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Abstract: The primary treatment for Parkinson’s disease (PD) is supplementation of levodopa
(L-dopa). With disease progression, people may experience motor and non-motor fluctuations,
whereby the PD symptoms return before the next dose of medication. Paradoxically, in order to
prevent wearing-off, one must take the next dose while still feeling well, as the upcoming off episodes
can be unpredictable. Waiting until feeling wearing-off and then taking the next dose of medication
is a sub-optimal strategy, as the medication can take up to an hour to be absorbed. Ultimately, early
detection of wearing-off before people are consciously aware would be ideal. Towards this goal, we
examined whether or not a wearable sensor recording autonomic nervous system (ANS) activity
could be used to predict wearing-off in people on L-dopa. We had PD subjects on L-dopa record
a diary of their on/off status over 24 hours while wearing a wearable sensor (E4 wristband®) that
recorded ANS dynamics, including electrodermal activity (EDA), heart rate (HR), blood volume pulse
(BVP), and skin temperature (TEMP). A joint empirical mode decomposition (EMD) / regression
analysis was used to predict wearing-off (WO) time. When we used individually specific models
assessed with cross-validation, we obtained > 90% correlation between the original OFF state logged
by the patients and the reconstructed signal. However, a pooled model using the same combination of
ASR measures across subjects was not statistically significant. This proof-of-principle study suggests
that ANS dynamics can be used to assess the on/off phenomenon in people with PD taking L-dopa,
but must be individually calibrated. More work is required to determine if individual wearing-off
detection can take place before people become consciously aware of it.

Keywords: wearable; biomarkers; wearing-off; Parkinson’s disease; empirical mode decomposition;
canonical correlation analysis

1. Introduction

Parkinson’s disease (PD) is a multisystem disease associated with both motor and
nonmotor aspects [1,2]. The main biochemical abnormality in PD is the lack of dopamine [3],
so the dopamine precursor levodopa (L-dopa), which crosses the blood-brain barrier, is
the mainstay for treatment. In advanced disease stages when the brain loses its buffering
capacity, the patients may feel “ON” and “OFF” throughout the day, where “ON” describes
the time when they feel symptoms well controlled after L-dopa intake. When the plasma
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L-dopa level decreases, symptoms of the disease can re-emerge and the patients may feel
“OFF”. The conversion from the “ON” state to the “OFF” state as the plasma L-dopa decays
is known as the “wearing-off (WO)” phenomenon [4–6]. Because it takes up to an hour for
the medication to be absorbed and cross the blood-brain barrier, waiting until WO flares
and then deciding to take the next dose is a suboptimal strategy. Taking the medication
on a strict dosing schedule is a helpful strategy, but various factors, including delayed
absorption, variable metabolism of the medication based on physical activity, and even
consumption of protein, can affect how long the effects of a given dose will last. Because
WO is physically and mentally uncomfortable and stressful [7], some patients end up
consuming excessive quantities of L-dopa to avoid WO. Unfortunately, this can lead to
involuntary writhing movements in the on state (“peak dose dyskinesia”) in patients with
long disease duration and long-term exposure to L-dopa. People with excessive dyskinesia
can end up inexplicably losing weight since they move incessantly [8], often triggering
unwarranted investigations. Thus, there is considerable interest in determining a biomarker
for predicting WO before it becomes overt.

There are strong reasons to believe that early prediction of WO might provide not
only immediate benefits but also affect the long-term outcome of the disease in a positive
way. The “continuous dopamine stimulation hypothesis” [9,10] posits that fluctuations
in plasma levels of dopamine are a contributing factor to the development of subsequent
dyskinesias. In fact, L-dopa/Carbidopa Intestinal Gel therapy is based on the continuous
infusion of L-dopa gel into the jejunum to get as smooth a serum profile of L-dopa as
possible [11] by bypassing the stomach. By preventing OFFs, there might be better control
of motor fluctuations in the long term [12].

A number of studies have attempted to detect L-dopa levels from sweat in healthy
volunteers. The L-dopa concentration in three subjects after fava bean consumption and
active exercise was estimated via iontophoresis contained within a wearable strap [13].
Sweat from a finger touch-based method was able to measure L-dopa levels that correlated
with capillary blood samples [14]. A microneedle sensor in a skin-mimicking phantom
gel has also been shown to detect L-dopa in continuous fashion [15]. However, to our
knowledge these technologies have yet to be explored in actual subjects with PD.

Most work related to the prediction of WO in PD has been with accelerometer
data [16–21]. However, there are potential issues with this approach. It can be difficult
to discern volitional movement from other pathological movements seen in PD, such as
tremor and dyskinesia, especially when only a single wrist-based sensor is used. Discrimi-
nation between normal and pathological movements can be more easily obtained by using
multiple sensors across the body, but in that case compliance is poor: many people with
advanced disease are not amenable to wearing multiple sensors for prolonged periods.
Finally, the ultimate goal would be the capability of predicting WO before people become
consciously aware that they have worn-off. This is in accordance with prior research on
the relation between some biomarkers of the autonomic nervous system (ANS) and early
warning signs of WO episodes [22–24]. Presumably, a reduction in overall movement, as
assessed via accelerometers, would likely be noticed by the subject.

A number of ANS markers are suitable for mobile monitoring. Time-varying electro-
dermal activity (EDA) signals and heart rate (HR) are modulated by physical, orthostatic,
and cognitive stress that are known to activate sympathetic tone [25]. Blood volume pulse
(BVP) ambulatory monitoring is feasible and may be an important marker for WO, as
hypotensive episodes are significantly reduced after the continuous infusion of L-dopa [26].
Alterations in skin temperature (TEMP) (i.e., skin TEMP) may be an important marker for
thermoregulatory dysfunction common in PD [27].

Here, we aimed to test the hypothesis that ANS markers (EDA, HR, BVP, and skin
TEMP) provided by a single commercial wrist sensor (E4 wristband®) could serve as a
tool for developing a non-invasive biomarker for WO episodes. We decomposed the
aforementioned signals into different waveforms using Empirical Mode Decomposition
(EMD). This method takes a given signal and separates it into smoother and smoother



J. Pers. Med. 2023, 13, 265 3 of 13

“Intrinsic Mode Functions (IMFs)”. A key benefit of this approach, unlike more common
Fourier methods, is that it can deal with non-stationary signals, i.e., signals where the
frequency components vary over the duration of an epoch. We demonstrate that feature
extraction by the empirical mode decomposition (EMD) of multimodal E4 sensor signals
can help to predict the moments when PD subjects feel the need for medication (i.e., the
OFF state) in an individualized fashion.

2. Materials and Methods
2.1. Study Design and Participants

This prospective study was carried out at the Pacific Parkinson’s Research Center,
University of British Columbia. Following approval by the Ethics Board, all subjects had
provided written, informed consent.

We recruited 25 patients diagnosed with PD by certified movement disorder special-
ists according to the United Kingdom Parkinson’s Disease Society Brain Bank Criteria.
Exclusion criteria included (i) atypical Parkinsonism, (ii) depressive mood identified by
Beck Depression Inventory-II (BDI-II)>14 or concurrent treatment with antidepressants,
(iii) cognitive impairment measured by Montreal Cognitive Assessment ≤ 22, (iv) history
of epilepsy, polyneuropathy, spinal cord diseases, thyroid dysfunction, or severe dermato-
logical conditions, and (v) history of deep brain stimulation, implantation of any medical
devices, or anticholinergic medication use.

Demographic features including age, sex, duration of disease after initial diagnosis,
and total daily L-dopa dose were obtained. Overall severity of Parkinsonism was assessed
by Unified Parkinson’s Disease Rating Scale (UPDRS) part III in all participants. The
“wearing off questionnaire-19 (WOQ-19)”, a clinical scale that measures the degree of
fluctuations in both motor and non-motor symptoms, was assessed in all patients. A
compact view of subjects’ responses to the questionnaire is plotted in Figure S1. Participants
were considered to have WO if they experienced at least two or more symptoms in WOQ 19
that improved with L-dopa intake [28,29]. The Scales for Outcomes in Parkinson’s disease-
AUTonomic dysfunction (SCOPA-AUT) was used to assess any pre-existent autonomic
system function [30]. Table 1 lists the main demographic features of each subject.

Table 1. Main demographic features of each subject. BDI: Beck’s Depression Inventory. MoCA:
Montreal Cognitive Assessment.

Subject
No.

Age
(Years) Sex

Disease
Duration

(Years)
UPDRS3 MoCA BDI-II

1 62 Female 3 10 Unavailable 7
2 60 Male 7 24 29 5
3 43 Male 5 0 Unavailable 13
4 64 Male 15 8 29 0
5 72 Male 13 50 28 4
6 74 Female 13 8 27 6
7 36 Male 12 11 30 8
8 72 Male 13 26 29 9
9 64 Female 11 21 29 4

10 54 Male 6 36 30 8
11 67 Female 4 40 26 6
12 58 Male 6 36 22 14

A wearable wristband, E4 wristband® (Empatica Inc., Milan, Italy), was used to
obtain EDA, HR, BVP, and TEMP information. It carries out EDA measurements with
two dry silver-plated electrodes that are attached to the inner surface of the watch with a
sampling rate of 4 Hz and a range of skin conductance (SC) from 0.01 µS to 100 µS. BVP is
measured by photoplethysmography (PPG) (and from that, HR can be inferred) [31]. The
PPG sensor evaluates the volume of the passing blood along tissues using a photo-detector
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that computes the reflection coefficient of light (generated by PPG’s light source) from the
skin [32]. The sampling rate of BVP is 64 Hz. The E4 is also equipped with an infrared
thermopile sensor that reads peripheral skin temperature (with a frequency sampling rate
of 4 Hz) [33].

An activity log was kept by the patients that contained their self-reports of time
past from the latest dose, sleep, and ON/OFF reports performed every 30 minutes while
wearing the device for a period of 24 hours. A report of “OFF” from any patient meant that
he/she felt the urge for the medication, and “ON” had the opposite interpretation. They
were instructed to carry out normal daily activities while being careful not to dislodge the
electrodes and avoiding exposing the device to water. The E4 data were downloaded from
the device later offline. For this proof-of-principle study, we restricted ourselves to the
12 subjects who documented “OFF” states in their diary. The other 13 subjects declared
they had WO episodes but had failed to record this in their diary.

2.2. Method

The schematic view of the analysis approach is shown in Figure 1. Each patient’s data
of EDA, HR, TEMP, and BVP signals were divided into 30 s epochs, resulting in 2880 epochs
over 24 hours. Since the subject ON/OFF report from each patient was every hour, and the
sensor-based recordings were available in 30 s epochs, we up-sampled and interpolated
the ON/OFF data to create an approximate label for every 30 seconds. This resulted in a
gradual transition between ON/OFF states, as observed in Figure S1. The sensor signals
were decomposed using the empirical mod decomposition (EMD) method, as explained in
Section 2.2.1. EMD was then applied on the four sensor signals in order to extract features
that could potentially show a correlation with up-sampled ON/OFF data. We then used
different train-test strategies to assess the degree of sensitivity of the ON/OFF-related
biomarkers we obtained for each individual participant (described below).
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2.2.1. Pre-Processing and Feature Extraction

The ON/OFF signals were constructed by up-sampling the hourly ON/OFF desig-
nation to have one ON/OFF value every 30 seconds. The resampling was carried out
linearly with an FIR anti-aliasing lowpass filter with a Kaiser window [34] equal to 5 and a
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neighbor term number of 10. (An example of one of the up-sampled label signals is shown
in Figure S2.) Here, we assume that the target signal should be relatively smooth over the
adjacent epochs.

We used EMD to decompose the non-stationary multimodal signals from the E4 sensor
into intrinsic mode functions (IMFs) [34]. EMD decomposes the original signal from its
higher frequency components to lower ones [35], halting when the final residual reaches
a termination criterion. However, it is not bound to the specific single frequency content
of each dynamic basis as the Fourier method is. Therefore, there is no presupposition of
the linearity and time invariance of the physiological signal generation by human organs.
Therefore, each 1-D signal for 24 hours is decomposed into multiple 1-D time dynamics
that have different frequency components and improve feature extraction ability through
an increase in the dimensionality of our data.

The resultant intrinsic mode functions (IMFs), along with the residuals, are the com-
plete expansion of the original multi-component signal and are also nearly orthogonal [36].
The fact that the number of extrema and zero crossings of IMFs can be different by at most
one helps to attain nearly sinusoidal oscillatory components of the original signal. Each
IMF is constructed by interpolating between the envelopes of the minimum and maximum
extrema of the original (or what has left after consecutive subtraction of IMFs from the
original) signal in a way that the mean value of these two constructed envelopes should be
near zero (or ideally becomes zero) [35].

In this paper, EMD of each of the four aforementioned sensor signals was calculated
by the MATLAB in-built function “emd” using the stop criterion “Maximum Original
to Residual Energy Ratio” set to 30, the “Maximum number of IMFs” set to 15, and
the “Minimum Number of Extrema in Residual Signal” set to zero. The “Sifting Relative
Tolerance” was set to 0.1, and the envelope interpolation was conducted by a spline method.

Although a termination criterion can be used for EMD, we empirically found that the
first 15 IMFs contained the most useful information. For each IMF, we computed the mean,
standard deviation (STD), and entropy values of each epoch [37] for EDA, HR, BVP, and TEMP
signals. Thus, for each epoch, we had {15 IMFs × 4 modalities × 3 statistics} = 180 features
to be used for subsequent classification. Thus, the dimension of the feature matrix (X) for
each participant’s data was at most 2880 epochs by 180 features for each individual subject.

The joint features were anticipated to provide the most accurate prediction of WO.
However, to see whether or not each of the sensor signals individually could also lead to
adequate WO prediction, we also separately decomposed only one signal from EDA, TEMP,
BVP, or HR at a time for comparison.

To determine if the WO features were individually specific, we compared the per-
formance of models based on pooling the data across subjects vs. testing each subject
individually.

2.2.2. Intersubject Approach

First, we pooled all the data across all subjects. Each signal was recorded for 24 h, and
features were extracted for every 30-second epoch. Thus, there were 12*2880 epochs. The
CCA algorithm was trained on 65% of the data (randomly chosen) and validated on the
remaining 35%.

2.2.3. Subject-Specific Approach

We trained the model on a random split of 65% of each subject’s data separately and
tested the regression canonical-correlation analysis (CCA) coefficients on the remaining 35%
(resulting in different weights for each subject). So, for each subject, 1872 and 1008 epochs
were utilized as test and train data sets, respectively.

Finally, to ensure that the subject-specific approach did not result in overfitting, we
fed in a random signal (noise generated by MATLAB rand function) as a test. This was to
ensure that the high correlation between the reconstructed and true OFF state was not a
spurious response and not due to model overfitting. Result is depicted in Figure S5.
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3. Results
3.1. Intersubject Approach

Figure 2 depicts the original Y (upsampled OFF data recorded from patients) and
the reconstructed Y from the models, based on sensor signals. The data have been con-
catenated from all subjects, resulting in 260 h (12 subjects × 24 h). Qualitatively, one can
observe that an individualized approach is fairly successful in predicting OFF states across
subjects. The correlation with Y of the training data is 69%, and it is 68% for the test data
(p-value < 1 × 10−10). Note that the “OFF” state is considered positive on this axis.
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Figure 2. The overview of our proposed method reconstruction of OFF state signal versus true OFF
states. On the x-axis, every 24-hour period consecutively comes from a specific subject out of our
12 subjects.

3.2. Subject-Specific Approach

Figure 3 depicts the correlation of the true OFF and the reconstructed OFF obtained by
a linear combination of extracted features from the four sensor signals in the analysis for
both training and testing data.
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In general, the correlation between both training and test data was >0.9. A detailed
comparison between the reconstructed OFFs and true upsampled OFFs for each subject are
described in the Supplementary Material Figure S3.

To determine the most important features for each subject, we plotted features having
weights above 50% of the maximum magnitude coefficient for representative subjects
(Figure 4). Through these subplots, we can see which features and from which signal
contribute most to the prediction of OFF states. It is obvious how variable the domi-
nant features’ ranks are among different subjects. (The full results can be found in the
Supplementary Material Figure S4.) The features weighted were quite different across sub-
jects (Figure 4).
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Table 2 summarize the mean and standard deviation (STD) of correlation between true
and reconstructed OFF when each signal used individually.
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Table 2. Comparison of each sensor signal’s effect in forming maximum possible correlated features
with OFF state signal for subject-specific analysis (correlation computed between test data of original
OFF state and the reconstructed Off (averaged over all 12 subjects)).

Sensor Signal Mean and STD of Correlation

EDA Mean = 0.71, STD = 0.14

HR Mean = 0.57, STD = 0.15

TEMP Mean = 0.51, STD = 0.26

BVP Mean = 0.65, STD = 0.17

In order to test if the use of multimodal signals resulted in better classification than any
single modality, we also tested the ability of each single modality to predict WO (Table 1,
Figure 5). Note the relatively poor performance of any single modality to predict WO
compared to the combined approach used in Figure 2. Moreover, there is not even a single
signal that works best for OFF prediction among all of the subjects.
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Figure 5. Correlation of reconstructed ON/OFF states derived from any of EDA, BVP, HR, or
TEMP signals with the true states. Compare with Figure 3, where each modality is combined in an
individually-specific manner to predict WO.

Although the individual modalities did not perform as well as the combined approach
(Figures 2 and 5), the ability of the EDA signal alone to predict WO was weakly correlated
with UPDRS part III score (r = 0.62, p-value < 0.03) (Figure 6).

Supplementary Material Figure S4 illustrates the training and test data correlation due
to a random noisy signal, showing that the correlation with the fake noise test signal is low,
and all have non-significant p-values. Table S1 shows the p-values of the correlations with
the random input signal (as opposed to the true ON/OFF signal) of the same extracted
features.
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Figure 6. (A) Correlation of the true and the reconstructed ON/OFF states obtained by single
modalities shown for each disease severity score. (B) Correlation of EDA-based reconstructed
ON/OFF and UPDRS part III scores. The blue line is the best fitted regression line on the 12 subjects.

4. Discussion

In this study, we demonstrate that the accurate prediction of the WO phenomenon in
PD is possible using the subject-specific analysis of ANS sensor recordings. This suggests
that a linear, deterministic and individualized relationship exists between ANS recordings
obtained from a single wrist-worn sensor and patient-reported OFFs.

Predicting WO (defined as the re-emergence of motor and non-motor symptoms that
improve with further L-dopa intake [29]) is a critical aspect of the clinical management
of PD. Motor fluctuations can be observed in up to 50–80% of patients with advanced
PD [38], and even in the early stage of disease, up to 50% of patients can develop motor
fluctuation within the first 2 years of therapy [39]. However, the WO phenomenon is not
limited to only motor symptoms (e.g., bradykinesia and tremor); it can span a variety of
non-motor symptoms such as anxiety, depression, mood changes, sweating, and other
types of discomfort [40]. In such circumstances, there might be a discrepancy between the
patient’s reporting of fluctuations and the clinician’s assessment of the OFF state. Studies
have reported that patients’ self-reported WO are at a higher frequency than that identified
by movement disorder specialists. Overall, WO is a very subjective and heterogeneous
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phenomenon that varies across patients. Thus, predicting WO on an individual level is
a more justifiable approach. This may also explain why the high accuracy at the subject-
specific level was not replicated when attempting to implement a “one-size-fits-all” model.

While we focus here on autonomic markers of WO, the majority of studies thus far have
emphasized the use of accelerometers, focusing on the motor aspect of the disease [17–19].
However, although less well-known, the prevalence of non-motor fluctuations in patients
with PD is very high. The prevalence ranges from 17% to almost 100% [41]. Disruption in
autonomic systems was proven in objective measures such as in sweating measurement
using an evaporimeter, heart rate variability, and electrodermal activities [42–44]. PD
patients with motor fluctuations have decreased skin temperature, increased sweating, and
higher standing blood pressure in their OFF states compared with in their ON states [43].
Our study suggests the potential of ANS markers to predict WO of PD.

The objective assessment of the disease is being increasingly used for making in-
formed decisions about therapeutic modifications. In recent years, continuous objective
measurements enabled by wearable sensors have presented an opportunity to assess motor
fluctuations and subsequently guide management [45–47]. Wearable technologies also
offer possibilities for the quantitative measurements of autonomic impairment. However,
sensors to detect autonomic fluctuation in PD in a continuous manner during daily activ-
ities have thus-far been rarely investigated (e.g., heart rate variability (HRV) in PD [48]).
Figure 5 clearly illustrates how subject-specific the different modalities are in predicting
WO. While EDA does appear to be the best ANS marker for WO prediction, this was not
the case for all subjects (such as in subject no. 4, 7, 8, and 12). This again emphasizes the
need for individualized models specific to each patient in the future.

Our results, which indicate the need for individualizing the optimal combination of
autonomic features to predict WO, are likely a direct consequence of the fact that WO
symptoms themselves are highly heterogeneous. We note that the original questionnaire to
assess WO (which, as with all questionnaires, attempts to prevent overlapping questions)
included some 32 possible symptoms [49]. In particular, previous descriptions of ANS
disturbances during WO have spanned a broad clinical spectrum, encompassing a variety
of gastrointestinal, urogenital, sudomotor, respiratory, and cardiovascular symptoms [50].
Such heterogeneity of autonomic symptoms during WO episodes likely arises from the
widespread distribution of dopaminergic receptors in both central and peripheral ANS [51]
and the variability in the degeneration in these structures. Thus, it may be unrealistic
to expect that a “one-size-fits-all” combination of ANS features would be appropriate.
However, this implies that to translate our current results into a practical approach, a
two-step procedure would be required. One would first need a “calibration phase” to
determine which individually specific combinations of ANS markers would be optimal. In
this calibration phase, subjects would wear the device for a day, and then the identification
of the best autonomic parameter combination for WO prediction would be established.
This combination would then be fixed and used longitudinally to predict WO. We cannot
discount that a much larger study may detect distinct clusters and/or subtypes of ANS
changes with WO. If so, instead of a calibration phase to fully individualize ANS feature
combinations as described above, one would just need to select which ANS WO subtype
each person belonged to.

There are a number of limitations to our study. First, a large number of subjects
had to be excluded due to not documenting OFF episodes in their activity log during the
sensor recording—although they actually reported having OFF episodes during recording
when interviewed afterwards. This is perhaps understandable, as patients become more
immobilized and apathetic in OFF episodes and are disinclined to fill out a diary. This again
emphasized the need for unintrusive and automated assessments of WO. Nevertheless, we
cannot discount that there may exist a mismatch between self-reported OFFs and automated
assessments that would affect our individualized models. Second, the self-reported OFF
episodes do not specify whether the episodes are motor or non-motor worsening and lack
objective validation by specialists. The correlation between a patient-filled diary and motor
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fluctuations captured by a wrist worn sensor has been previously shown to be limited [52].
Studies have shown that a portion of PD patients in fact have impaired subjective awareness
of their motor impairments [46,53]. Supplementing objective measurements along with
the sensor data and patients’ self-reports would greatly influence the improvement of
treatment decisions and outcomes [46].

So far, we have demonstrated a deterministic association between subject feelings
of OFF and multimodal sensory recordings. However, the next step would need to be to
determine if we can predict WO episodes before subjective feelings of WO. Our results
would suggest that a two-step approach would be required. One would first need a
“calibration phase” to determine which individually-specific combinations of ANS markers
would be optimal. During this phase, PD subjects would need to be extra vigilant to
accurately mark WO in their diary so that an accurate model could be constructed. After
the specific combinations of ANS have been determined, this would be fixed and then used
to track WO episodes.

5. Conclusions

Using subject-specific models, we were able to show a deterministic relationship
between ANS indices detected with a wearable sensor and subjective WO episodes in PD.
This proof-of-principle study suggests that ANS markers could be further explored for the
monitoring of PD, even in advanced stages.
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(centralized) OFF states for each subject, Figure S4: Normalized CCA coefficient weights for each
feature obtained for each of 12 subjects, Figure S5: Correlation between a random vector with 2880
elements and extracted features of 4 sensor signals by subject-specific analysis. The subject number
shows that 35% of the 2880 samples were used as test data. 27. Table S1. p-value for computed
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