
([0.73,1.81]) 0.55

No 556 (0.76) 445 (0.76) 111 (0.78)

Tongue Diagnostic Labels

Coating 1.9 × 10−10

Yellow 327 (0.16) 269 (0.15) 58 (0.34) 3.66
([2.38,5.62]) 3.4 × 10−9

White 1668 (0.84) 1555 (0.85) 113 (0.66)
Fissure 3.8 × 10−9

Yes 187 (0.09) 149 (0.08) 38 (0.22) 2.26
([1.37,3.73]) 1.4 × 10−3

No 1808 (0.91) 1675 (0.92) 133 (0.78)
Greasy 3.3 × 10−4

Yes 422 (0.21) 367 (0.20) 55 (0.32) 2.23
([1.44,3.46]) 3.3 × 10−4

No 1573 (0.79) 1457 (0.80) 116 (0.68)
Coating 1.3 × 10−3

Thick 239 (0.12) 205 (0.11) 34 (0.20) 2.18
([1.29,3.67]) 3.6 × 10−3

Thin 1756 (0.88) 1619 (0.89) 137 (0.80)
Dark 0.03

Yes 312 (0.16) 275 (0.15) 37 (0.22) 1.93
([1.20,3.11]) 6.7 × 10−3

No 1683 (0.84) 1549 (0.85) 134 (0.78)

p value * refer to the univariate analysis. p value # refer to the multivariate analysis (with adjustment for gender
and age). † Variables without significance (p > 0.05) are not shown.

3.4. Evaluation of the Validity of Tongue Image Characteristics for Risk Prediction of PLGC

PLGC risk prediction is pivotal for gastric cancer early prevention. Thus, we further
explored the value of the AITongue model in predicting the risk of PLGC. Here, we enrolled
a cohort of non-PLGC patients and conducted a long-term follow-up surveillance, in
which patients were divided into progressive (Pro) and non-progressive (non-Pro) groups,
respectively, according to endpoint pathological diagnosis (Table 1). Using the AITongue
model to score the PLGC risk for each patient in the follow-up cohort, we found that risk
scores from the Pro group were significantly higher than those from the Reg group. The
AUC value was 0.71, which showed a significant increase (10.94%, 0.71 vs. 0.64, p < 0.01)
compared with that derived from the model only including baseline indicators (Figure 5).
In addition, we performed a univariate analysis of the TDLs for risk prediction of PLGC
(Supplementary Table S3). It was found that the TDLs showed limited value for PLGC risk
prediction, although they have an enhanced effect on PLGC screening. Therefore, tongue
image characteristics are potentially valuable in PLGC risk prediction.
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4. Discussion

We found that H. pylori infection was weakly correlated with PLGC and non-PLGC,
although Hp infection is the most prominent risk factor for GC. Similar results have been
found in other studies on the prediction of gastric cancer risk [46,47]. In this study, PLGC
was analyzed using symptoms. We found only a small proportion of symptoms correlated
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with PLGC, and their screening efficiency was not high, which is consistent with the
findings of other studies [48,49].

Tongue diagnosis is an important part of the four diagnoses in TCM. In TCM theory,
the characteristics of tongue images are quantified into various categories for the diagnosis
of diseases [50,51]. In this study, we not only found that helpful feature information
for PLGC screening could be extracted through a deep learning model, but also found
that these features were related to some categories of tongue diagnosis in traditional
Chinese medicine. This suggests that some categories of Chinese tongue diagnosis have
interpretable morphological characteristics for PLGC screening and for tongue images of
high-risk categories.

Our proposed method has better performance than another study of screening of
PLGC. Wang et al. developed a model with non-invasive indicators for PLGC screening
based on 290 patients with gastritis, and the AUC was 0.728 (95% CI: 0.651–0.793), whereas
the AUC of our method was 0.76 [52].

It is neccessary to adopt cost-effective methods to conduct the large-scale screening
for gastric cancer risk in the natural population. Even though gastroscopy and pathological
tests are the gold standard for the diagnosis of gastric diseases, they are not suitable for the
natural population. The method we developed introduces tongue image information on
the basis of conventional and invasive indicators, which improves the accuracy, reduces
the difficulty of operation and improve its feasibility for application.

The study has some limitations. The data source was biased compared with the natural
population. Due to the need for accurate information on the stage of gastritis, the data for
establishing the system all came from patients with gastric disease, which had a certain
deviation compared with the natural population. We have developed a smartphone-based
app screening system to enhance the application convenience of the AITongue model
in the natural population (Supplementary Figure S3). In further studies, more samples
would be collected from natural populations to reduce bias, and larger external validation
should be conducted.

5. Conclusions

Screening patients with PLGC is important for the prevention and treatment of gastric
cancer. In this study, we analyzed the tongue image characteristics associated with PLGC
and based on this, constructed a PLGC screening model on a development cohort. It was
then externally validated in an independent validation cohort and used to evaluate the
capability for risk prediction of PLGC in a follow-up cohort. Our study demonstrates the
value of tongue image characteristics in PLGC screening and its potential for risk prediction.

The screening model constructed in this study could improve the accuracy of PLGC
screening. Tongue image characteristics were validated for their value in PLGC screening
and risk prediction, which may drive tongue image characteristics as a new risk indicator
in the future. By extracting tongue image characteristics through deep learning techniques,
this study proposes a new approach for non-invasive PLGC screening and shows the
possibility of its use in large-scale applications.
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of the App; Table S1: Univariate and multivariate analysis of symptoms factors in PLGC screening;
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S3: The univariate analysis of tongue diagnostic labels in risk prediction of PLGC.
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