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Abstract: Small-incision lenticule extraction (SMILE) is a safe and effective surgical procedure for
refractive correction. However, the nomogram from the VisuMax femtosecond laser system often
overestimates the achieved lenticule thickness (LT), leading to inaccurate estimation of residual
central corneal thickness in some patients. In order to improve the accuracy of predicting achieved LT,
we used machine learning models to make predictions of LT and analyze the influencing factors of LT
estimation in this study. We collected nine variables of 302 eyes and their LT results as input variables.
The input variables included age, sex, mean K reading of anterior corneal surface, lenticule diameter,
preoperative CCT, axial length, the eccentricity of the anterior corneal surface (E), diopter of spherical,
and diopter of the cylinder. Multiple linear regression and several machine learning algorithms
were employed in developing the models for predicting LT. According to the evaluation results, the
Random Forest (RF) model achieved the highest performance in predicting the LT with an R2 of
0.95 and found the importance of CCT and E in predicting LT. To validate the effectiveness of the RF
model, we selected additional 50 eyes for testing. Results showed that the nomogram overestimated
LT by 19.59% on average, while the RF model underestimated LT by −0.15%. In conclusion, this
study can provide efficient technical support for the accurate estimation of LT in SMILE.

Keywords: SMILE; lenticule thickness; machine learning; Random Forest

1. Introduction

Small incision lenticule extraction (SMILE) was first reported by Sekundo et al. and
Shah et al. in 2011 as a safe and effective treatment of myopia and myopic astigmatism [1,2].
Compared with other refractive surgery, SMILE is an Integrated surgery that involves
the creation of an intra-stromal lenticule and a peripheral incision in one step using a
femtosecond laser and manual extraction of the lenticule ultimately. A femtosecond laser
can rapidly scan corneal stroma with a pulse frequency of hundreds of kilohertz and a small
distance between adjacent pulses. In this way, SMILE surgery can avoid or minimize errors
associated with excimer laser ablation, such as stromal hydration [3], laser fluence [4–6],
relative humidity, environmental temperature, and so on [7]. In general, the accuracy and
safety of SMILE surgery are not inferior to other excimer laser surgeries [8,9]. However,
previous studies have reported that there was still a difference between the predicted LT
and the achieved LT. Luft et al. [10] found that the achieved LT was always thinner than the
predicted LT, especially with higher myopic correction. Reinstein et al. [11] also detected a
systematic overvalue of central LT of approximately 8 µm.

Nevertheless, the prediction of LT is mainly by referencing the nomogram provided by
the VisuMax femtosecond laser system. Several studies suggested nomograms for SMILE
to be conducted [12–14]. However, they were focused only on the influence of spherical,
cylindrical, or lenticule diameter (LD) on the change of LT but ignored the influence of
other potential variables. Furthermore, the linear regression analysis was generally used
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to predict LT in previous studies but with other arithmetics. In addition, the nomogram
development for SMILE has not been broadly studied yet.

With the development of artificial intelligence (AI), it has become more and more
popular in the medical field [15]. In ophthalmology, AI has been applied extensively to
diagnose ophthalmological diseases, such as cataracts, glaucoma, age-related macular
degeneration, and diabetic retinopathy [16]. Recently, Tong et al. [17] applied the multi-
layer perceptron (MLP) algorithm to train nomogram models for SMILE. However, there
was no comparison with the other algorithms in their study, and this study focused more on
reducing the postoperative refractive error than the lenticule thickness error. Fang et al. [18]
found that the lenticule thickness predicted by the nomogram exceeds the achieved lenticule
thickness by approximately 10%, but it’s just a correction.

It is well known that the residual central corneal thickness (CCT) after SMILE is a
significant indication of whether surgery can be performed, and the most crucial point
is the accurate prediction of the LT. In order to make the prediction more accurate, we
included a large number of patients, and multiple prediction models were trained based on
these data. The aim of this study was to explore the variables that affect the LT and use
these variables to train AI prediction models, find out the best one by comparison, and
then use the validation data to verify it.

2. Materials and Methods

This study included 352 consecutive patients who underwent a SMILE procedure
at the Eye Center, the First Affiliated Hospital of Fujian Medical University, from March
2022 to September 2022. This study followed the tenets of the Declaration of Helsinki and
was approved by the Ethics Committee of the First Affiliated Hospital of Fujian Medical
University. Written informed consent was obtained from the subjects before participating
in this study. Inclusion criteria included the following: minimum 18 years of age, minimum
central corneal thickness (CCT) of 480 mm, calculated residual stromal thickness greater
than 280 mm, stable refraction for at least 1 year, absence of ocular or systemic diseases,
and reproductive status of not being pregnant or breastfeeding. Patients who wore soft
contact lenses were instructed to stop wearing them for at least 1 week before measurement
(Figure 1).
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Figure 1. Flowchart of our proposed method. (A). Datasets. (B). Data processing. (C). Machine
learning models used to predict the lenticule thickness and compare with the nomogram. The
best-performing prediction model was applied to predict the lenticule thickness and use 50 subjects
for validation. K-mean = mean K reading; CCT = central corneal thickness; E = eccentricity of the
anterior corneal surface; LD = lenticule diameter; S = Sphere; Cyl = Cylinder; LT: lenticule thickness;
SVM: support vector machine; KNN: K-Nearest Neighbor; R: the coefficient of determination;
MAE: mean absolute errors; MSE: mean squared errors; RMSE: root mean square error; N: number
of patients.
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Each patient underwent an ophthalmologic examination, including diopter of the
sphere (S), diopter of the Cylinder (Cyl), intraocular pressure (IOP), slit-lamp examination,
scanning laser ophthalmoscope (SLO, Heidelberg Engineering, Heidelberg, Germany),
optical biometry (Lenstar LS900, Haag Steit AG, Koeniz, Switzerland) and Pentacam
imaging (Oculus Optikgeräte GmbH, Wetzlar, Germany).

2.1. Surgical Procedure

All SMILE procedures were performed by the same surgeon (ZSB) using the VisuMax
femtosecond laser system (Carl Zeiss Meditec AG, Jena, Germany) with a 500-kHz repetition
rate. All patients went under topical anesthesia (Alcaine; AlconCouvreur n.v., Puurs,
Belgium) instilled 2 or 3 times. The laser cut energy index was 155 nJ; the intended cap
thickness was 120 µm; the programmed optical zone diameter was between 6.0 and 6.8 mm,
and the diameter of the cap was 1 mm larger than the diameter of the lenticule. The optical
zone was selected based on the pupil diameter and percent tissue alert (PTA). After the
creation of the lenticule, an incision of approximately 2 mm in length was created at the
11 o’clock position for lenticule extraction. After surgery, one drop of dexamethasone steroid
(Tobradex; Alcon Laboratories, Fort Worth, TX) was placed in each eye. A recommended
nomogram from VisuMax femtosecond laser system was implemented for all subjects to
predict LT.

2.2. Postoperative Treatment

Patients were instructed to wear plastic shields for 7 nights. The standard postopera-
tive treatment was levofloxacin eye drops (Cravit; Santen Pharmaceutical Co., Ltd., Osaka,
Japan) 4 times a day after surgery for 7 days, fluorometholone eye drops (Santen Pharma-
ceutical Co., Ltd., Osaka, Japan) at 0.1% 4 times a day for 2 weeks, and preservative-free
artificial tears 4 times a day for a month. The patients were followed up at 1 day, 1 week and
1 month, and 3 months; the optometry, visual acuity, and IOP were examined at each visit.
Pentacam scanning was performed at the 1-day, 1-month, and 3-month postoperative visits.

2.3. Achieved LT Calculation

The achieved LT data were calculated by comparing the pre- and postoperative exam-
inations with Pentacam software. The rotating Pentacam Scheimpflug camera measures
corneal thickness normal to the anterior surface tangent [19]. The pachymetry values were
provided at 3 points [20], including the corneal vertex, pupil center, and the thinnest point.
During the examination, the automatic release mode was used [21]. In this study, the
intended treatment center was the corneal vertex. Since the position of the thinnest point of
the cornea varies greatly from person to person, the corneal vertex and pupil center were
selected as the two locations to calculate the achieved LT.

2.4. Surgical Refractive Correction

According to the preoperative examination of the computer optometry, mydriatic
optometry, and comprehensive optometry design, the expected correction refraction, in-
cluded S, Cyl, and LD, and they were input into the VisuMax femtosecond laser system;
the surgical correction was performed according to these data.

2.5. Statistical Analysis

According to the preoperative examination of the computer optometry, mydriatic
optometry, and comprehensive optometry design, the expected correction refraction, in-
cluded S, Cyl, and LD, and they were input into the VisuMax femtosecond laser system;
the surgical correction was performed according to these data.

In our study, only one eye for each patient was randomly selected and included
for statistical analysis to ensure that the measurements from the eyes could be treated
independently [22]. In this study, to build the prediction model, the input variables were
age (in years), sex (“1” represents male, while “2” represents female), mean K reading of
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anterior corneal surface (K-mean, in diopters), LD (in mm), preoperative CCT (in µm), axial
length (AL, in mm), the eccentricity of the anterior corneal surface (E), S (in diopter) and Cyl
(in diopter), and the target output was the predicted LT (in µm). The E is calculated using
the following formula, where the Q is the Q value on the anterior surface of the cornea:

E =
√
−Q (1)

Eight types of supervised machine learning models were implemented in our study
based on Logistics Regression Model, K-Nearest Neighbor (KNN) model, Support Vector
Machine (SVM) regression models, Decision Tree Regression, Ridge Regression (l2 regular-
ization), Bayesian Linear Regression, Lasso Regression (l1 regularization), and Random
Forest model. Then, a 5-fold cross-validation [23] scheme randomly divided all data into
5 groups, including 4 groups (80%) used as training data and one group (20%) used as
validation data. This process was repeated 5 times so that all data were validated by this
model, which allowed better prediction of the overall sample and prevented overfitting.
During the fitting process, AL was finally excluded from our final model because it could
lead to the problem of collinearity and render the final model unsolvable. Furthermore,
including AL did not yield better results. Thus, the final model used to estimate LT was
as follows:

LTpredicted = f (Age, Sex, Kmean, E, CCT, LD, S, Cyl), (2)

To verify the efficacy of the machine learning models, a multiple linear regression
model was also created [24,25]. Pearson correlation analyses among all the variables. The
performance of the machine-learning prediction algorithms developed from the training
data was assessed using the testing data by calculating the R2 value, R value, mean absolute
error (MAE), mean squared error (MSE), and root mean square error (RMSE), the best
performance model compared with the nomogram from VisuMax femtosecond laser system
using validation data by paired t-tests. All statistical analyses were performed using the
PyCharm (Edition 2020.1.2 x64) embedded by the Python (Python Software Foundation)
software (Version 3.8) under the Windows 10 system, and the level of statistical significance
was set at p < 0.05.

3. Results

In total, 189 males (53.69%) and 163 females (46.31%) were included in this study. The
average age of all subjects was 22.87 ± 5.92 years. The mean S was −5.75 ± 2.15 D and
ranged from −1.5 D to −10.00 D. The mean Cyl was −0.96 ± 0.74 D and ranged from 0 to
−3.75 D. The detailed information is provided in Table 1. Via Pearson correlation analyses
among all variables included in the study, we found that there was a high linear correlation
between the AL and the S (r = 0.69), a medium linear correlation between AL and K-mean
(r = −0.47), and a medium linear correlation between S and LD (r = −0.49); the others
showed weak or no correlation; the detailed information is provided in Figure 2. The AL
was finally excluded because it could lead to the problem of collinearity. We randomly
selected 302 subjects for training and testing data of the machine learning model, and
the other 50 subjects were used for validation data. Significant correlations were found
between several input variables and LT, but age, sex, and K-mean were not. The R2 value
of the multiple linear regression model was 0.87, as determined by the following equation:

LTpredicted = −187.07 − 11.26 × S − 12.17 × Cyl
+29.40 × LD + 0.046 × CCT − 12.19 × E(P < 0.05),

(3)

Table 2 shows the performance results of eight machine learning models and the
multiple linear regression model using 302 subjects. The results show that three machine
learning models had a worse predictive ability than the multiple linear regression model;
according to R2, the half of machine learning models had a similar predictive ability
to the multiple linear regression model and only the Random Forest model achieved
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significantly better performance. According to Table 2, Random Forest performs optimally
in four indicators.

Table 1. Basic information and ocular parameters of the subjects included in this study.

Subjects Values

No. of cases 352
Sex, male No. (%) 189 (53.69)

Sex, female No. (%) 163 (46.31)
Variables Range Mean ± SD 9

Age (years) 18–48 22.87 ± 5.92
K-mean 1 (D 8) 39.1–45.8 42.91 ± 1.30

CCT 2 (µm) 491–656 554.57 ± 28.75
E 3 0–0.83 0.56 ± 0.097

LD 4 (mm) 6.0–6.8 6.51 ± 0.17
S 5 (D 8) −10–−1.5 −5.75 ± 2.15

Cyl 6 (D 8) −3.75–0 −0.96 ± 0.74
AL 7 (mm) 23.33–29.90 26.17 ± 1.07

No. of cases 352
1 K-mean: mean K reading; 2 CCT: central corneal thickness; 3 E: eccentricity of the anterior corneal surface;
4 LD: lenticule diameter; 5 S: Sphere; 6 Cyl: Cylinder; 7 AL: axial length; 8 D: diopters; 9 SD: standard deviation.
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In this study, in order to visualize the prediction effect and prediction accuracy of
each model, we conducted robust linear regression analysis with the achieved LT as the
abscissa and the predicted LT as the ordinate. As shown in Figure 3, the Random Forest
model has the highest prediction accuracy (R2 = 0.9516), and most scatter plots fall along
the perfect correlation regression line. The Decision Tree Regression appeared to have great
prediction accuracy on the surface, but it actually had serious overfitting. The five-fold
cross-validation also confirmed that this model lacked a serious generalization ability.
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Table 2. Performance of the multiple linear regression model and machine learning models.

Models R2 R MSE 5 RMSE 3 MAE 4

Linear Model Multiple Linear Regression 0.87 0.93 87.44 9.35 6.15
Machine Learning

Methods Logistics Regression 0.66 0.81 229.07 15.14 11.15

KNN 2 0.74 0.86 184.37 13.58 10.23
SVM 1 (linear) 0.80 0.89 139.11 11.79 7.68

Decision Tree Regression 0.88 0.94 80.06 8.95 2.48 *
Ridge Regression 0.87 0.93 90.72 9.52 6.46

Bayesian Linear Regression 0.87 0.93 90.15 9.49 6.42
Lasso Regression 0.87 0.93 89.91 9.48 6.41
Random Forest 0.95 * 0.98 * 32.66 * 5.71 * 3.78

1 SVM: Support Vector Machine; 2 KNN: K-Nearest Neighbor; 3 RMSE: root mean square error; 4 MAE: mean
absolute error; 5 MSE: mean squared error. Best values of indices are marked by an asterisk (*). Keep two
significant digits after the decimal point.
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Figure 3. Scatterplot of predicted LT vs. achieved LT. The solid line represents the fitting line. The
dashed line represents the perfect line without error prediction. (A). Multiple linear regression.
(B). Random forest. (C). Decision tree. (D). Lasso regression. (E). BayesianRidge model. (F). Ridge
regression. (G). SVM model. (H). KNN model. (I). Logistic regression.

3.1. Model Variables

A total of eight variables were included in the multiple linear regression model. As
is known to all [12–14], S, Cyl, and LD are the main factors affecting LT, which were the
most important variables for predicting LT according to the nomogram from VisuMax
femtosecond laser system. In this study, we accidentally found that CCT and E were also
significantly correlated with LT, while the other three variables (age, sex, and K-mean)
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showed no significant correlation, which was eliminated in the prediction model. As
shown in Table 3, CCT was positively correlated with LT, while E was negatively correlated
with LT.

Table 3. Variables included in the prediction model.

Variables Coef 6 SE 7 t p 95%CI 8

S 1 −11.26 0.30 −37.27 0.000 ** −11.86, −10.67
Cyl 2 −12.17 0.78 −15.68 0.000 ** −13.70, −10.64
LD 3 29.40 4.09 7.18 0.000 ** 21.34, 37.45

CCT 4 0.046 0.021 2.18 0.030 * 0.004, 0.087
E 5 −12.19 5.836 −2.09 0.038 * −23.68, −0.71

1 S: Sphere; 2 Cyl: Cylinder; 3 LD: lenticule diameter; 4 CCT: central corneal thickness; 5 E: eccentricity of the
anterior corneal surface; 6 Coef: coefficient; 7 SE: standard error; 8 CI: confidence Interval; * indicates that the
p-value less than 0.05; ** indicates that the p-value less than 0.01.

To further explore the importance of CCT and E in machine learning models, we
selected the best-performing Random Forest model for validation. We included three
variables (S, Cyl, LD), four variables (S, Cyl, LD, CCT), and five variables (S, Cyl, LD, CCT,
E) into the model, respectively, and observed the performance of the model in the training
data and testing data. As shown in Figure 4A,B, the abscissa is the number of trees in the
Random Forest model (the more trees, the more stable the model), and the ordinate is the
score of the training or testing data; we can find that including CCT and E to the Random
Forest model will improve the accuracy of the model in training and testing data. Then
we used five-fold cross-validation to verify the accuracy of the three stable Random Forest
models and tested them by paired t-tests (Figure 4C). There were significant differences
between three variables (S, Cyl, LD) and four variables (S, Cyl, LD, CCT) (p < 0.05), and
there were extremely significant differences between three variables (S, Cyl, LD) and five
variables (S, Cyl, LD, CCT, E) (p < 0.01).
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Figure 4. S: Sphere; Cyl: Cylinder; LD: lenticule diameter; CCT: central corneal thickness; E: eccen-
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3.2. Prediction Results

In this study, we collected 50 subjects as the verification data. The 50 subjects were
independent of the training and testing data, which could more truly evaluate the accuracy
of the model’s prediction. As Figure 5A shows, we arranged the 50 subjects according
to the achieved LT value from low to high as abscissa can find that the predicted LT by
the Random Forest model is very close to the achieved LT, while the nomogram from
VisuMax femtosecond laser system is often overestimated, which is similar to previous
studies [10,19,26]. Then, we took a paired t-test on the achieved LT and the predicted LT
by the Random Forest model, as Figure 5B shows, and found that there was no significant
difference between them (p > 0.05), indicating that the Random Forest model had excellent



J. Pers. Med. 2023, 13, 256 8 of 11

predictive accuracy. Correspondingly, there is an extremely significant difference between
achieved LT and predicted LT by the nomogram (p < 0.01). The 50 subjects were divided
into five groups according to the achieved LT from low to high, with 10 subjects in each
group, to observe the estimated deviations (Delta) of achieved LT by nomogram and
Random Forest model. As Figure 5C shows, we found that for the nomogram, the higher
value of the achieved AL, the greater overestimation, while the Random Forest model is on
the contrary. We converted the overestimate or underestimate values to percentages (the
details are shown in Table 4) and found that the nomogram was overestimated by 19.59%,
on average.
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Figure 5. RF: Random Forest; LT: lenticule thickness; ** indicates that the p-value is less than 0.01.
(A). The LT changes with the number of subjects. (B). The paired t-test on the achieved LT and the
predicted LT by the Random Forest model. (C). The Delta LT for the nomogram and RF, respectively,
for five groups.

Table 4. Variables that included in the prediction model.

Model Group 1 Group 2 Group 3 Group 4 Group 5 Average

Nomogram 22.11% 19.21% 22.98% 16.00% 17.64% 19.59%
RF model 7.51% −0.26% 0.78% −5.19% −2.99% −0.15%

RF: Random Forest.

4. Discussion

Myopia is the most common cause of vision loss, with an uncorrected refractive error
being the leading ocular disorder, causing visual impairment worldwide [27]. Now a
global public health burden [28,29], myopia has become significantly more prevalent across
East Asia [30,31]. In order to realize higher visual quality and get rid of the shackles of
glasses, more and more people choose refractive surgery to correct refractive errors [32].
SMILE, as a relatively new procedure, is gaining more popularity, especially after its FDA
approval for myopia in 2016 and for astigmatism in 2018. In SMILE surgery, the refractive
error is corrected by the intrastromal lenticule extraction, so the accuracy of the estimate
LT is one of the key points of the SMILE procedure. In the current clinical work, we
always reference the nomogram from VisuMax femtosecond laser system to predict the
postoperative residual CCT in most cases and take this as the standard to judge whether
the refractive error can be fully corrected. However, after a period of clinical practice, we
found that the nomogram always overestimated the LT, resulting in an underestimation of
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the residual CCT. According to this standard, for some patients who could have been fully
corrected for refractive error, in order to retain enough residual CCT, we often choose to
undercorrect, which has a certain impact on the uncorrected visual acuity and satisfaction
of patients. In previous studies, some researchers have also found that the nomogram was
not accurate. Liang et al. [13] suggested adding an 11% correction of SE to the nomogram
for SMILE surgery; Zhou et al. [26] adjusted the mean treated SE up to −6.30 ± 2.00 D
when the mean preoperative SE was −5.96 ± 1.97 D in SMILE surgery; Fang et al. [18]
found that the proportion of overestimation of lenticule thickness in predicted value is
11.9% for ultrasound and about 15% for Pentacam. However, previous studies were only
limited to studying the overestimation rate of nomogram and obtained a more accurate
estimate value by reducing a certain proportion of nomogram; few studies had constructed
a model to predict LT from the major factors affecting LT. Therefore, our study focuses on
exploring the major factors that affect LT and predict LT by multiple linear regression and
various machine learning models to finally obtain an optimal prediction model.

The precise prediction of LT was according to biometric parameters, including age,
sex, CCT, LD, K-mean, E, S, Cyl, and AL. During the study, we gradually excluded the
effects of AL, age, sex, and K-mean on LT by Pearson correlation analysis and multiple
linear regression models and accidentally found that E and CCT had significant effects
on LT, which had not been mentioned in previous studies. With the development of AI,
machine learning has been widely used in the medical field. We applied machine learning
to predict LT and found that the accuracy of the Random Forest model in predicting LT
was higher than that of the multiple linear regression model, and further confirmed the
significance of CCT and E in the prediction of the model. Despite the small sample in this
study, we found high accuracy of LT prediction using the multiple linear regression model
and some machine learning models.

Then, we selected 50 subjects as the validation data to verify the prediction accuracy
of the model. It was found that the nomogram tended to overestimate the value of LT,
with an average overestimate of 19.59%, while the Random Forest model had a much
higher prediction accuracy, with an average underestimate of −0.15%. It was good news
for some patients with high refractive errors but thin CCT because they could get correction
as much as possible, which is of great significance for the improvement of visual quality
and satisfaction of patients after surgery. However, the Random Forest model also has
its limitations; it tends to overestimate when LT is thin and tends to underestimate when
LT is thick, which may cause postoperative residual CCT shortage caused by long-term
complications, such as corneal expansion [32]. Therefore, we need to further expand the
amount of data to improve the accuracy of our model prediction in the future, and longer
follow-up would be needed to better understand the changes rule of residual CCT and its
impact on the corneal health after SMILE surgery in the meantime.

5. Conclusions

The results of this study validate the reliability of machine learning models in accu-
rately predicting LT in SMILE surgery and screen out the best-performing Random Forest
model. In addition, we found two factors significantly affecting the prediction of LT; they
are preoperative CCT and anterior corneal surface eccentricity (E), respectively. Further-
more, the nomogram from VisuMax femtosecond laser system significantly overestimates
the achieved LT, while based on the Random Forest model, we are able to obtain closer
prediction results to the achieved LT.
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