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Abstract: Background: Aicardi–Goutières syndrome (AGS) is a rare genetic disorder characterized
by microcephaly, white matter lesions, numerous intracranial calcifications, chilblain skin lesions and
high levels of interferon-α (IFN-α) in the cerebrospinal fluid (CSF). However, ocular involvement
is reported significantly less frequently. Case presentation: We present a case of a neonate with
hypotrophy, microcephaly, frostbite-like skin lesions, thrombocytopenia, elevated liver enzymes
and hepatosplenomegaly. Magnetic resonance imaging (MRI) of the brain showed multiple foci of
calcification, white matter changes, cerebral atrophy, and atrophic dilatation of the ventricular system.
The inflammatory parameters were not elevated, and the infectious etiology was excluded. Instead,
elevated levels of IFN-α in the serum were detected. Based on the related clinical symptoms, imaging
and test findings, the diagnosis of AGS was suspected. Genetic testing revealed two pathogenic
mutations, c.490C>T and c.222del (novel mutation), in the three prime repair exonuclease 1 (TREX1)
gene, confirming AGS type 1 (AGS1). An ophthalmologic examination of the child at 10 months of
age revealed an impaired pupillary response to light, a corneal haze with Haab lines in the right eye
(RE), pale optic nerve discs and neuropathy in both eyes (OU). The intraocular pressure (IOP) was
51 mmHg in the RE and 49 in the left eye (LE). The flash visual evoked potential (FVEP) showed
prolonged P2 latencies of up to 125% in the LE and reduced amplitudes of up to approximately 10%
OU. This girl was diagnosed with congenital glaucoma, and it was managed with a trabeculectomy
with a basal iridectomy of OU, resulting in a reduction and stabilization in the IOP to 12 mmHg in
the RE and 10 mmHg in the LE without any hypotensive eyedrops. Conclusions: We present the
clinical characteristics, electrophysiological and imaging findings, as well as the genetic test results of
a patient with AGS1. Our case contributes to the extended ophthalmic involvement of the pathogenic
c.490C>T and c.222del mutations in TREX1.

Keywords: Aicardi–Goutières syndrome; TREX1; congenital glaucoma; interferon alpha; type 1
interferonopathies

1. Introduction

Aicardi–Goutières syndrome (AGS) is a rare autoimmune neurological disorder be-
longing to type I interferonopathies. There are seven subtypes based on the different
pathogenic genes: three prime repair exonuclease 1 (TREX1) (AGS1), RNASEH2B (AGS2),
RNASEH2C (AGS3), RNASEH2A (AGS4), SAMHD1 (AGS5), ADAR1 (AGS6) and IFIH1
(AGS7) [1,2]. Mutations affecting RNASEH2B and TREX1 are reported to be the most com-
mon, representing 35% and 17% of all cases, respectively [3]. AGS is usually inherited in an
autosomal recessive manner. However, there may also be de novo or inherited autosomal
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dominant pathogenic variants in TREX1 or ADAR, as well as heterozygous autosomal
dominant pathogenic variants in IFIH1. Mutations in the above genes affect the targeting
and/or metabolism of nucleic acids, thereby promoting a type I interferon (IFN-I)-mediated
innate immune response [1–6].

The major clinical features of AGS include encephalopathy, significant intellectual dis-
ability, acquired microcephaly during the first year of life, dystonia, spasticity, sterile pyrex-
ias, intracranial calcifications, white matter lesions, brain atrophy, bilateral striatal necrosis,
chilblain lesions on the feet, hands, ears or more diffuse throughout the skin [1,2,7–9]. The
characteristic features include lymphocytosis, high levels of interferon α (IFN-α) in the
cerebrospinal fluid (CSF) and serum with an increased expression of interferon-stimulated
genes (ISGs) in the peripheral blood—the so-called “interferon signature” [1,2,6,10]. More-
over, patients with AGS may demonstrate intracerebral vasculopathy, hepatosplenomegaly,
elevated liver enzymes, thrombocytopenia, hemolytic anemia, elevated autoantibodies,
hypothyroidism, insulin-dependent diabetes mellitus, transitory antidiuretic hormone
deficiency, neonatal cardiomyopathy and demyelinating peripheral neuropathy [7,9,11,12].

With new sequencing technologies becoming more extensively used in routine clinical
practice, the spectrum of symptoms coexisting with AGS continues to expand. However,
the amount of data available regarding the ocular complications associated with AGS is
still quite limited. We present the clinical characteristics, electrophysiological and imaging
outcomes as well as genetic test results of a patient with AGS1. Our case provides a more
comprehensive insight into the affinity of pathogenic c.490C>T and c.222del (novel variant)
mutations in TREX1 for ocular symptoms and complications.

2. Case Report

We present the case of a Caucasian girl, the first child of a healthy couple without
consanguinity, with a family history of autoimmune and genetic diseases with no detectable
pathologies. The girl was born at 37 weeks’ gestation with an Apgar score of 7/8/8/9;
the birth weight was 2370 g (<10th centile, hypotrophy), and the head circumference was
29.8 cm (<3rd centile, microcephaly). A cranial ultrasound performed on the first day of
life revealed dilated vascular plexuses with irregular contours, a dilated ventricular system,
leukomalacia involving the frontal horns and indistinct echogenicity of the brain tissue.
Subsequently, magnetic resonance imaging (MRI) of the brain was performed, demonstrat-
ing generalized cortical and subcortical atrophy of both cerebral hemispheres, focal areas
of cerebral malacia in the frontal, parietal, temporal and occipital lobes, together with an
atrophic dilated ventricular system. Numerous small calcifications and hemorrhagic foci
were found, most prominently in the white matter of the periventricular structures and deep
cerebral hemispheres. Furthermore, thinning of the corpus callosum and pontocerebellar
hypoplasia were found.

Initially, a congenital infection and a pre-existing encephalitis were suspected, but
the inflammatory parameters on the first day of life were negative, and the polymerase
chain reaction (PCR) test from the blood and cerebrospinal fluid (CSF) excluded infection.
However, the enzyme-linked immunosorbent assay (ELISA) showed that the serum IFN-α
and IFN-β levels were both abnormally elevated. The screening for inborn metabolic
disorders was negative. The newborn also had moderate thrombocytopenia, elevated
liver enzymes and hepatosplenomegaly. Moreover, chilblain-like lesions on the fingers
and toes and scattered petechiae were present. In the following weeks, no growth in the
circumference of the head and increased muscle tone in the four limbs were noted. A
repeated brain MRI scan performed after two months showed the evolution of hypoxic-
ischemic changes progressing towards encephalomalacia and atrophy.

The diagnosis of AGS was suspected based on the concomitance of clinical symptoms,
imaging, and diagnostic test results. Whole-exome genome sequencing (WES) was per-
formed, revealing the presence of two mutations in the TREX1 gene. The first mutation,
c.490C>T p.(Arg164Ter), is registered as a pathogenic variant affecting the function of
the protein encoded by TREX1, and it is associated with the clinical manifestations of
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AGS. However, the second mutation, c.222del p.(Lys75ArgfsTer13), was not previously
registered in the databases and is a frameshift mutation resulting in the loss of function
of TREX1. The father presented a c.490C>T p.(Arg164Ter), and the mother presented a
c.222del p.(Lys75ArgfsTer13). The parents of the proband were heterogeneous carriers with
normal phenotypes, while the child was diagnosed with AGS1.

This patient had an ophthalmological examination on the first day of life. At that
time, it was assessed that the intraocular pressure (IOP) was normal, the anterior and
posterior eye segment examination was without abnormalities and the retina revealed no
inflammatory changes in both eyes (OU). At 10 months of age, the girl was referred to the
Ophthalmology Outpatient Clinic for a follow-up examination, which showed an impaired
pupillary response to light OU. An ophthalmic examination performed under general
anesthesia showed slight corneal haze with Haab lines in the RE. The corneal diameter was
11.5 mm × 11.5 mm in the RE and 11 × 11.5 in the LE. A gonioscopy revealed a moderately
deep, hypoplastic (greater in the RE) iridocorneal angle, a hypoplastic iris with prominent
vessels and a poorly defined ciliary body, without pigment OU. The IOP measured with the
iCare tonometer was 51 mmHg in the RE and 49 mmHg in the LE. The corneal pachymetry
was, on average, 707 µm in the RE and 712 µm in the LE. A fundus examination revealed
pale optic nerve discs with advanced glaucomatous neuropathy (Figure 1), macula with no
reflex and a poorly pigmented retinal OU. Additionally, in the flash visual evoked potential
(FVEP) performed, the P2 latencies were normal in the RE and prolonged to 125% in the
LE, and the amplitudes were reduced to approximately 10% OU.
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Figure 1. Photography of the RE fundus, obtained during examination under general anesthesia,
showed an enlarged cup-to-disc ratio, nasal shifting of blood vessels and pallor of the remaining
neuro-retinal rim.

According to these findings, the girl was diagnosed with congenital glaucoma and
subsequently underwent trabeculectomy with basal iridectomy OU (Figure 2A–H).
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Figure 2. Trabeculectomy with basal iridectomy in the RE: (A) preparation of the superficial scleral
flap (limbal-based flap, 4 mm × 3 mm); (B) determination of the size of the deep scleral flap;
(C) dissection of the deep scleral flap (1.5 mm× 2 mm); (D) punctate opening of the anterior chamber;
(E) excision of the deep scleral flap; (F) basal iris excision; (G) inspection of the created fistula;
(H) superficial flap suture placement.

After one month, the IOP was 12 mmHg in the RE and 10 mmHg in the LE without
any hypotensive agents. The girl remained under the constant care of the Ophthalmology
Outpatient Clinic, with the IOP maintained within normal limits 2 years after the surgery
(Figure 3). As an additional feature, the presence of slight lagophthalmos during the
patient’s sleep was observed, resulting in exposure keratopathy.
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Figure 3. Photography of a patient at the age of 3 years. There is apparent small neurocranium, oval
face and fairly large auricles; forehead is slightly posteriorly tilted; fine, short hair with V-shaped line
on head; mouth with narrow red lips.

3. Discussion

We can distinguish the two clinical presentations of AGS. The early-onset form, which
starts in utero, features a severe course after birth and resembles a congenital infection
(pseudo-TORCH) with a high risk of death. However, the late-onset form, in which an
initially healthy infant presents with a subacute onset of profound neurological regression
only after a few months, has a greater variety of symptoms [7,12,13]. Neonatal presentation
is most often associated with a mutation in the TREX1, as in the case of the patient we
described. The TREX1 gene is located on chromosome 3p21 and encodes 3′ -> 5′ endonucle-
ase involved in degrading single-stranded (ss) and double-stranded (ds) DNA substrates
in vitro [14,15]. The loss-of-function mutations in TREX1 results in an abnormal accumula-
tion of nucleotides in the cytoplasm, which can be bound by the DNA sensor—the cyclic
GMP-AMP synthase (cGAS). This is followed by the activation of the IFN signaling path-
way through the stimulator IFN gene (STING), leading to an increased expression of IFN-I
and an enhanced immune response [16]. This response is analogous at the cellular level
to that produced by an exposure to viral nucleic acids (DNA and RNA), which explains
why the AGS has a phenotype similar to intrauterine viral infection. Unfortunately, many
cases of AGS remain undiagnosed, and an accurate diagnosis usually occurs late and is
commonly associated with the birth of a second affected child. For this reason, AGS should
be considered in neonates with features of congenital infection in which the pathogen has
not been isolated [17] (Table 1).
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Table 1. TREX1 pathogenic variants according to the Human Gene Mutation Database (HGMD).

Missense/Nonsense Mutation

HGMD Codon Change HMD Amino Acid Change HGVS (Nucleotide) HGVS (Protein)

ACC-AAC Thr13Asn c.38C>A p.T13N

ACC-CCC Thr13Pro c.37A>C p.T13P

ATC-ATG Ile15Met c.45C>G p.I15M

GAC-CAC Asp18His c.52G>C p.D18H

ACG-AGG Thr32Arg c.95C>G p.T32R

TGT-TGA Cys42Term c.126T>A p.C42

CCG-CAG Pro61Gln c.182C>A p.P61Q

AAG-AGG Lys66Arg c.197A>G p.K66R

CTG-CCG Leu69Pro c.206T>C p.L69P

CTG-CAG Leu92Gln c.275T>A p.L92Q

CGT-CAT Arg97His c.290G>A p.R97H

CGC-CAC Arg114His c.341G>A p.R114H

GTG-GCG Val122Ala c.365T>C p.V122A

CTG-CCG Leu162Pro c.485T>C p.L162P

CGA-TGA Arg164Term c.490C>T p.R164

CAC-TAC His195Tyr c.583C>T p.H195Y

GAG-AAG Glu198Lys c.592G>A p.E198K

GAT-AAT Asp200Asn c.598G>A p.D200N

GAT-CAT Asp200His c.598G>C p.D200H

GTC-GAC Val201Asp c.602T>A p.V201D

TGG-TAG Trp210Term c.629G>A p.W210

GCC-ACC Ala223Thr c.667G>A p.A223T

ACA-CCA Thr303Pro c.907A>C p.T303P

Small deletions

HGMD deletion HGVS (nucleotide) HGVS (protein)

CCCCCˆ49ACCTCtcAGGGGCCACC c.150_151delTC p.(Gln51Glyfs*50)

CCCACCˆ50TCTCagGGGCCACCTC c.152_153delAG p.(Gln51Argfs*50)

CCTGCˆ78AGCCCtgcagccAGCGAGATCA c.237_243delTGCAGCC p.(Ala81Argfs*5)

GCCCTˆ80GCAGCcagcGAGATCACAG c.243_246delCAGC p.(Ser82Argfs*5)

TACGACˆ131TTCCcCCTGCTCCAA c.397delC p.(Leu133Cysfs*27)

GTGGATˆ155AGCAtCACTGCGCTG c.467delT p.(Ile156Thrfs*4)

GATAGCˆ156ATCAcTGCGCTGAAG c.470delC p.(Thr157Metfs*3)

CGAGCAˆ166AGCAgCCCCTCAGAA c.500delG p.(Ser167Thrfs*13)

AGGAAGˆ176AGCTaTAGCCTAGGC c.530delA p.(Tyr177Leufs*3)

GCTCAGCˆ207ATCtgtcaGTGGAGACCA c.622_626delTGTCA p.(Cys208Valfs*31)

AGCCAˆ244AGACCaTCTGCTGTCA c.735delA p.(Ser246Leufs*31)

AAGGACˆ279CCTGgAGCCCTATCC c.839delG p.(Gly280Glufs*18)

CCAGGˆ285GAGGGgCTGCTGGCCC c.858delG p.(Leu287Cysfs*11)

GCTGCTGˆ289GCCccactgggtctgctggccATCCTGACCT c.868_885del18 p.(Pro290_Ala295del)
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Table 1. Cont.

Small insertions

HGMD insertion HGVS (nucleotide) HGVS (protein)

TTTCGACˆ19ATGgGAGGCCACTG c.58dupG p.(Glu20Glyfs*82)

GAGCCCCˆ48CCCcACCTCTCAGG c.144dupC p.(Thr49Hisfs*53)

CCTGTGTˆ71GTGtgGCTCCGGGGA c.212_213dupTG p.(Ala72Trpfs*17)

CAGCCCTˆ80GCAaGCCAGCGAGA c.240dupA p.(Ala81Serfs*21)

CCCTGCAˆ81GCCctgcagccAGCGAGATCA c.236_243dupCTGCAGCC p.(Ser82Leufs*9)

ACAGGTˆ87CTGAagGCACAGCTGT c.262_263insAG p.(Ser88Lysfs*23)

TGGGCGTˆ98CAAaTGTTTTGATG c.294dupA p.(Cys99Metfs*3)

GTCAAˆ99TGTTTgtttTGATGACAAC c.296_299dupGTTT p.(Phe100Leufs*3)

GCCTGˆ122GTGGCggcACACAATGGT c.366_368dupGGC p.(Ala123dup)

GCTCCAAˆ136GCAccccctgctccaagcaGAGCTGGCTA c.393_408dup16 p.(Glu137Profs*24)

TGAGGGTˆ200GATgatGTCCTGGCCC c.599_601dupATG p.(Asp200dup)

ATCTGTˆ209CAGTcagtGGAGACCACA c.625_628dupCAGT p.(Trp210Serfs*32)

TGTCAGˆ210TGGAtggaGACCACAGGC c.628_631dupTGGA p.(Arg211Metfs*31)

CATCAGGˆ231CCCcATGTATGGGG c.693dupC p.(Met232Hisfs*9)

Gross insertions

DNA level Insertion/duplication Description

gDNA duplication 54 bp c.609_662

HGVS—Human Genome Variation Society.

Glaucoma has been found to be the most common concomitant ophthalmological
condition with AGS, with the majority of the symptoms beginning in the first months of
life [1,2,7,9,18,19]. However, there has also been a case reported of a patient with AGS
in whom bilateral glaucoma requiring treatment appeared at the age of 6 [2]. Accord-
ing to the major report on individuals with AGS, glaucoma was diagnosed in 6.3%, of
which 20.8% were patients with a pathological SAMHD1 variant. However, among pa-
tients with abnormal ADAR and IFIH1 variants, glaucoma was not detected [2]. Various
other ophthalmic symptoms have been described so far: conjunctivitis, dry eye, exposure
keratopathy, corneal perforation, posterior synechiaea, aniridia, spherophakia, optic at-
rophy, papillitis, optic neuritis, cortical blindness, choroidal thickening, nystagmus and
nanophthalmos [1,9,20–22]. In addition, brain white matter abnormalities with prolonged
latencies on VEP testing were detected in some children, indicating a degree of cortical
blindness, while the electroretinography (ERG) photopic responses performed so far were
normal [22,23].

The other example of an immunogenetic disorder associated with the induction of
IFN-I production and the increased expression of ISGs in which glaucoma occurs is Sigleton
Merten syndrome (SGMRT). It is an autosomal-dominant condition caused by gain-of-
function variants in RIG-I-like receptor proteins. The normal function of the receptor is
to recognize exogenous dsRNA, thereby activating innate immune pathways and IFN-I
signaling as part of the antiviral response. The systemic features involve a psoriasiform
rash, vascular calcifications, skeletal dysplasia and dental anomalies, whereas the ocular
manifestations include congenital or juvenile open-angle glaucoma (OAG) [21,24,25].

In the literature, several cases have been reported in which the administration of
IFN resulted in the development or progression of glaucoma (at the same time, the use of
ribavirin or protease inhibitors has not been directly linked to an increase in the IOP) [26–28].
Ilyas et al. described the case of a 51-year-old woman with primary OAG (POAG) with
an increase in the IOP one month after starting triple therapy treatment (consisting of
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pegIFN-α-2a, ribavirin and boceprevir) for chronic hepatitis C. Although treated with
hypotensive drops, the IOP remained above average and declined significantly only after
the discontinuation of antiviral therapy [26]. A case of a man with hepatitis C was also
described in whom the use of pegIFN-α-2b and ribavirin induced an exacerbation of already
diagnosed glaucoma [27]. However, Kwon et al. reported the development of POAG in a
15-year-old boy with chronic hepatitis B during treatment with IFN-α, which disappeared
with the cessation of the IFN therapy [28]. The mechanism by which IFN therapy may lead
to an increase in the IOP remains unclear. It has been shown that IFN, through a stimulation
of the effector function of immune cells, exhibits immunomodulatory properties [29]. Thus,
it has been suggested that increased levels of IFN-α may be associated with the activation
of leukocytes (monocytes, macrophages and dendritic cells). Moreover, the secretion of
macrophage migration inhibitory factor (MIF) by the human trabecular meshwork (TM)
increases the expression of IFN and thus enhances the T helper cytokines and contributes to
an imbalance between different cytokines and cells. TM is the site of the highest resistance
to aqueous humor outflow and is thought to be critical to the regulation of the IOP. One of
the important components in the resistance to outflow through the TM is the extracellular
matrix (ECM). The MIF induces an upregulation of matrix metalloproteinases-1 and -3,
in a dose-dependent way, and may induce ECM degradation [30]. Additionally, it was
demonstrated that there were significant differences in the cytokine profile (including
increased IFN-α concentration) in the aqueous humor obtained from the anterior chamber
of glaucomatous eyes compared to the control group. In addition, it was noted that in
POAG, an aqueous inflammatory response was more extensive compared to patients with
primary angle closure glaucoma [31].

The continuous development of obstetric ultrasonography provides an opportunity to
monitor the development of the eyeballs as well as measure their axial lengths earlier and
more accurately, especially after the 17th gestational week [32]. MRI is another, although not
yet so accessible, method used to diagnose congenital defects. To date, no negative effects
of this examination on the fetus have been demonstrated, but it is discouraged during the
first trimester [33]. Identifying megalophthalmos, suggesting congenital glaucoma in the
fetus, makes it possible to plan and perform glaucoma surgery in the newborn as early
as possible, potentially increasing the chances of maintaining the development of normal
vision [34]. In addition, extensive research is being conducted to identify biomarkers that
allow for the prenatal detection of congenital glaucoma. To date, cytochrome p4501B1
deficiency has been shown to affect abnormal ocular tissue during early fetal development,
and fetuses with cytochrome p4501B1 mutations are more likely to develop congenital
glaucoma [35].

There is currently no specific and effective treatment for AGS. Conventional immuno-
suppressive drugs (intravenous methylprednisolone or immunoglobulins) have not been
successful [36,37]. New therapeutic strategies focused on the reduction in INF-I production
and/or the inhibition of the IFN-I-induced signaling pathway. Among the investigated
drugs, Janus kinase (JAK) inhibitors (baracitinib, ruxolitinib and tofacitinib) especially
demonstrate promising effects [13,25]. Their abilities to cause a reduction in neurological
symptoms, improve neuro-motor skills as well as cause beneficial effects on proinflamma-
tory biomarkers in the serum and CSF have been proven [38]. Likewise, the use of reverse
transcriptase inhibitors (RTIs) has been shown to reduce the INF-α levels [39]. Anti-IFN-
α antibodies (sidalimumab), anti-IFN-I receptor antibodies (anifrolumab) or molecules
inhibiting the cGAS-STING pathway (suramin) may also be useful [13,25,40]. It remains
unclear, though, whether the above immunomodulatory therapy may be useful in the
prevention or treatment of AGS-associated glaucoma.

4. Conclusions

Given the similar presentation to viral infection, AGS should be considered during the
differential diagnosis in neonates with a phenotype of congenital infection. It is important
from clinical genetics perspective when considering recurrence risks. Congenital glaucoma
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can be considered as a part of the phenotypic spectrum of AGS; therefore, regular ophthal-
mological examinations are essential, especially in the first years of a child’s life, in order to
diagnose the disease and promptly initiate treatment.
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