
Citation: Sighinolfi, M.C.; Menezes,

A.D.; Patel, V.; Moschovas, M.;

Assumma, S.; Calcagnile, T.; Panio, E.;

Sangalli, M.; Turri, F.; Sarchi, L.; et al.

Three-Dimensional Customized

Imaging Reconstruction for

Urological Surgery: Diffusion and

Role in Real-Life Practice from an

International Survey. J. Pers. Med.

2023, 13, 1435. https://doi.org/

10.3390/jpm13101435

Academic Editor: Liang Cheng

Received: 29 August 2023

Revised: 21 September 2023

Accepted: 22 September 2023

Published: 26 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

Three-Dimensional Customized Imaging Reconstruction for
Urological Surgery: Diffusion and Role in Real-Life Practice
from an International Survey
Maria Chiara Sighinolfi 1,*, Aurus Dourado Menezes 2, Vipul Patel 3, Marcio Moschovas 3 , Simone Assumma 1,
Tommaso Calcagnile 1, Enrico Panio 1, Mattia Sangalli 1, Filippo Turri 1, Luca Sarchi 1, Salvatore Micali 4,
Virginia Varca 5 , Filippo Annino 6, Costantino Leonardo 7, Giorgio Bozzini 8, Giovanni Cacciamani 9 ,
Andrea Gregori 10, Elena Morini 8, Stefano Terzoni 1, Ahmed Eissa 11 and Bernardo Rocco 1

1 Urologic Unit, ASST Santi Paolo e Carlo, La Statale University, 20122 Milan, Italy
2 Clinica da Urologia e Cirurgia Urologica, Teresina 64000-000, Brazil
3 Global Robotic Institute, AdventHealth, Orlando, FL 34747, USA
4 Urologic Unit, Azienda Ospedaliera Universitaria di Modena, 41124 Modena, Italy
5 Urologic Unit, ASST Rhodense—Presidio di Garbagnate Milanese, 20024 Milan, Italy
6 Urologic Unit, San Donato Hospital, 52100 Arezzo, Italy
7 Urologic Unit, IFO Istituto Tumori Regina Elena, 00144 Roma, Italy
8 Urologic Unit, ASST Lariana, 22100 Como, Italy
9 USC Institute of Urology, University of Southern California, Los Angeles, CA 90089, USA
10 Urologic Unit, Fatebenefratelli-Sacco Hospital, 20157 Milan, Italy
11 Urologic Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
* Correspondence: sighinolfic@gmail.com; Tel.: +39-0281844847

Abstract: Despite the arising interest in three-dimensional (3D) reconstruction models from 2D
imaging, their diffusion and perception among urologists have been scarcely explored. The aim
of the study is to report the results of an international survey investigating the use of such tools
among urologists of different backgrounds and origins. Beyond demographics, the survey explored
the degree to which 3D models are perceived to improve surgical outcomes, the procedures mostly
making use of them, the settings in which those tools are mostly applied, the surgical steps benefiting
from 3D reconstructions and future perspectives of improvement. One hundred responders fully
completed the survey. All levels of expertise were allowed; more than half (53%) were first surgeons,
and 59% had already completed their training. Their main application was partial nephrectomy
(85%), followed by radical nephrectomy and radical prostatectomy. Three-dimensional models are
mostly used for preoperative planning (75%), intraoperative consultation and tailoring. More than
half recognized that 3D models may highly improve surgical outcomes. Despite their recognized
usefulness, 77% of responders use 3D models in less than 25% of their major operations due to costs or
the extra time taken to perform the reconstruction. Technical improvements and a higher availability
of the 3D models will further increase their role in surgical and clinical daily practice.

Keywords: three-dimensional (3D) imaging reconstruction; partial nephrectomy; radical prostatec-
tomy; surgical planning; urological practice

1. Introduction

The concept of precision surgery has widely entered the urologic field. Urology
encompasses interventions whose technique may differ according to individual features.
These include not only the patient’s characteristics, which may vary and prompt different
approaches, but also disease features (stage and invasion of closer structures) that should
be preoperatively known to plan the most accurate and tailored strategy.

In urology, prostate and kidney cancer surgery require a customized approach.
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Radical prostatectomy (RP) represents a recommended treatment for intermediate-risk
organ-confined prostate cancer; nowadays, indications of RP are also extending to high-risk
and locally advanced diseases inside a multimodal therapeutic pathway [1]. One of the
biggest challenges of prostate surgery is the tradeoff between the complete removal of the
tumor and the preservation of nerve structures responsible for potency, which run close to
the gland. The preservation of neurovascular bundles (NVB) is crucial to improve erection
recovery, but may result in an incomplete resection of the adjacent tumor and thus lead
to a positive surgical margin. This is likely to occur especially in cases of extracapsular
extension of cancer (ECE) [2]. The preoperative knowledge of tumor location, burden and
capsular distance is of paramount importance to plan the surgical strategy and to optimize
both the oncological and functional outcomes of RP. Beyond the prediction of ECE risk,
the visual localization of the cancerous lesion inside the prostate could be useful for the
surgeon to guide the dissection. This is critical for robotic surgery; the approach mostly
takes advantage of preoperative knowledge of local staging given its intrinsic precision
derived from magnification and 3D visualization.

The other urologic surgery relying on a tailored strategy is the management of kidney
cancer. During the last decades, the use of kidney sparing techniques has gained approval;
partial nephrectomy (PN) is currently the recommended approach for T1a renal cancer and
should also be pursued for T1b stages whenever technically feasible. The advantages of
the approach are connected to the preservation of the kidney unit, with sustained renal
function and benefits in terms of cardiovascular outcomes too [3,4]. As for prostate surgery,
the introduction of robotics enhanced the diffusion of PN, given its precision in dissecting
and suturing, crucial tasks during such a time-dependent surgery as PN [5].

The surgical complexity of PN is strictly connected to the complexity of the renal mass.
As more endophytic the lesion is, closer to the hilum or to the collecting system, the higher
the difficulty of PN could be. The cancer staging system does not account for all possible
variables and is not able to depict an individual’s anatomy [6]. To overcome this issue,
nephrometric scores have been developed. Such models merge several characteristics of
the mass (i.e., size, exophytic/endophitic ratio, location, rim, and proximity to the hilum)
and predict the complication rate, risk of conversion to nephrectomy, and need for—or
duration of—ischemia [7,8].

Despite the importance of those scores to forecast surgical complexity, one of the
most important surgeon’s needs remains the cognitive “visualization” of the mass inside
the kidney, its relationship with relevant structures and possible risks. Tumor diagnosis
conventionally occurs with contrast-enhanced computed tomography (CT), which has
proven adequate discrimination to characterize renal lesions; magnetic resonance imaging
(MRI) represents an alternative to CT that displays a sensitivity and specificity of 86% and
78%, respectively, in distinguishing between malignant and non-malignant features [9–11].
Despite the accuracy of such diagnostic tools, the cognitive load demanded of surgeons
to reconstruct kidney anatomy could be bothersome, and, thus, conventional imaging
modalities are considered suboptimal to guide kidney intervention in surgical practice [12].

During the last decade, three-dimensional (3D) reconstruction from 2D cross-sectional
imaging has been given widespread attention and gained popularity among the urological
scientific community [13–16]. Three-dimensional models embody the concept of personal-
ized precision surgery [11], since they are derived from individual features and developed
to tailor the intervention to the singular patient. The 3D virtual models provide the surgeon
with a better understanding of the surgical anatomy of each case and also an opportunity
to highlight anatomical details of interest. Conventional CT and MRI scans depict every
element of the patient’s anatomy captured during the imaging process, including those
irrelevant to surgery. Three-dimensional models allow the surgeon to focus on details of
interest, especially those important to guide a tailored strategy [12].

The production of those models usually involves a team of radiologists, urologists,
and bioengineers; once a high-quality 3D virtual model from 2D imaging is created, it can
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be applied in three different settings, namely the cognitive navigation of the virtual model,
its printed version, or in augmented reality (AR) procedures [13–17].

The cognitive 3D reconstruction of imaging has gained a certain popularity, especially
for kidney and prostate cancer surgery. Reconstructed models can be displayed and
navigated on the smartphone, on the PC desktop or also visualized inside the Da Vinci
Tile Pro. Several systems are currently available on the market, with worldwide diffusion,
having different costs and different performances.

Despite the rising interest in those models and the number of publications on the topic,
their real application in urological practice has been scarcely explored. The aim of this
study is to evaluate the perceived role of 3D imaging reconstruction among urologists of
different backgrounds and origins through an international survey. The dissemination of
3D models into urological practice is addressed, and possible concerns are unveiled.

2. Materials and Methods

This was a cross-sectional study evaluating the role of 3D imaging reconstruction in
real-life urological practice through a survey. The survey was developed by two institutions
(ASST Santi Paolo e Carlo, University of Milan and Clinica da Urologia e Cirurgia Urologica,
Teresina, Brazil). Participants were recruited among Italian residency programs, internation-
ally recognized groups or societies endorsing minimally invasive surgery (Global Robotic
Institute, Celebration, FL 34747, USA; Society of Robotic Surgery, East Dundee, IL 60118,
USA; AGILE group—Italian Group for advanced laparo-endoscopic and robotic urologic
surgery). An inclusion criterion was the previous or current exposure to 3D models for
kidney and/or prostate imaging reconstruction. Users were included to provide opinions
about the technology. Participants were recruited on a voluntary basis. Responders were
given the opportunity to be openly acknowledged in the event of the publication of the
outcomes. No fee was offered for participating.

2.1. Survey

After a section collecting demographic data, the survey consisted of general questions
addressing the following items: (1) to quantify the degree to which 3D models are perceived
to improve surgical outcomes; (2) to evaluate the procedures mostly taking advantage of 3D
imaging; (3) to identify the settings in which 3D models are mostly applied; (4) to evaluate
surgical steps benefiting from 3D models; (5) to address how 3D models could be improved.
The DocDo platform (https://www.docdo.com.br) was mentioned as a reference in the
text; however, surveys from participants using other systems for 3D reconstruction were
included as well.

2.2. Full Text of the Survey

• Surname, name and affiliation (in case of public acknowledgement)
• Are you working in an Academic or in a Non-Academic institution?
• How old are you?
• How long have you been working as a Urologist?
• Do you mainly practice?
• Are you a trainee?
• How many major laparoscopic/robotic/open surgeries are performed
• Do you mainly perform major laparoscopic/robotic surgery as?
• How often do you use 3D imaging reconstruction in your surgical
• For what sort of laparoscopic/robotic/open surgery do you usually use 3D imaging

reconstruction? Specify
• Did you experience 3D imaging systems other than DocDo?
• In which setting do you think that 3D imaging reconstruction is more useful?
• How many times do you show your patients 3D images to explain the intervention?
• Do you feel 3D findings may change surgical pre-planning?

https://www.docdo.com.br
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• Kidney surgery: do you feel 3D imaging is more useful to assess: nephrometric score
based on 3D; pedicle and vascular anatomy; The volume of the remaining kidney;
other comment)

• Prostate surgery: Do you feel that 3D imaging carries advantages over the 2D for the
assessment of: Localization of the main tumor; lesion proximity to the capsule; other

• How much do you believe 3D imaging use is able to improve your surgical outcomes?
(5-Likert scale)

• How can the 3D imaging reconstruction software be improved?

2.3. Timeframe

On 21 August 2021, the survey was sent to 600 urologists or urology residents with
current or previous known availability of 3D cognitive models. The survey was sent in
3 rounds to reach a preplanned number of 100 responders, and recruitment ended on 1
January 2022. All backgrounds (academic/not academic), settings (robot/lap/open) and
levels of expertise were allowed. The survey was built using Google Forms. All results were
collected in Google Sheets and exported into Excel. The survey was developed according to
the Checklist for Reporting Results of Internet E-surveys (CHERRIES), which is part of the
EQUATOR network (Enhancing the QUAlity and Transparency Of health Research) [18].

2.4. Participants Selection

Participants were recruited on a voluntary basis without any incentives; they were
told upfront about the length of the time of the survey, and the principal investigators
were clearly named (MCS, AD, SM and BR) together with their contacts. No personal
information nor patient-related data were collected; thus, the survey was not password-
protected and was shared only between investigators. Responders were able to review and
change their answers (through an “Erase” button). The “view rate” was not available. No
statistical correction was applied, given the lack of need to adjust for nonrepresentative
samples. Several questions were answered on a 5-point Likert scale, in which 5 was “very
highly impacting or useful”, 4 was “highly impacting or useful”, 3 was “Impacting or
useful”, 2 was “low impacting or useful” and 1 was “not impacting at all/useless” for
specific purposes.

2.5. Statistics

Statistical analysis was performed with SAS®9 (SAS Inc., Cary, NC 27513, USA).
Categorical variables were analyzed as frequencies. The internal consistency of the ques-
tionnaire was assessed by the calculation of Cronbach’s alpha coefficient. The significance
threshold for all calculations was 5%. Categorical variables were analyzed as frequencies
and compared with the chi-square test (Fisher’s exact test if expected frequencies in the
contingency tables were <5).

3. Results

Out of the 600 invited, 100 completed the survey (16.6%). Each questionnaire was
answered once by each single user.

Cronbach’s alpha was satisfactory (0.839) even after the removal of every single item
[range 0.804–0.854], thus suggesting good reliability of the questionnaire.

3.1. Demographics

Responders’ countries of origin were Italy, Brazil, the United States, Egypt, and
Portugal. Overall, 55 robotic, 25 laparoscopic and 9 open surgeons were included; the
remaining (11) did not define themselves as belonging to a certain category. Forty-six
(46%) have been working as urologists for less than 10 years, 35% from 10 to 20 years,
and 19% had more than 20 years of urological expertise. More than half (53%) mostly
worked as first surgeons, and 59% had already completed their training. Seventy (70%)
worked inside medium- to high-volume institutions (>100 major procedures/year). Forty-
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six participants (46%) had used more than two platforms for 3D imaging reconstruction;
14 also had experience using 3D-printed models. If C-alpha is calculated as stated in the
methods, the data are not reported here.

3.2. Outcomes

The main application of 3D cognitive models is partial nephrectomy (85%), followed
by radical nephrectomy and radical prostatectomy; some responders use 3D models for
radical cystectomy, female pelvic surgery, complex stone and UPJ surgery as well. By
using a 5-point Likert scale, the settings in which 3D cognitive models are mostly used
are preoperative planning (75% responders found models very/highly useful) (Figure 1)
and intraoperative consultation and tailoring (76% responders found models very/highly
useful) (Figure 2).
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Figure 1. Visualization of replies to the question: “In which setting do you think that 3D imaging
reconstruction is more useful? Surgical planning”.
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Figure 2. Visualization of replies to the question “In which setting do you think that 3D imaging
reconstruction is more useful? Intra-operative consultation/tailoring”.

Forty-seven (47%) defined models as very/highly useful for educational purposes,
whereas only 33% found them very/highly useful for patients’ counseling. In kidney
surgery, the main application was the evaluation of pedicle and vascular anatomy rather
than tumor localization; in prostate surgery, 70% found 3D models useful to assess lesion
proximity to the capsule. More than half recognized that 3D models may improve surgical
outcomes to a very high/high degree (Figure 3).
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The majority (72%) only marginally uses 3D models to improve patient–doctor com-
munication (images shown to the patient in less than 25% of the cases). This is consistent
with the fact that only 33% find models highly/very highly useful for patients’ counseling.

The offline availability of 3D models, the incorporation of nephrometric scores and
the presence of a ruler are suggestions to improve 3D imaging, as reported by 41%, 28%
and 26% of responders, respectively.

Despite their recognized usefulness, the majority of responders (77%) use 3D models
in less than 25% of their major robotic, laparoscopic or open surgical procedures. Most
of the users complain of the limited or variable availability of these models in healthcare
systems. Remarkably, only 13 participants use 3D models in more than half of their surgical
cases.

When stratifying surgeons’ backgrounds (laparoscopists versus robotic surgeons), no
statistically significant differences were found in all domains of the survey.

Figures 4 and 5 depict some examples of 3D reconstruction through different softwares
(DocDo © 2016–2023; © 2015–2023 Innersight Labs Ltd., London, UK).
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4. Discussion

During the last decade, 3D models entered urologic surgery, matching the need for
customized imaging, one of the major drivers of precision surgery. To date, the main
application of 3D models in urology is partial nephrectomy; this is consistent with the
outcomes of our survey, in which 85% of participants used those models for PN. Even in the
current era, kidney sparing surgery is still demanding since it is adversely impacted by the
risk of postoperative hemorrhage in up to 10% of patients and urinary leakage in 1%. Other
complications may include injuries to other visceral organs, diaphragm injury, small bowel
obstruction, fistulae, and the development of arteriovenous malformations [10]. Surgical
preplanning is therefore mandatory to predict the challenging steps of the procedure.

According to the current survey, surgical planning is one of the primary roles of
3D imaging; it involves the creation of a customized surgical roadmap that increases the
surgeons’ confidence and guides the decision-making process [19].

Most of the articles published on 3D models for kidney surgery deal with surgical
planning. In 2022, Moldovanu et al. published a systematic review addressing the clinical
value and applications of 3D virtual reconstruction. A total of 37 articles were found. The
number of patients included in the studies ranged from 5 to 157; 23 articles analyzed the
impact of 3D models in surgical planning and training, with most of them (14) surveying
trainees and patients about their role in understanding renal and tumor anatomy [20].

The role of 3D models in preoperative planning consists of the prediction of surgical
strategy. The strategy includes the choice of the approach (i.e., retro/transperitoneal) and
the prediction of conversion to radical nephrectomy or to another surgical approach (i.e.,
from laparoscopic or robotic surgery to open conversion). The 3D models may be used
to plan the management of the pedicle, allowing the most appropriate choice between a
clampless approach or conventional or selective clamping. They could be used to aid partial
nephrectomy or other minimally invasive kidney sparing procedures, such as embolization,
cryoablation and radiofrequency [21]. By providing a topographical map of the renal
surface and intrarenal anatomy together with the vascularization, 3D models may facilitate
avoiding damage to the renal parenchyma and major vessels, while achieving a complete
dissection of the tumor.

The measure of the impact of 3D models on surgical planning is usually quantified as
the likelihood of a strategy change from those based on 2D imaging [22–31]. The article
from Azhar [6] reports an example of how the planning could change according to 3D
models. The author conducted a survey of 100 expert urologists on some real cases of
renal surgery shown during an international meeting. Participants were given the 2D CT
scans and their corresponding 3D models; they were finally asked to depict their preferred
surgical strategy for each case. After viewing the 3D models, the likelihood of a partial
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approach significantly increased, whereas the choice of radical nephrectomy decreased
along with the selection of an open approach. The management of the pedicle turned out
to be selective in more cases after viewing the 3D imaging. Based on these outcomes, 3D
models resulted in a change in surgical decisions.

The use of 3D models was also found useful in improving the reliability of nephromet-
ric scores in predicting case complexity; some articles addressed the issue, and, generally,
scores calculated with 3D images were downgraded in 14 to 67% of cases [19,32–35]. The
occurrence could be explained by the better understanding of the tumor’s depth and contact
surface provided by 3D reconstruction compared to 2D images.

Beyond case planning, the use of 3D models for intraoperative navigation is the
other application we investigated throughout the survey. It is intended as the real-time
consultation of 3D models during surgery, which could be achieved by viewing 3D images
on a separate screen (i.e., a smartphone or PC) or inside the Tile Pro robotic console of the Da
Vinci (as a picture-in-picture image). A total of 76% of responders found 3D models useful
to tailor surgery in a real-time fashion; the occurrence may reflect that several participants
were practicing as first surgeons and thus are keener to require “at a glance” consultation
of 3D images. Several responders (41%) raised the need for an offline version of the model
so that it can be used in case of web connection restrictions.

As far as the clinical benefits of 3D guidance are concerned, until now, only a few
articles have evaluated the real advantages with objective and quantifiable measures.
As stated in the article from Esperto et al., “good planning doesn’t always mean good
surgical outcomes” [36]. The way good planning could translate into clinical advantages
may require an analysis and comparison with a control group that should be statistically
powered, including issues often underrepresented in the current literature. In retrospective
studies, Maddox [37] and Kyung [38] reported the usefulness of 3D model consultation on
improving ischemia time, positive margin rate, complication rate and intraoperative blood
loss. Fan et al. found those advantages more evident in cases of complex renal mass with a
RENAL score ≥ 8 [39].

Kwon Kin et al. performed a prospective case-matched study to compare 40 patients
with the application of a 3D-printed transparent kidney model and 40 patients that under-
went conventional PN (control group). The endpoint was the difference in console time,
which turned out to be reduced by approximately 20% with the 3D tailoring [40].

Apart from the outcomes of these retrospective or nonrandomized analyses, the
randomized clinical trial (RCT) from Shirk et al. highlighted the clinical relevance of 3D
models in kidney surgery [12]. Ninety-two patients were randomized to receive a partial
nephrectomy with or without the use of 3D reconstruction of images, which could be either
viewed on the surgeon’s smartphone or in virtual reality using a VR headset. Patients’
covariates and case complexities were similar between groups, and the primary endpoint
was operative time. The RCT revealed a difference in estimated blood loss (OR 1.98; 95%CI
1.04–3.78) and length of stay (OR 2.8; 95%CI 1.59–5.14) [12] in favor of surgeries performed
with 3D model guidance.

From the current analysis, the positive impact of 3D models on surgical outcomes was
perceived by the majority of the participants (63%). Their use for educational purposes was
recognized by approximately half of the surveyed, probably reflecting the fact that most of
them already completed their training (59%).

Remarkably, only 33% of the surveyed found 3D models as very/highly important
for patients’ counseling, meaning that, in real-life practice, they are rarely shown to the
patient to improve his/her understanding. This is in contrast with literature findings, in
which several authors demonstrated that 3D models can be useful to make the patient
understand the challenges of the intervention and improve their compliance, especially the
elderly [17,19,41–43]. Beyond the relief of presurgical anxiety, 3D models were also found
to be able to improve follow-up adherence at 3 years, preventing serious postoperative
non-cancer-related complications [44].
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Some further considerations may arise. As far as prostate surgery is concerned,
preoperative knowledge of local staging is crucial to deciding whether to perform a nerve-
sparing surgery or not. Even if affected by a low sensitivity in detecting extracapsular
extension [45], mpMRI imaging can play a role in the preoperative and intraoperative
setting to display at-a-glance the prostate shape and location of the main tumoral foci.
However, the cognitive translation of 2D MRI or ultrasound imaging into the surgical field
appears demanding and is globally underused [46,47].

The 3D imaging reconstruction techniques may correspond to an unmet surgical
need. Three-dimensional reconstruction, virtual reality and augmented reality can further
enhance the impact of real-time imaging guidance during surgery with more realistic and
accurate anatomic insights and tumor localization.

A systematic review by Wang [46] published in 2021 analyzed 27 studies to address the
impact of 3D printing, virtual reality and AR technologies for PCa procedures; specifically,
22 articles involved the use of such tools in RP. Half of the studies consisted of case series
(11) and in some of the cases they referred to the AR, with the 3D model superimposed
into the robotic console. In these cases, the advantage relies on the visualization of areas
with a possible risk of ECE; however, tissue deformation and automatic tracking of prostate
movements still remain the major challenges to be faced. Overall, as concluded by Makary
et al. [48] in a review article on the topic, literature evidence supporting the use of image
guidance during RP is still scarce. This is consistent with the outcome of the current survey,
in which participants barely reported using 3D models before or during prostate surgery.

Another consideration should be finally drafted from the present survey. Despite
appreciating these models and endorsing their role as possible game changers, in real-life
practice, most of the surveyed (77%) declared to use 3D models in less than 25% of cases.
Several factors may account for the occurrence: First, costs may range between USD 1
and 1000 [49], representing a significant limitation to their diffusion into public healthcare
systems. Second, in some cases, the development of 3D images can be a time-consuming
process, taking from 1.5 h to some days [49]; thus, the time required for 3D reconstruction
may not fit the needs of high-volume centers.

The current survey was not devoid of limitations. The most important one is the selec-
tion bias, since participants were recruited inside groups highly experienced or somehow
exposed to minimally invasive surgery; an inclusion criterion was the current or previous
use of 3D models to provide opinions about the issue. Second, the survey was limited to
100 participants to just explore users’ perceptions of the technology. Opposite, an extension
of the sample size would have been better highlighting the diffusion of those models among
the overall urological community. Finally, all surveys captured the technology at a definite
time frame; further advances, i.e., the development of augmented reality or holograms,
have not been addressed and may provide different results.

5. Conclusions

To our knowledge, this is the largest survey addressing the role of 3D cognitive recon-
struction of imaging in urological real-life practice. Overall, 3D models are recognized as
useful to improve surgical proficiency, with partial nephrectomy being the procedure most
commonly involved. Surgical preplanning and intraoperative consultation are the biggest
advantages of 3D reconstruction; however, its educational role (training and patients’
counseling) is recognized to a lesser degree. Costs and time for 3D reconstruction can be
considered the main limitations to the diffusion of the technology. Technical refinements—
together with a higher availability of the models—may further result in implementing the
role of 3D image reconstruction into surgical and clinical daily practice.
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