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Abstract: Background: Despite all the available treatments, psoriasis remains incurable; therefore,
finding personalized therapies is a continuous challenge. Psoriasis is linked to a gut microbiota im-
balance, highlighting the importance of the gut–skin axis and its inflammatory mediators. Restoring
this imbalance can open new perspectives in psoriasis therapy. We investigated the effect of purified
IgY raised against pathological human bacteria antibiotic-resistant in induced murine psoriatic der-
matitis (PSO). Methods: To evaluate the immune portrayal in an imiquimod experimental model,
before and after IgY treatment, xMAP array and flow cytometry were used. Results: There were
significant changes in IL-1α,β, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17a, IFN-γ, TNF-α,
IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MIG/CXCL9, and KC/CXCL1 serum
levels. T (CD3ε+), B (CD19+) and NK (NK1.1+) cells were also quantified. In our model, TNF-α, IL-6,
and IL-1β cytokines and CXCL1 chemokine have extremely high circulatory levels in the PSO group.
Upon experimental therapy, the cytokine serum values were not different between IgY-treated groups
and spontaneously remitted PSO. Conclusions: Using the murine model of psoriatic dermatitis, we
show that the orally purified IgY treatment can lead to an improvement in skin lesion healing along
with the normalization of cellular and humoral immune parameters.

Keywords: IgY; psoriatic dermatitis; gut–skin axis; cytokines; inflammation

1. Introduction

Psoriasis (PSO) is a typical inflammatory disease with a large clinical involvement
of the skin, but it is not restricted to this. Immune cells and their main communication
molecules, cytokines/chemokines, circulate systemically; therefore, the inflammatory
process is not restricted to the skin-induced dysfunction of various tissues/organs [1].
Inter-cell communication is conducted by a large array of soluble mediators, and as recently
shown, cytokines are highly involved with more than 40 different types. As these immune-
related molecules drive systemic inflammation, it can affect also the gut system [2]. In
PSO, the involvement of the gut–skin axis is supported by in vitro [3] and in vivo studies.
In vitro studies have shown that inflammatory dermal pattern affects also gut cells [3].
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Studies developed on psoriatic patients have shown that therapies addressing signaling
pathways and cytokines can affect also the concurrent diseases of the patient [4]. The gut–
skin axis functions both ways, as the imbalanced gut microbiome can modulate the clinical
outcome of PSO. Therefore, a recent trial has shown that PSO patients taking probiotics
significantly improved their quality of life [5]. A deregulated gut microbiome actually
enhances the inflammatory cytokine/chemokine action, driving the progression of PSO [6].

Targeted biologic agents have intensely improved the management of PSO patients,
but adverse reactions are still associated with this disease; hence, new approaches or
even upgraded classical ones can improve the clinical outcome of this inflammatory dis-
ease [7]. Within the new approaches that could be used to improve PSO management,
immunoglobulin Y (IgY) has been considered as aiding the panel of adjuvant therapies in
both therapeutic and prophylactic regimens. Moreover, oral IgY supplements interact and
sustain the microbiome, maintaining the immune system and overall health [8].

Mechanism(s) of IgY Action in the Gastrointestinal Tract

The possible mechanisms of IgY action as a preventive or therapeutic agent in viral,
bacterial, or fungal infections have been proposed in the last decade [9]. According to
the WHO, IgY antibodies can have activity against 12 bacterial priority pathogens for
which novel antibiotics are urgently required [10]. Although avian IgY antibodies have
numerous advantages over mammalian IgG for passive immunization [11], at present,
the exact mechanism of IgY action in every different pathological challenge still has to
be elucidated [12]. Thus, among the possible mechanisms of IgY action, the regulation
of the phagocytic capacity of innate immune cells has been proposed to provide passive
immunization in mammals [13]. If the beneficial effect of IgY has been observed in nu-
merous experimental pathologic settings [12,14], the exact mechanism of action probably
relies on the neutralization of the infectious agent particle. Additionally, IgY administration
could alleviate the magnitude of the inflammatory response by modulating the excessive
expression of pro-inflammatory cytokines that could extremely damage the organism home-
ostasis [12,15]. On the other hand, it is known that the IgY molecule possess a structure
similarity with the human IgG, the difference being that IgY has four constant regions
at the heavy chains by comparison with IgG. This similarity could shape the basis for
designing anti-IgY-based therapeutical approaches in different pathological conditions,
both for veterinary and human applications [16,17].

In terms of oral administration, in passive immunization approaches, IgY has a good
structural resistance in the gastrointestinal tract. Thus, one key advantage is that IgY
preserves its structure and function at a pH of 3.5–11.0, at a large range of temperature
(30–70 ◦C) and quite stable at the enzyme proteolysis from the gastrointestinal tract [18,19].
However, this molecule’s in vivo properties must be investigated more thoroughly for each
species subjected to IgY-based therapy. For instance, IgY antibodies, passing through the
gastrointestinal tract of calves, remain biologically functional [9,20]. After IgY enters the
gastrointestinal tract and neutralizes the infectious agents against which were generated,
the formed complexes follow the clearance of the hepatobiliary route, namely, will leave the
organisms through feces as IgY does not address either to the FcR nor to the complement
route [19].

Due to its high tolerability, non-allergic characteristics, and no adverse reactions due to
the fact that IgY does not link to the Fc receptors or complement system components, it has
received attention recently. PSO was found to be associated with a gut-linked deregulated
microbiota [21,22] and this gut dysbiosis can influence the skin microbiota and induce
the enhancement in psoriatic events [23]. In our previously published PSO animal model,
we showed that IgY raised against pathological human antibiotic-resistant bacteria can
ease psoriatic lesions and restore the deregulated immune cell parameters induced by the
psoriatic events [24].
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The studied murine model (Figure 1) evaluated the orally applied IgY treatment
effect in psoriasiform dermatitis induced by imiquimod (IMQ). Mice were followed for the
circulatory cytokine/chemokine profile in relation to the immune cell populations.
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Figure 1. Parameters studied in the experimental murine model. IgY raised against pathologi-
cal human bacteria resistant to antibiotics were orally administered in PSO-C57 BL/6 mice; cy-
tokine/chemokine serum levels were followed in relation to the circulatory immune cell populations.

Following our endeavor to elucidate in depth the immune mechanisms that govern
cell–cell communications, in this paper, we test in our psoriatic IMQ-induced mouse model
32 cytokines/chemokines involved in the main immune functions appending to PSO and
to the experimental therapy with specific IgY triggering the gut microbiota.

2. Materials and Methods
2.1. Isolation and Purification of IgY

The IgY used in this study was an original product of the ROMVAC Company SA
and is part of the IMUNOINSTANT brand, with a European trademark (EUIPO). IgY
was isolated by ROMVAC Company SA from the yolk of hyperimmune eggs from hens
immunized with a mixture of human pathogenic antigens, according to the methodology
described in the patent [12]. These pathogens (Acinetobacter baumannii, Clostridium difficile,
Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Salmonella spp., and Streptococcus
pneumonia) were selected due to their antibiotic-resistant characteristics and are highly
involved in nosocomial infections [25].

After the standard isolation protocol of IgY, the compound was purified and isolated
using next-generation chromatography (NGC Chromatography System, Bio-Rad, Hercules,
CA, USA), according to the manufacturer’s instructions. A high-resolution column size
exclusion ENrich SEC 650 (Bio-Rad, Hercules, CA, USA) was used in order to separate
the biomolecules with molecular weights of 500 Da–650 KDa. v chromatographic analysis
involved the following steps: column equilibration and calibration, standard/sample injec-
tion, and standard/sample elution. Column equilibration was performed with 2 column
volumes (CV, 50 mL) of phosphate-buffered saline (PBS tablets, 100 mL, VWR Life Science,
Columbus, OH, USA), and the column was considered equilibrated when no changes
in pH were recorded at a minimum 5 mL run volume. All buffers were previously fil-
tered (Nalgene Rapid-Flow 75 mm Filter Units 500 mL, Thermo Scientific, Waltham, MA,
USA; and Vacuum pump, Merck, Millipore, NY, USA). In order to calibrate the column, a
lyophilized mixture of thyroglobulin (Mr 670,000 Da), bovine γ-globulin (Mr 158,000 Da),
chicken ovalbumin (Mr 44,000 Da), equine myoglobin (Mr 17,000 Da), and vitamin B12
(Mr 1350 Da) (Gel Filtration Standard, Bio-Rad, Hercules, CA, USA) was used. Standards
and samples (1 mL) were introduced in the NGC system through an injection valve, after
being previously filtered (Puradisc 25PP, Whatman, Maidstone, UK). We also used standard
IgY (chicken IgY DEAE purified from mixed-breed chicken eggs, 10 mg/mL, Lampire
Biological Laboratories, Pipersville, PA, USA). Standards and samples were eluted with a
single volume of PBS at a flow rate of 1 mL/min (the optimal flow rate of the ENrich SEC
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650 column is 0.75–1.25 mL/min), pressure of 233 PSI, absorbance of 280 nm, and pH = 8.
Each chromatographic peak was pooled by repeated injection with the corresponding test
tube through the fraction collector (BioFrac Fraction Collector, Bio-Rad, Hercules, CA, USA).
Additional technical details are to be found in the filled patent [26].

2.2. IMQ-Based Murine Model

The experimental model used C57 BL/6 mice (Jackson Laboratory, Bar Harbor, ME,
USA), males and females (10–11 weeks), bred by the Animal Husbandry of Victor Babes,
National Institute of Pathology, Bucharest, Romania. Mice were provided with optimal
housing conditions (temperature 22 ± 2 ◦C, humidity 55 ± 10%, artificial ventilation,
12/12 light/dark cycle). The animals were kept in open cage systems (food and water ad
libitum) and were monitored daily. The experiments were conducted in accordance with rec-
ognized principles of laboratory animal care according to EU Directive 2010/63/EU 45 and
the experimental study was approved by the Victor Babes, Institute’s Ethics Committee
(88/20 January 2021) and National Sanitary Veterinary and Food Safety Authority (598/08
February 2021)

The experimental IMQ mice model of psoriatic dermatitis was performed according
to protocols as previously described [27,28]. Two groups of C57BL/6 mice were studied
(1:1 sex ratio), of 10–11 weeks old, with a mean weight of 21 ± 3 g (Balance Scientech
SL-3100D; Boulder, CO, USA), free of any medication in the previous 72 h: (i) the psoriasis
group (PSO) (36 mice) that received a daily topical dose of 62.5 mg IMQ cream (5% Aldara
Cream; Meda AB, Sweden) on the shaved back for 6 consecutive days (a daily dose of
3.125 mg of active compound); and (ii) the normal group (Control) (8 mice) with no topical
treatment that received the same volume sterile PBS through gavage in parallel with the
treatment groups.

The PSO-induced group of C57 BL/6 mice was divided into the following groups:

• PSO group (PSO) (8 mice—1:1 sex ratio) with induced psoriatic dermatitis as described
above without treatment. The mice were sacrificed on day 7 of the experiment.

• IgY-treated PSO group (PSO IgY) (12 mice—1:1 sex ratio) with induced psoriatic
dermatitis received (starting with day 7) a gavage dose of 37.5 µg IgY in a volume of
50 µL sterile PBS, for 5 consecutive days; the dose matched the dose of IgY given to a
human adult (g/kg) according to a study case [29]. Mice were sacrificed on day 20
when the psoriatic lesions were macroscopically remitted.

• Purified IgY-treated PSO group (PSO PIgY) (8 mice—1:1 sex ratio) with induced
psoriatic dermatitis, received the same dose of IgY but with the purified one in the
same volume and were sacrificed on day 20 as above.

• Naturally remitted PSO group (Remitted PSO) (8 mice—1:1 sex ratio) with induced
psoriatic dermatitis received (starting with day 7) a gavage with a volume of 50 µL ster-
ile PBS for 5 consecutive days and then were allowed to heal naturally and sacrificed
on day 22 when natural remission was assessed macroscopically.

An outline of the experimental model, timeline, and procedures is presented in Figure 2.
Clinically, the mice groups were scored using PASI evaluation, as previously detailed

by us [11]. Briefly, skin inflammation was assessed using in vivo measurements (erythema,
desquamation, and induration parameters—EDI) and PASI score. EDI were monitored
daily on a 0–4 scale (0—none; 1—slight; 2—moderate; 3—marked; and 4—very marked)
and a modified PASI score (erythema + desquamation + induration) was calculated daily
on a 0–12 scale in order to score the inflammation due to IMQ–PSO induction, natural
remission, and IgY treatment.

Samples. In order to harvest blood, spleen, and skin samples at the end of the experi-
ments, the animals received standard anesthesia with a ketamine/acepromazine/xylazine
cocktail (ketamine 80 mg/kg, Richterpharma ag, Austria; acepromazine 6 mg/kg, Veto-
quinol SA, Lure, France; xylazine 1 mg/kg, Bioveta SA, Czech Republic). Peripheral blood
was collected by intra-cardiac puncture in K2-EDTA-coated tubes (Microvette, Sarsted
AG & Co. Nümbrecht, Germany) and in anticoagulant-free tubes for serum harvesting.
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For splenomegaly evaluation, the individual spleens were weighed (Balance AEP-1500A,
Adam Equipment Co., Ltd., Kingston, UK). Skin samples were collected and processed
(fixed in 10% buffered formalin, embedded in paraffin, and sectioned in 5 µm sections) for
hematoxylin and eosin (H&E) staining, prior to histopathological evaluation (Olympus
BX43 with CellSens Dimension Program, Tokyo, Japan).
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2.3. Serum Cytokines Testing Using xMAP Array Analysis

Luminex200 equipment (Luminex Corp., Austin, TX, USA) and MILLIPLEX MAP
Mouse Cytokine/Chemokine Magnetic Bead Panel Kit (Millipore, Burlington, MA, USA)
were used to quantify the levels of serum cytokines, following manufacturer’s settings
and guidelines. The kit allows the simultaneously analysis of 32 cytokines/chemokines:
interleukin (IL)-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12
(p70), IL-13, IL-15, IL-17a, RANTES (regulated upon activation, normal T-cell levels ex-
pressed and presumably secreted)/CCL5, leukemia inhibitory factor (LIF), granulocyte
colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor
(GM-CSF), macrophage colony-stimulating factor (M-CSF), interferon (IFN)-γ, tumor necro-
sis factor (TNF)-α, vascular endothelial growth factor (VEGF), eotaxin, IFN-γ-inducible
protein-10 (IP-10), monocyte chemoattractant protein (MCP)-1, macrophage inflammatory
protein (MIP)-1α, MIP-1β, MIP-2, monokine induced by gamma interferon (MIG/CXCL9),
lipopolysaccharide-induced CXC chemokine (LIX/CXCL5), and keratinocyte-derived
chemokine (KC/CXCL1). According to the producer’s guidelines, the beads were in-
cubated (4 ◦C overnight and shaking at 800 rpm) with buffer, cytokine standards, and
samples in a 96-well plate, after the first incubation, followed by beads, detection antibodies,
and streptavidin phycoerythrin conjugate (SAPE) (at room temperature, in the dark, and
shaking) incubation. Multiplex data acquisition and analysis was performed using the
Luminex200 platform provided with the xPONENT 4.2 software (Luminex Corp., Austin,
TX, USA). Duplicate samples were used for all specimens and the calibration curves were
generated with a 5-parameter logistic fit. Results are presented as mean ± SD of pg/mL
serum concentrations.
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2.4. Flow Cytometry Analysis

Flow cytometry (BD FACSCanto II cytometer, BD Biosciences, San Jose, CA, USA)
was performed in order to quantify the main lymphocyte populations: T (CD3ε+), B
(CD19+), and NK cells (NK1.1+). T-helper (T-CD4+) and T-suppressor/cytotoxic (T-CD8a+)
subsets were also assessed, and the T-CD4+/T-CD8+ ratio was calculated. Peripheral blood
was incubated with TruStain fcX (anti-mouse CD16/32, isotype Rat IgG2a, λ) antibody
(BioLegend, San Diego, CA, USA) for 7 min on ice, and then stained for 20 min at room
temperature and in the dark with the following monoclonal antibodies: 0.5 µL Alexa Fluor
647 anti-mouse CD3ε (clone 145-2C11, isotype Armenian Hamster IgG); 0.5 µL Alexa Fluor
488 anti-mouse CD8a (clone 53–6.7, isotype Rat IgG2a, κ); 1.25 µL PE-Cy7 anti-mouse CD4
(clone GK1.5, isotype Rat IgG2b, κ); 1.25 µL PerCP-Cy5.5 anti-mouse CD19 (clone 6D5,
isotype Rat IgG2a, κ); and 1.25 µL PE anti-mouse NK1.1 (clone PK136, isotype Mouse
IgG2a, κ) (all from BioLegend, San Diego, CA, USA). After red blood cell lysis (BD FACS
Lysing Solution, BD Biosciences, San Jose, CA, USA) and two washing steps with cell-
staining buffer, the samples were acquired and analyzed with a flow cytometer using the BD
FACSDiva v 6.1 software (BD Biosciences, San Jose, CA, USA). The compensation of spectral
overlaps was performed using UltraComp eBeads (Invitrogen by Thermo Fischer Scientific,
San Diego, CA, USA), and the BD Cytometer Setup & Tracking Beads Kit (BD Biosciences,
San Jose, CA, USA) was used for the daily check up of the cytometer performance. T-CD4+

and T-CD8a+ were expressed as percentages of CD3ε+ lymphocytes, and B and NK cells as
percentages of CD3ε- lymphocytes.

2.5. Statistical Analysis

GraphPad Prism 9.4.0 (GraphPad Software, San Diego, CA, USA) and Microsoft Excel
(Version 2310) (Microsoft, Redmond, WA, USA) were used, and results are expressed as
mean values ± standard deviation (SD). The data were processed using an ordinary one-
way analysis of variance (ANOVA) with the application of Tukey’s multiple comparison
test, and adjusted p-values were considered. The levels of statistical significance were
considered at p < 0.05. Pearson’ correlation coefficient (−1 < r <1) was used to determine
the correlation between the parameters; for an r-value close to ±1, the correlation was
considered strong (positive/negative).

3. Results
3.1. NGC-Purified IgY

In order to purify the IgY obtained from the yolk of hyperimmune eggs, we used NGC
calibrated with the gel filtration standard (Bio-Rad, Hercules, CA, USA). The standard was
eluted with 1 CV (25 mL) of PBS at a flow rate of 1 mL/min, 233 PSI, absorbance at 280 nm,
and pH of 8. The chromatogram for the gel filtration standard is presented in Figure 3.

After the column calibration, the standard IgY and samples were further eluted in
the same conditions (1 mL/min flow rate, 233 PSI, 280 nm, and pH of 8). To compare the
purification flow, we overlapped the chromatograms obtained for the standard IgY and IgY
sample, as shown in Figure 4.

Following the overlapping of the two chromatograms, four peaks were identified
(Figure 2, colored in blue). Protein fractions corresponding to these peaks were col-
lected and the concentrations were determined using a Nanodrop 2000 spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA) (Table 1).

Table 1. Concentrations of the protein fractions corresponding to peaks 1–4 after IgY was subjected
to NGC purification.

Peak Number Peak 1 Peak 2 Peak 3 Peak 4

Concentration (µg/mL) 38 125 39 28
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Protein fractions corresponding to peaks 1 and 2 were mixed and used in the experi-
mental model as purified IgY (PIgY).
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3.2. IMQ-Induced Inflammation and IgY-Induced Healing

As previously established, IMQ induces a severe of skin inflammation, and animals
were scored as PSO patients using individual PASI scores, namely, erythema, thickening,
and skin scaling. Moreover, at the end of experiment, splenomegaly evaluation and
histopathological assessment were performed as previously published [11]. Clinically,
the mice treated with the NGC-purified IgY had the same follow-up as the IgY-treated
mice and were euthanized at day 20, when lesions were macroscopically remitted for both
groups. All data gathered for the NGC-purified IgY for splenomegaly evaluation and
histopathological assessment proved to be similar to that of the controls, as described by us
for the IgY-treated mice [24].
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Clinically, out of all EDI parameters, erythema is the first parameter that can be
scored after one day of IMQ application, followed after another day by the subsequent
registered parameters; thus, starting from day 2, all EDI parameters are registered in all the
animals subjected to IMQ, as previously shown by us [11]. Similarly to PSO patients, in our
animal model, the severity of inflammation was estimated based on a modified PASI score
(0–12 scale), calculated daily by adding the independent daily scores obtained for EDI (in
our experimental model, the affected area was not taken into account as the affected surface
skin area was identical to all mice). The PASI score had a progressive evolution during the
IMQ treatment (Figure 5), matching the increased severity of the psoriatic lesions. In time,
there were some individual mice in the naturally remitted PSO group that had a score of
2 at day 22, while the IgY-treated mice had a decrease in the PASI score at day 19 and their
skin did not display any PASI score. This clinical evaluation of the experimental group
with and without IgY treatment was also confirmed by us in a previous publication [24].
The decrease in the PASI score was statistically significant in the IgY-treated group starting
from day 10 (Table 2). Hence, after the first 3 days of therapy, it continued to decrease
abruptly in comparison to the naturally remitted group.
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Table 2. PASI score comparison between the IgY-treated vs. naturally remitted PSO groups.

Day Day 1–9 Day 10 Day 11 Day 12 Day 13 Day 14

p-values for the
IgY-treated vs.

naturally remitted
PSO groups

p > 0.05

p = 0.069 p = 0.003 p = 0.0019 p = 1.2 × 10−4 p = 1.56 × 10−4

Day 16 Day 17 Day 18 Day 19 Day 20

p = 1.1 × 10−5 p = 1.8 × 10−6 p = 1.1 × 10−6 p = 1.8 × 10−6 p = 1.6 × 10−7

3.3. Evaluation of the Serum Cytokine/Chemokine Profile in the IgY-Treated Mice

An xMAP array analysis was used in order to evaluate the immunological changes in
circulatory cytokines/chemokines upon the IgY treatment of IMQ-induced experimental
PSO. Among the 32 investigated cytokines/chemokines/growth factors, significant changes
in circulatory levels were obtained for IL-1α, IL-1β, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13,
IL-15, IL-17a, IFN-γ, TNF-α, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4,
MIG/CXCL9, and KC/CXCL1. We further present the individual cytokines/chemokines
and their immunological relevance in terms of PSO pathogenesis.
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3.3.1. IL-12 (p70) and IL-6 Circulatory Levels

IL-12 and IL-6 are important regulators of Th1/Th2 differentiation. IL-6 also mediates
the differentiation of Th17 cells in the presence of IL-23. In the experimental model of psori-
atic dermatitis, the evaluation of IL-12 (p70) and IL-6 cytokines values showed statistically
significant differences among all the investigated groups (Figure 6).
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The serum levels of IL-12 (p70) and IL-6 were highly increased in the IMQ-treated 
mice (PSO group) (50.3 ± 17.4; 24.1 ± 6.2) compared to the controls (6.3 ± 2.0; 4.5 ± 3.3) (p < 
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Figure 6. Serum levels of IL-12 (p70) and IL-6. (A). IL-12 (p70) in the PSO PIgY group (7.1 ± 3.6),
PSO IgY group (8.8 ± 7.5), remitted PSO group (15.3 ± 1.4), control (6.3 ± 2.0), and untreated PSO
group (50.3 ± 17.4); (B). IL-6 in the PSO PIgY group (4.2 ± 3.0), PSO IgY group (3.9 ± 5.5), remitted
PSO group (10.8 ± 6.8), control (4.5 ± 3.3), and untreated PSO group (24.1 ± 6.2). The results are
presented as the mean concentration values ± SD.

The serum levels of IL-12 (p70) and IL-6 were highly increased in the IMQ-treated
mice (PSO group) (50.3 ± 17.4; 24.1 ± 6.2) compared to the controls (6.3 ± 2.0; 4.5 ± 3.3)
(p < 0.0001) (Figure 6A,B). Significant differences were observed among the values obtained
for the PSO group, IgY-treated groups, and the remitted PSO group. After IgY treatments,
we observed the normalization of these values, especially for the PSO PIgY group, where
the expression level of these cytokines matched the ones found in the controls (7.1 ± 3.6;
4.2 ± 3.0 vs. 6.3 ± 2.0; 4.5 ± 3.3). Furthermore, for both cytokines, in both the PSO PIgY and
PSO IgY groups, the values matched those of the control groups (p > 0.05), underlining the
normalization of these values after IgY treatment. For the naturally healing group (remitted
PSO group), the values of these modulators also decreased at the end of experiment, but
there were still statistical significant differences compared to those of the controls for IL-12
(p70) (p = 0.0001). The normalization of the values was more evident in the case of IgY
treatments. We obtained a strong negative correlation (r = −0.527) between IL-6 and IL-12
(p70) in the PSO group.

3.3.2. Circulatory Levels of TNF-α and IFN-γ

The evaluation of Th1-specific cytokines revealed statistically significant differences
between the experimental groups for TNF-α, while IFN-γ presented detectable values
only in the PSO mice (Figure 5). As in the case of IL-12 and IL-6, the serum levels TNF-α
were highly increased in the IMQ mice (PSO group) (17.4 ± 3.1) compared to those of the
controls (3.2 ± 1.9) (p < 0.0001) (Figure 7).
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remitted PSO group (6.1 ± 4.4), control (3.2 ± 1.9), and untreated PSO group (17.4 ± 3.1). The results
are presented as the mean concentration values ± SD.

The statistical analysis showed significant differences among the PSO group, IgY-
treated groups, and the remitted PSO group. We registered the normalization of these
values after IgY treatments, mainly for the mice treated with purified IgY, where the
circulatory level of this cytokine was similar to that of the controls (3.7 ± 0.7 vs. 3.2 ± 1.9).
In the PSO PIgY and PSO IgY groups, the levels of the investigated cytokines were identical
to those of the control group (p > 0.05), reinforcing the normalization of these values after
IgY treatment. For the naturally healing group, the value of TNF-αwas also found to be
decreased at the end of experiment, similar to the values obtained for the controls. The
analysis of the serum IFN-γ level revealed detectable values only for IMQ mice (PSO group)
(45 ± 6.2) and a strong negative correlation between IFN-γ and IL-12 (p70) in the PSO
group was noticed (r = −0.805).

3.3.3. Circulatory Levels of IL-1α and IL-1β

In the PSO mice, IL-1α presented significantly decreased mean values compared to
those of the controls (92.8 ± 47.5 vs. 198.1 ± 51.9, p = 0.002) (Figure 8A). The serum
levels of IL-1α in the PSO group were strongly positively correlated to TNF-α values
(r = 0.611) and negatively correlated to IL-1β (r = −0.495). After IgY treatments and natural
healing, we observed a pronounced upward trend for all experimental groups (all p-values
were lower than 0.05), especially for the remitted PSO group (281.8 ± 59.9). Thus, IgY
treatments led to the normalization of IL-1α serum values (205.8 ± 53.9 for PSO PIgY
and 227.8 ± 81.3 for PSO IgY groups), statistically matching the control values (p > 0.05).
This result strengthens the finding that the IgY treatment leads to the normalization of the
investigated parameters. The serum levels of IL-1βwere found highly increased in IMQ
mice (PSO group) (17.1 ± 6.7) compared to those of the controls (0.6 ± 0.2) (p < 0.0001)
(Figure 8B).
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group), the values of IL-1β were also found to be decreased at the end of experiment, but 
interestingly, the values were still statistically significantly different compared to those of 
the controls (p = 0.03). We obtained a strong positive correlation (r = 0.563) between IL-1β 
and IL-12 (p70) in the PSO group and also in the purified IgY-treated (r = 0.534) PSO 
group. Strong negative correlations between IL-1β and IFN-γ in the PSO group were no-
ticed (r = −0.494) as well. 

Figure 8. Serum levels of IL-1α and IL-1β. (A) IL-1α in the PSO PIgY group (205.8 ± 53.9), PSO
IgY group (227.8 ± 81.3), remitted PSO group (281.8 ± 59.9), control (198.1 ± 51.9), and PSO group
(92.8 ± 47.5). (B) IL-1β in the PSO PIgY group (0.5 ± 0.3), PSO IgY group (0.7 ± 0.3), remitted PSO
group (2.3 ± 1.9), control (0.6 ± 0.2), and PSO group (17.1 ± 6.7). The results are presented as the
mean concentration values ± SD.

The statistical analysis showed significant differences among the PSO group, IgY-
treated groups, and the naturally remitted PSO group. After IgY treatments, we observed
the normalization of these values, especially for the PSO PIgY group, where the circulatory
level of these cytokines were low as the control group levels (0.5 ± 0.3 vs. 0.6 ± 0.2,
respectively). As in the already mentioned cytokines, in the PSO PIgY and PSO IgY
groups, the registered levels matched the ones of the control group (p > 0.05), showing
the normalization of these values after IgY treatment. For natural healing (remitted PSO
group), the values of IL-1βwere also found to be decreased at the end of experiment, but
interestingly, the values were still statistically significantly different compared to those
of the controls (p = 0.03). We obtained a strong positive correlation (r = 0.563) between
IL-1β and IL-12 (p70) in the PSO group and also in the purified IgY-treated (r = 0.534)
PSO group. Strong negative correlations between IL-1β and IFN-γ in the PSO group were
noticed (r = −0.494) as well.

3.3.4. Serum Levels of IL-9, IL-15, and IL-17

IL-9 and IL-15 presented significant elevated circulatory levels in IMQ mice compared
to those of the controls (312.5 ± 95.0 vs. 159.1 ± 59.3, p = 0.0035; and 263.6 ± 154.4 vs.
5.8 ± 2.5, p = 0.0008, respectively) (Figure 9A,B).

A strong negative correlation (r = −0.559) was also noticed between these molecules
in the PSO group. In the case of IL-9, even though a decreasing trend was observed after
IgY treatments, the values still remain significantly higher than in controls (241.0 ± 41.9,
p = 0.0248 for PSO-PIgY and 293.5 ± 114.5, p = 0.0139 for PSO-IgY). For the naturally healed
mice, the mean values of serum IL-9 were similar to those of the controls. The serum
levels of IL-9 in the PSO group were strongly positively correlated to IL-6 (r = 0.692) values
and negatively correlated to IL-12 (r = −0.480) levels. The serum level of IL-15 decreased
significantly after both IgY treatments and natural healing, but in the remitted PSO group,
IL-15 still remained high compared to that of the controls. A strong positive (r = 0.474)
correlation was obtained between IL-15 and IFN-γ in the IMQ mice (PSO group).
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Figure 9. Serum levels of IL-9 and IL-15. (A) IL-9 in the PSO-PIgY group (241.0 ± 41.9), PSO IgY
group (293.5 ± 114.5), remitted PSO group (158.3 ± 74.8), control (159.1 ± 59.3), and the untreated
PSO group (312.5 ± 95.0). (B) IL-15 in the PSO PIgY group (10.5 ± 4.9), PSO IgY group (15.2 ± 9.7),
remitted PSO group (17.9 ± 9.3), control (5.8 ± 2.5), and untreated PSO group (263.6 ± 154.4). The
results are presented as the mean concentration values ± SD.

As expected, the IL-17 circulatory level was found to be higher in IMQ mice compared
to that of the controls (28.0 ± 26.5 vs. 5.8 ± 2.2, p = 0.049) and lowered in the IgY-treated
groups (4.4 ± 2.0 for PSO PIgY and 4.9 ± 4.2 for PSO IgY) and in the naturally remitted
PSO group (6.9 ± 4.5). The analysis of IL-17 serum values revealed statistically significant
differences between the males from the PSO group and the control males (53.6 ± 19.2
vs. 6.6 ± 1.6, p = 0.0258), differences that were not observed in females nor in the other
experimental groups. The serum levels of IL-17 in the PSO group were strongly positively
correlated to IL-15 (r = 0.572) values and negatively correlated to IL-1α (r = −0.659), IL-9
(r = −0.642), and TNF-α (r = −0.518) levels.

3.3.5. Circulatory Levels of IL-5, IL-10, and IL-13

The profile of IL-5 and IL-10, which are Th2-specific cytokines, was found to be
improved after the IgY treatment. As in the other cases, the mean concentration values
obtained for the PSO group were statistically different (Figure 10). The IL-5 and IL-10 serum
levels had elevated values in the PSO group compared to those of the controls (p < 0.0001);
moreover, in the IgY-treated groups and in the naturally remitted PSO group, the cytokine
levels dropped in a statistically significant way, with all p-values being lower than 0.05
(Figure 10A,B).

The serum levels of IL-5 in the PSO group were strongly positively correlated to TNF-α
values (r = 0.754) and negatively correlated to IFN-γ (r = −0.695) levels. Strong positive
and negative correlations (r = 0.612 and r = −0.660, respectively) were obtained among
IL-5, IL-6, and IL-10 in the PSO group. IgY treatments led to a decreased secretion of these
cytokines, and for IL-10, the levels were similar to those of the controls (p > 0.05). Even
though the serum level of IL-5 decreased significantly after IgY treatment, the values still
remained higher compared to those of the controls (p = 0.0134 for the PSO PIgY group;
p = 0.0126 for PSO IgY). In the group treated with purified IgY, strong positive and negative
correlations (r = 0.529 and r = −0.879, respectively) were also observed among IL-5, IL-6,
and IL-10. For the naturally healing group, we also obtained decreased mean values, but
the normalization of the values was more obvious in the case of IgY treatments. The serum
level of IL-13, also a Th2-specific cytokine, showed significant decreased values in IMQ
mice compared to that of the controls (59.1 ± 17.4 vs. 124.0 ± 72.2, respectively; p = 0.0394),
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and these values decreased after IgY treatments and natural healing (39.9 ± 12.0 for the
PSO PIgY group, 38.0 ± 13.0 for the PSO IgY group, and 55.2 ± 20.9 for the naturally
remitted group). A strong positive correlation (r = 0.806) was noticed between IL-13 and
IL-10, and a negative one between IL-13 and IL-1β in the IMQ mice (PSO group).
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Figure 10. Serum levels of IL-5 and IL-10. (A) IL-5 in the PSO PIgY group (52.9 ± 6.0), PSO IgY
group (56.5 ± 17.5), remitted PSO group (80.7 ± 28.6), control (33.7 ± 13.3), and untreated PSO group
(180.3 ± 36.5). (B) IL-10 in the PSO PIgY group (1.7 ± 0.7), PSO IgY group (2.6 ± 2.1), remitted PSO
group (4.1 ± 3.3), control (1.8 ± 1.3), and untreated PSO group (49.3 ± 18.7). The results are presented
as the mean concentration values ± SD.

3.3.6. Serum Levels of MCP-1/CCL2, MIP-1α/CCL3, and MIP-1β/CCL4

The analysis of chemokines in the serum of the PSO group revealed increased levels
of MCP-1/CCL2 compared to those of the controls (40.5 ± 19.6 vs. 14.7 ± 9.2, respectively;
p = 0.008). After IgY treatments (12.0 ± 8.4 for PSO PIgY and 16.3 ± 12.4 for PSO IgY), the
serum values normalized (Figure 11A). Furthermore, the values for both treated groups
were identical to the ones depicted in the control (p > 0.05), which underlines the normal-
ization of these values after IgY treatment. For the naturally healed mice, we also obtained
decreased mean values compared to those of the PSO group. Strong positive (r = 0.559) and
negative (r = −0.842) correlations were obtained between MCP-1/CCL2 and IL-12 (p70)
and IFN-γ, respectively, in IMQ mice (PSO group).

MIP-1α/CCL3 presented an elevated level in IMQ mice compared to that of the healthy
mice (126.5 ± 80.4 vs. 30.6 ± 21.4, respectively; p = 0.01) and a tendency to normalize after
IgY treatments (50.2 ± 47.3 for PSO PIgY and 52.7 ± 42.2 for PSO IgY) (Figure 11B). The
values obtained for the IgY-treated groups and naturally remitted PSO group matched the
ones obtained for the control group (p > 0.05). The serum levels of MIP-1α/CCL3 in the
PSO group were strongly positively correlated to IL-6 (r = 0.794), IL-9 (r = 0.689), IL-10
(r = 0.925), and IL-13 (r = 0.624) values and negatively correlated to IL-15 (r = −0.621)
levels. The analysis of MIP-1β/CCL4 serum levels revealed detectable values only for the
PSO group (77.9 ± 49.6). A strong positive correlation (r = 0.745) was noticed between
MIP-1β/CCL4 and MIP-1α/CCL3 in the PSO group. The serum levels of MIP-1β/CCL4 in
the PSO group were also positively correlated to IL-6 (r = 0.572), IL-10 (r = 0.578), and IL-13
(r = 0.581) values and negatively correlated to IL-1α (r = −0.510) levels.
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group (153.7 ± 41.0 for the PSO PIgY group and 161.4 ± 32.1 for the PSO IgY group). For 
the naturally healed mice, the values of KC/CXCL1 remained elevated (223.2 ± 57.8), but 
the differences were not statistically significant when the values were compared to those 
of the control group. The serum levels of KC/CXCL1 in the PSO group were strongly pos-
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Figure 11. Serum levels of MCP-1/CCL2 and MIP-1α/CCL3. (A) MCP-1/CCL2 in the PSO PIgY
group (12.0 ± 8.4), PSO IgY group (16.3 ± 12.4), remitted PSO group (32.2 ± 24.3), control (14.7 ± 9.2),
and untreated PSO group (40.5 ± 19.6). (B) MIP-1α/CCL3 in the PSO PIgY group (50.2 ± 47.3), PSO
IgY group (52.7 ± 42.2), remitted PSO group (18.1 ± 7.9), control (30.6 ± 21.4), and untreated PSO
group (126.5 ± 80.4). The results are presented as the mean concentration values ± SD.

3.3.7. Serum Levels of KC/CXCL1, IP-10/CXCL10, and MIG/CXCL9

The analysis of KC/CXCL1 serum level revealed a normalization of the values in the
IgY-treated groups (Figure 12A). As there were statistically significant differences between
the PSO and control groups (232.0 ± 22.6 vs. 161.0 ± 76.5, respectively; p = 0.03), after the
application of the IgY treatment, the values matched the ones obtained in the control group
(153.7 ± 41.0 for the PSO PIgY group and 161.4 ± 32.1 for the PSO IgY group). For the
naturally healed mice, the values of KC/CXCL1 remained elevated (223.2 ± 57.8), but the
differences were not statistically significant when the values were compared to those of the
control group. The serum levels of KC/CXCL1 in the PSO group were strongly positively
correlated to IL-9 (r = 0.754), IL-10 (r = 0.823), IL-13 (r = 0.683), and MIP-1α/CCL3 (r = 0.730)
values and negatively correlated with IL-15 (r = −0.708) levels. A positive correlation
was also obtained between KC/CXCL1 and TNF-α (r = 0.361). The expression of IP-
10/CXCL10 was also increased in IMQ mice compared to that of the control (346.7 ± 52.6
vs. 278.4 ± 47.6, respectively) and the differences between the experimental groups were
statistically significant (p = 0.002) (Figure 12B). IgY treatments and natural healing led to
lower levels (297.1 ± 83.7 for the PSO PIgY group, 283.1 ± 66.3 for the PSO IgY group,
and 316.1 ± 71.5 for the remitted PSO group), and these levels were as low as the ones
obtained in the control. The serum levels of IP-10/CXCL10 in the PSO group were strongly
positively correlated to IL-9 (r = 0.920), IL-10 (r = 0.660), and MIP-1α/CCL3 (r = 0.528)
values and negatively correlated to IL-15 (r = −0.590) and IL-17 (r = −0.591) levels.
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Figure 12. Serum levels of KC/CXCL1, IP-10/CXCL10, and MIG/CXCL9. (A) KC/CXCL1 in the
PSO PIgY group (153.7 ± 41.0), PSO IgY group (161.4 ± 32.1), remitted PSO group (223.2 ± 57.8),
control (161.0 ± 76.5), and untreated PSO group (232.0 ± 22.6). (B) IP-10/CXCL10 in the PSO PIgY
group (297.1 ± 83.7), PSO IgY group (283.1 ± 66.3), remitted PSO group (316.1 ± 71.5), control
(278.4 ± 47.6), and untreated PSO group (346.7 ± 52.6). (C) Expression of MIG/CXCL9 in the PSO
PIgY group (252.2 ± 59.9), PSO IgY group (373.8 ± 92.9), remitted PSO group (396.3 ± 107.2), control
(282.3 ± 85.5), and untreated PSO group (474.9 ± 61.9). The results are presented as the mean
concentration values ± SD.

The data obtained for the MIG/CXCL9 serum concentration revealed a significantly
higher level in the PSO mice (474.9 ± 61.9, p = 0.0004) compared to that of the con-
trol and to the IgY-treated groups (p < 0.0001 for the PSO PIgY group and p = 0.026
for the PSO IgY group) (Figure 12C). A decreasing trend of the values was observed after
IgY treatment (373.8 ± 92.9 for the PSO IgY group) and for the naturally healing group
(396.3 ± 107.2). The normalization of the values was more obvious for the purified IgY-
treated mice (252.2 ± 59.9), which is highlighted by the fact that the values perfectly match
the ones obtained in the control group. The serum levels of MIG/CXCL9 in the PSO group
were strongly positively correlated to IL-9 (r = 0.782) and IL-10 (r = 0.568) and negatively
correlated to IL-12 (p70) (r = −0.637). A week positive correlation was also obtained
between MIG/CXCL9 and IFN-γ (r = 0.331).

The statistical analysis revealed strong positive and negative correlations between
these chemokines, both in the PSO and in the IgY-treated groups. Thus, in the PSO group,
the KC/CXCL1 values were strongly positively correlated to IP-10/CXCL10 (r = 0.850) and
MIG/CXCL9 (r = 0.893) values. IP-10/CXCL10 and MIG/CXCL9 values were strongly
positively correlated (r = 0.923). After the purified IgY treatment, positive correlations were
noticed between MIG/CXCL9 and KC/CXCL1 (r = 0.488) and IP-10/CXCL10 (r = 0.497),
while KC/CXCL1 and IP-10/CXCL10 were negatively correlated (r = −0.459).

The overall statistical analysis of cytokine/chemokine values registered in the PSO
PIgY and PSOIgY groups and compared to the naturally remitted PSO group showed that
there are no differences in cytokine/chemokine levels between the IgY-treated groups and
the spontaneously remitted PSO in this experimental model, as presented in Table 3.
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Table 3. Comparison of cytokine/chemokine values among the PSO PIgY, PSO IgY, and naturally
remitted PSO groups (p-values).

Cytokine/Chemokine IL-12 (p70) IL-6 TNF-α IL-1α IL-1β

PSO PIgY p-values 0.187 0.400 0.767 0.470 0.940
PSO IgY p-values 0.270 0.275 0.910 0.696 0.943

Cytokine/chemokine IL-9 IL-15 IL-5 IL-10 MCP-1
PSO PIgY 0.695 0.999 0.459 0.996 0.337
PSO IgY 0.169 0.997 0.505 0.999 0.487

Cytokine/chemokine MIP-1α KC IP-10 MIG
PSO PIgY 0.901 0.301 0.993 0.142
PSO IgY 0.835 0.327 0.933 0.993

3.4. Circulatory Immune Cell Populations

To fully investigate the immunological pattern of the PSO model and its IgY experi-
mental therapy, we evaluated the effect of the NGC-purified IgY treatment on circulatory
immune cell populations and subpopulations. Lymphocyte immunophenotyping from the
peripheral blood was performed, and we identified and quantified various subpopulations,
T-CD4+ and T-CD8+ lymphocyte subsets, B cells, and NK cells (Figure 12). The results were
compared to the values obtained for the PSO IgY, naturally remitted PSO, control, and
untreated PSO groups. The data revealed significant differences when the PSO PIgY group
was compared to the untreated PSO group; differences were found for T-CD4+ (52 ± 1.4
vs. 47 ± 1.5, p = 0.0005), B cells (80 ± 3.2 vs. 31 ± 12.8, p = 2.2 × 10−5), and NK cells
(4 ± 2.1 vs. 12 ± 3.3, p = 0.0006). For T-CD8+, the values were lower than those in the PSO
group (43 ± 1.9 vs. 46 ± 2.8), but without statistical significance. After the NGC-purified
IgY treatment, we observed the normalization of the values, hence the percentages of
circulatory immune cells of PSO-PIgY group reaching the ones registered in the control
(52 ± 1.4 vs. 53 ± 4.7 for T-CD4+, 43 ± 1.9 vs. 41 ± 1.8 for T-CD8+, 80 ± 3.2 vs. 85 ± 5.3 for
B cells, 4 ± 2.1 vs. 4 ± 0.7 for NK cells, and 1.20 ± 0.1 vs. 1.29 ± 0.2 for the T-CD4+/T-CD8+

ratio). Immune cell circulatory populations were previously published by us in the present
animal model [11], and in the present paper, we present only the data obtained for the
NGC-purified IgY treatment (Figure 13).
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Figure 13. Distribution of the immune cell populations in the peripheral blood harvested from pu-
rified IgY-treated mice. Distribution of T-CD4+ (52 ± 1.4) and T-CD8+ (43 ± 1.9) lymphocyte subsets, 
B cells (80 ± 3.2), NK cells (4 ± 2.1), and T-CD4+/T-CD8+ ratio (1.20 ± 0.1) in the PSO PIgY group. The 
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Figure 13. Distribution of the immune cell populations in the peripheral blood harvested from
purified IgY-treated mice. Distribution of T-CD4+ (52 ± 1.4) and T-CD8+ (43 ± 1.9) lymphocyte
subsets, B cells (80 ± 3.2), NK cells (4 ± 2.1), and T-CD4+/T-CD8+ ratio (1.20 ± 0.1) in the PSO PIgY
group. The results are presented as mean values ± SD.

In IMQ mice, we found several correlations between the immune cells’ values and
cytokine/chemokine serum levels (Table 4).
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Table 4. Correlations between circulatory immune cells and the serum level of cytokines/chemokines
in IMQ mice (r-values).

Immune Cells/
Cytokines/

Chemokines
T-CD3+ T-CD4+ T-CD8+ B NK

IL-1α NS NS NS r = 0.620 NS
IL-1 β NS r = −0.468 r = 0.456 r = −0.743 NS
IFN-γ r = 0.32 NS r = 0.332 NS r = 0.34
IL-5 r = −0.749 NS NS NS r = −0.584
IL-6 r = 0.552 r = 0.557 NS NS r = 0.470
IL-9 NS r = 0.405 r = −0.602 NS NS
IL-10 NS NS NS r = −0.491 NS
IL-13 NS r = −0.430 NS r = −0.869 NS
IL-17 NS r = 0.782 r = 0.546 r = −0.486 NS

TFN-α r = −0.655 NS NS r = 0.524 NS
MIP-1α r = 0.407 NS NS NS r = 0.525
MIP-1β r = 0.652 NS NS NS r = 0.468

NS = not statistically significant.

4. Discussion

PSO is an autoimmune disease in which keratinocytes are prone to secrete various
immune molecules linked to the disease’s immunopathogenesis [30], and their investigation
can depict them as pathology and/or as therapy efficacy markers. We performed an
experimental model of PSO that was previously reported by us and by other groups and
we used IgY preparations as a possible future adjuvant therapy triggering gut microbiota in
PSO. As the animal experimental model is not perfect and is actually an induced PSO model,
we compared our experimental treatment with naturally remitted psoriasiform lesions.

We tested 32 cytokines/chemokines from the 40 documented cytokines/chemokines
panel that were found to be involved in PSO pathogenesis. Of these, 18 cytokines/chemokines
were found statistically significantly changed in the serum of the PSO animal experimental
groups. Moreover, immune cells’ circulatory populations were investigated in relation to
the serum cytokines/chemokines. The dynamics of immune parameters were followed
to investigate the efficacy of the IgY therapy mirrored by immune-related biomarkers. As
previously shown by us, the IgY therapy performed in the psoriatic dermatitis animal
model reduced the time of PSO lesion healing by 2–3 days, which in terms of overall mice
age is significant [11,24]. Moreover, the cumulative PASI score in the naturally remitted
group did not drop to the score of the control group, as it did in the therapy group. The
latter can also explain some of the remanence of immune-related inflammatory parameters
that are further discussed in the naturally remitted group.

In this section, we discuss our findings regarding the involvement of pro- and anti-
inflammatory cytokines/chemokines, grouped by their action and regardless their origin,
namely, secreted by immune or non-immune cells. Moreover, we discuss their relationship
between immune cell populations and the molecules that sustain cells’ cross-talk.

4.1. Inflammatory Cytokines’ Improvement after IgY Treatment in Experimental PSO Model

Within the skin’s microenvironment, IL-12 and IL-6 are important regulators of
Th1/Th2 differentiation: IL-12 induces the differentiation of naïve T cells into Th1 cells,
while IL-6 promotes the IL-4-dependent induction of Th2 differentiation and inhibits Th1
polarization [31,32]. IL-6 is correspondingly involved in the differentiation of Th17 cells in
the presence of IL-23 [33].

Similarly to the previous findings in humans and in mouse models [34–38], in our
study, the values of IL-12p70 were up to 10 times higher in the PSO-induced mice compared
to those of the control and/or IgY-treated mice. Notably, in terms of IgY’s therapeutic effect
upon inflammatory cytokines, both tested compounds of IgY had a similar effect upon
IL-12 circulatory concentration, with a slight improvement in the purified IgY.
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Our results reveal a high serum level of IL-6 in the PSO-induced mice compared to
the controls, matching the previously reported elevation of this cytokine in human and
in experimental models [39,40]. IL-6 serum level in the PSO group was found to be eight
times higher when compared to the IgY-treated groups. The normalization of IL-6 values
identified by us is more obvious in IgY-treated groups than in naturally remitted mice.
Interestingly, in the naturally healing group, IL-6 values continue to be increased, even
after the normal remission of the PSO lesions, which suggests IL-6 is a marker of efficient
therapy [41,42]. We also obtained a strong negative correlation between IL-6 and IL-12
(p70) in the PSO group that is in accordance with the processes triggered by cells upon IL-6
or IL-12 regulation.

In PSO, IL-12 induces Th1 cells, which secretes pro-inflammatory cytokines, including
IL-2, TNF-α, and IFN-γ. These pro-inflammatory cytokines, together with IL-17 and IL-22,
activate keratinocytes that produce mainly pro-inflammatory cytokines/chemokines, thus
contributing to the perpetuation of the inflammatory status in PSO [43–45].

Our obtained data on the circulatory levels of TNF-α and IFN-γ revealed highly
increased levels in the PSO mice. After IgY treatments, we observed the normalization of
these values, especially for mice treated with purified IgY, where the circulatory level of
this cytokine dropped to the control values. The analysis of the serum IFN-γ level revealed
detectable concentrations only for the IMQ mice. It is possible that the multiplex method
used to identify circulatory levels can have its limitations; thus, reduced levels of IFN- γ
could not be detected in our workflow. We found a strong negative correlation between
IFN-γ and IL-12 (p70) in the PSO group that can be explained by the predominance of other
Th1-specific cytokines, e.g., TNF-α, in the psoriatic inflammatory events.

Investigating the IL-1 main members, we obtained, namely, increased IL-1β, while
decreased IL-1α similar to previously reported results [46]. Significant decreased mean
values were found by us for IL-1α in the IMQ mice compared to the controls, values that
were strongly positively correlated to TNF-α values and negatively correlated to IL-1β.
After IgY treatments or the natural healing of psoriatic lesions, we observed a pronounced
upward trend of IL-1α for all experimental groups. Thus, IgY treatments have led to the
normalization of IL-1α serum values, matching the control values. The serum levels of
IL-1β were found highly increased in the IMQ mice (PSO group) and, after IgY treatments,
we observed the normalization of these values, especially for the IgY group, where the
circulatory level of these cytokines was similar to that of the controls. For the natural
healing group, the values of IL-1β were also found decreased at the end of experiment,
but there are still statistically significant differences compared to those of the controls,
suggesting that this cytokine has a higher remanence in circulation and/or the cells that
secrete it remain active. We obtained a strong positive correlation between IL-1β and
IL-12 (p70) in the PSO group and also in the purified IgY-treated group. This finding
suggests that pro-inflammatory cytokines have a strong synergic action and that, even in
the IgY-treated group, these cytokines still are active, probably in the normal regenerative
process of the skin. Moreover, the correlation can be as well explained by macrophages’
plasticity in inflammation and the polarization towards the M1 population that induces
both high IL-1β and IL-12 secretion [47]. As shown above for IL-12 and IFN-γ, we also
obtained a strong negative correlation between IL-1β and IFN-γ in the PSO mice. The high
inflammatory status induced by PSO counterbalances these two cytokines, a balance that is
regulated by mTORC2 activation as recently reported [48]. Probably, other cytokines from
the pro-inflammatory arsenal counterbalance IFN-γ, but this cytokine was detectable only
in the PSO group.

IL-9 belongs to the IL-2 cytokine family and has pleiotropic immune functions. In our
study, IL-9 presented significant elevated levels in the IMQ mice compared to that of the
control, while being negatively correlated with IL-15. As they are structurally similar and
belong to a large family comprising several other cytokines, their functions compensate
each other within PSO pathogenesis [49–51]. Nevertheless, a decreasing trend was observed
after IgY treatments, although IL-9 values remained significantly higher compared to those
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of the controls. For the naturally healed mice, the mean values of serum IL-9 were similar to
those of the control. The serum levels of IL-9 in the PSO group were also strongly positively
correlated to IL-6 and negatively correlated to IL-12 levels. These complex immune cross-
talks in the cytokine network still have to be deciphered and IL-9 remains an understudied
cytokine, although it is involved in many immune/biological functions.

IL-15 and its receptor are overexpressed in PSO and seem to play an early role in
PSO pathogenesis [52]. Our data showed significantly elevated IL-15 serum levels in the
IMQ mice compared to those of the control, and significant decreases after IgY treatments
and natural healing, results that match those previously reported by Villadsen et al. in
a xenograft mouse model treated by blocking IL-15 biological activity [52]. We noticed a
strong positive correlation between IL-15 and IFN-γ in the IMQ-treated mice. As already
known, the obtained correlation is due to the fact that IL-15 induces the production of other
proinflammatory cytokines (e.g., TNF-α, IFN-γ, and IL-17) [53].

The most important member of the IL-17 family is IL-17A, highly involved in PSO
pathogenesis [54]. Increased levels of Th17 cells and IL-17A have been previously reported
in psoriatic lesions and in the peripheral blood of PSO patients [55], parameters that are
positively correlated with the PASI score [51]. In our study, the IL-17 circulatory level
was higher in the IMQ mice compared to that of the control and its levels lowered after
IgY treatment or natural healing. The analysis of IL-17 serum levels revealed statistically
significant differences between the males from the PSO group and the control males,
differences that were not observed in females nor in other experimental groups; these
gender differences in immune-related molecules were previously reported by us in other
skin pathologies [56] and in autoimmune diseases [57]. The serum levels of IL-17 in the PSO
group were strongly positively correlated with the IL-15 level, a correlation that matches
the previously reported data in other autoimmune diseases, like rheumatoid arthritis [58].

4.2. Anti-Inflammatory Cytokines’ Improvement after IgY Treatment in the Experimental PSO Model

Th2-specific cytokines (anti-inflammatory cytokines) have been less studied in PSO
compared to the Th1/Th17 profile. Contradictory results were reported regarding the
anti-inflammatory cytokines levels in PSO [45,59]. In our study, IL-5 and IL-10 serum levels
had elevated values in the PSO group, while IL-13 showed significantly decreased values
in the IMQ mice compared to that of the control. IgY treatments normalized the secretion of
these cytokines, and the IL-10 levels were similar to those of the control. Even though the
serum level of IL-5 decreased significantly after IgY treatments, the values still remained
higher compared to those of the control. For the naturally healing group, we also obtained
decreased mean values, but the normalization of the values was more obvious in the case
of IgY treatments. The serum level of IL-13, found decreased in the IMQ mice, remained
low after both IgY treatments and the remission of induced PSO lesions. A strong positive
correlation was found between IL-13 and IL-10, and a negative one between IL-13 and
IL-1β in the IMQ mice. These correlations prove that there is an intrinsic balance between
Th1 and Th2 cytokine’s profiles.

4.3. Inflammatory Chemokines’ Improvement after IgY Treatment in the Experimental PSO Model

In accordance with previous studies regarding chemokine involvement in PSO [60–62],
our data showed an elevated level of MCP-1/CCL2 in the IMQ mice compared to that of
the healthy mice. We also observed the normalization of the values after IgY treatments.
In the case of the purified IgY treatment, the MCP-1/CCL2 serum level dropped to the
control’s ones. In the PSO group, we obtained a strong positive correlation between MCP-
1/CCL2 and IL-12 (p70), and a strong negative correlation with IFN-γ. These findings are
in accordance with the MCP-1 and IL-12 synergic action that enhance the recruitment and
activation of innate immune cells [63].

In our experimental model, we obtained elevated serum levels for MIP-1α/CCL3 in the
IMQ mice and a tendency to normalize after IgY treatments. The analysis of MIP-1β/CCL4
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revealed detectable values only for the PSO group. MIP-1α/CCL3 and MIP-1β/CCL4
values were positively correlated to T-CD3+-circulating lymphocytes in the PSO mice.

Our results show elevated serum levels for CXCL1, and 10 and 9 chemokines in IMQ
mice as compared to those of the control, matching the results previousy obtained in
PSO patients [64]. A decreasing trend of the values was observed after IgY treatments or
natural remission. The analysis of KC/CXCL1 serum level revealed a normalization of
the values in the IgY-treated groups, while for the naturally healed mice, the values still
remained elevated. In the case of IP-10/CXCL10, IgY treatments and natural remission
also led to a lower serum level that was statistically identical to the control levels. For
MIG/CXCL9, the normalization of the values was more obvious in the purified IgY-treated
mice compared to those of the other groups. Similar to human studies, in our PSO group,
the KC/CXCL1 circulatory values were found positively correlated to TNF-α values,
while MIG/CXCL9 values were positively correlated to IFN-γ, correlations that prove
the existence of a cytokines–chemokines loop where interferons and TNF activate the
chemokine release and the chemokines further induce cytokine production [65].

In our experimental model, TNF-α, IL-6, and IL-1β cytokines had extremely high
circulatory levels in PSO. Upon experimental therapy with IgY (standard or purified),
the serum values regained their lower values in the range of naturally remitted skin
inflammation and/or compared to the healthy mice.

4.4. Normalization of Circulatory Immune Cells after IgY Treatment in the Experimental PSO Model

The circulatory levels of immune cell populations were found normalized after NGC-
purified IgY therapy, similar to IgY compound treatment previously published by us [24].
Specifically, the T-CD4+ and T-CD8a+ lymphocyte subsets, B-CD19+ and NK1.1+ cells,
regained their normal values upon treatment. As expected, the T-CD4+/T-CD8a+ ratio
in the peripheral blood showed the normalization pattern of the IgY-treated PSO. The
correlation between immune cells and cytokine/chemokine levels was found both negative
and positive; part of this correlation has been previously published in the literature, while
another part still needs in depth evaluation to establish the intimate mechanisms and
clinical significance.

Overall, the best cytokine/chemokine correlation was found between T-CD4+ and
IL-17 (r = 0.782), but only for the males from the PSO group. Moreover, T-CD4+ values
were strongly positively correlated to IL-6 and IL-9 serum levels and negatively correlated
to IL-13 level.

Even though IFN-γ was weekly positively correlated with T-CD8+ and NK cells,
its role in the PSO experimental model seems not to be essential in comparison to the
other cytokines. This assertion is sustained also by the contradictory results obtained for
IFN-γ, aberrantly correlated with IL-12, IL-1-b, and MCP-1. It is clear that the psoriatic
inflammatory events are governed by the predominance of other Th1-specific cytokines, e.g.,
TNF-α and IL-12, for which we obtained high circulatory levels that decreased significantly
after IgY therapy.

We can highlight some study limitations for the present work. The IMQ PSO model
is a standard one, used by various groups; therefore, all the histopathological parameters
seen in PSO patients can be reproduced in this animal model, including immune-related
parameters [24,27,66,67]. However, we do not deny that this model does not perfectly
reproduce human PSO, where autoimmune antigen/mechanisms trigger this disease and
probably genetically manipulated strains could better reproduce the disease [68,69]. This
IMQ PSO animal model actually reproduces the acute phase of the disease, that is, other
clinical parameters characterized by high inflammation status that is depicted at both lesion
and systemic levels [69]. This is the reason why, in our study, we also investigated a group
of induced PSO that was left to heal naturally and compared their immune parameters with
the other investigated groups. After healing naturally, some of the investigated immune
parameters reached the control levels, but others were still elevated, which explains why
even a 6-day IMQ induction of the psoriatic dermatitis in this mice strain can induce
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longer-term immune deregulations. To our knowledge, these are the first immune-related
results on naturally remitted IMQ PSO in C57Black mice. We do not exclude that, in other
IMQ-induced PSO mouse strains, the obtained immune-related parameters can differ, so
that each model may have its own characteristics.

Another limitation of the study relates to the multiplex method used to identify
circulatory levels. Therefore, reduced levels of cytokines/chemokines (in our case, IFN-γ)
could not be detected and, hence, some of the cytokine/chemokine levels and further
alterations could have been concealed in our investigation. The oral ingestion of IgY
preparations still has to be studied in various designs so as to be further implemented as an
adjuvant therapy in humans and, therefore, represents another limitation of our study. In
rodents and ruminants, IgY is functionally stable and resists the enzymes within the gastro-
intestinal tract passage; however, in humans, this aspect should be thoroughly studied.

Complex studies regarding the cytokine/chemokine immunological profile and im-
mune cell profiling in terms of therapeutical approaches targeting the gut microbiota that
can improve PSO development still are lacking. In recent years, the link between the gut
microbiota and PSO initiation and development has been shown [3,70–74].

Various interventions upon the gut microbiota have shown that, if microbiota normal-
ization is obtained, cytokine normalization reduces psoriatic inflammation. Similar to our
findings, the cytokine normalization upon gut intervention was accompanied by psoriatic
lesions’ alleviation [75–77].

The gut–skin axis immune link in PSO is lately opening new research avenues and, in
this complex relationship, there are still mechanisms to be discovered.

5. Conclusions

In a PSO mouse model, the healing effect of psoriatic lesions were followed using IgY
therapy targeting the gut microbiota. The healing effect was investigated macroscopically,
histologically, and by evaluating the immune parameters involved in PSO pathogenesis: cir-
culatory immune cell and cytokine/chemokine serum levels. The healing process was more
efficient in the IgY-treated group compared to the naturally healing group and was statisti-
cally sustained by an increased normalization of the investigated parameters. The cellular
immune parameters regained their normal values after IgY therapy, particularly for T-CD4+

and B and NK cells, especially, for NGC-purified IgY. As cytokines are crucial molecules
for maintaining lymphocyte homeostasis, from the tested types of immune molecules, half
experienced the normalization of their levels upon IgY therapy. Upon experimental therapy
with IgY (standard/purified), the cytokine serum values were not different between the
IgY-treated groups and the spontaneously remitted PSO in this experimental model. These
findings suggest the need for future thorough studies on the intimate mechanism governing
the gut microbiota that influences skin-related auto-immune reactions.
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