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Abstract: Pulmonary nodules (PNs) shown as persistent or growing ground-glass opacities (GGOs)
are usually lung adenocarcinomas or their preinvasive lesions. Tumor mutation burden (TMB) and
somatic mutations are important determinants for the choice of strategy in patients with lung cancer
during therapy. A total of 93 post-operative patients with 108 malignant PNs were enrolled for
analysis (75 cases in the training cohort and 33 cases in the validation cohort). Radiomics features
were extracted from preoperative non-contrast computed tomography (CT) images of the entire
tumor. Using commercial next generation sequencing, we detected TMB status and somatic mutations
of all FFPE samples. Here, 870 quantitative radiomics features were extracted from the segmentations
of PNs, and pathological and clinical characteristics were collected from medical records. The LASSO
(least absolute shrinkage and selection operator) regression and stepwise logistic regressions were
performed to establish the predictive model. For the epidermal growth factor receptor (EGFR)
mutation, the AUCs of the clinical model and the integrative model validated by the validation set
were 0.6726 (0.4755–0.8697) and 0.7421 (0.5698–0.9144). For the TMB status, the ROCs showed that
AUCs of the clinical model and the integrative model validated by the validation set were 0.7808
(0.6231–0.9384) and 0.8462 (0.7132–0.9791). The quantitative radiomics signatures showed potential
value in predicting the EGFR mutant and TMB status in GGOs. Moreover, the integrative model
provided sufficient information for the selection of therapy and deserves further analysis.

Keywords: ground glass opacity; prediction model; radiomics; EGFR mutation; tumor mutation burden

1. Introduction

The increasing adhibition of low-dose CT-guided lung cancer screening and the use
of the high-resolution diagnostic CT scan brought a sharp increase in the diagnoses of
pulmonary nodules (PNs) [1,2]. Furthermore, about 40% of the PNs are known to be
malignant, particularly in those in a high-risk population and having the ground-glass
opacities (GGOs) of >10 mm in diameter [3,4]. A considerable proportion of patients were
diagnosed with multiple GGOs [5], which were also classified as synchronous multiple
primary lung cancer (sMPLC). However, patients with unresectable sMPLC remain a
big challenge for surgeons, although surgery is usually the first selection for high-risk
GGOs [6,7]. More than 70% of patients with lung cancer have locally advanced or distantly
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metastatic disease at the time of diagnosis [8], and the efficacy of the first-line chemotherapy
is only approximately 30% [9].

In the past decade, tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors
(ICIs) have revolutionized the therapeutic landscape in lung cancers [10–12]. The effective
rate of treatment with TKI in patients with EGFR-sensitive mutations is up to 70% [13],
and EGFR-TKI are the main treatments for advanced lung adenocarcinoma (LUAD). Re-
cently, neoadjuvant therapy using the PD-1 antibody [14,15], as well as EGFR-TKI [16] also
exhibits potential prospects in patients with sMPLC. Individual treatments are based on
patients’ clinic–pathologic characteristics, the tumor’s size and stage, individual somatic
mutation status like EGFR, and the tumor’s mutation burden (TMB) status. TMB has
attracted increasing attention due to its effective performance in predicting the response
to PD-1 blockade immunotherapy in non-small cell lung cancer (NSCLC) and other solid
tumors [12,17]. Several studies have also demonstrated that TMBhigh status predicts a
better prognosis for patients with resectable NSCLC [18]. Therefore, predicting individual
molecular information, including TMB and somatic mutation, is meaningful for therapeutic
strategies in early-stage lung cancer patients.

High-dimensional and quantitative radiomic features extracted from radiological im-
ages have shown promise in the prediction of diagnosis, prognosis, and optimal therapy of
patients suffering from GGOs or lung cancer [19–23]. Previously, we established an effi-
cient prediction model that predicts TMB status and EGFR/TP53 mutations of early-stage
LUAD, using the radiomics feature combined with the clinical information of 61 pulmonary
nodules (PNs) from 51 LUAD patients [24]. However, as we were limited by the sample
size, we obtained a perdition model with a relatively low AUC performance at only about
0.7. In the present study, we not only increased the sample size, but also tried a variety of
statistical methods and selected the most appropriate one. Moreover, in order to predict
the TMB status and EGFR mutations in patients with malignant PNs, we established an
efficient CT-based radiomics model with specific clinical and radiomics features by dy-
namic nomogram and obtained a better prediction performance. We present the following
article/case in accordance with the TRIPOD reporting checklist.

2. Methods
2.1. Study Population

Between January 2019 and December 2020, 93 patients with 108 GGOs were selected
for analysis. The following inclusion criteria were used: (1) The maximum diameter of the
nodule was less than 3 cm; (2) Next generation sequencing (NGS) tests and preoperative
thin-section CT images were available; (3) the lesions can be seen on at least two consecutive
layers of CT images; (4) there is a pathological diagnosis of lung adenocarcinoma; and
(5) no antitumor therapy was received before surgery. This study was approved by the
ethics committee at Jiangsu Cancer Hospital (Approval No. 2016 (220)) and complied with
the Declaration of Helsinki. All participants provided written informed consent. NGS
sequencing data and preoperative thin-section CT images were available from the database
of the JSCH biobank. Clinical data collected for analysis was conducted within 1 week from
the date of CT image acquisition, including age at diagnosis, gender, smoking status, BP/SP,
blood types, biochemistry indicators and tumor markers. Smoking status was categorized
into never smokers and smokers, and smokers included former or current smokers. In the
step of data preprocessing, we considered the missing rate for each variable. Firstly, in the
mutation of EGFR, TMB and radiomics variables are not missing. Secondly, we deleted
nine clinical variables (including UALB, UGA, CA125, NSE, CA153, PCT, RDW.CV, CA199
and D.Dimer) with the missing rate larger than 20% (Supplementary Table S1). Finally, we
used HotDeck to impute the remain 67 clinical variables. In the model we regarded gender,
age and BMI and TMB as independent and dependent variables, respectively.
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2.2. CT Image and 3D Reconstruction

All patients underwent pretreatment high-resolution CT scans to assure accurate
volumetric analysis. The total nodule volume and GGO components of each lesion were
determined by 3D reconstructions, and were automatically obtained using the Discovery
CT750 HD scanner (GE Medical Systems, Milwaukee, WI, USA).

2.3. Tumor Segmentation and Radiomics Feature Extraction

As shown in Figure 1, CT images were imported into the 3D-Slicer 4.7.0 software
(Harvard, MA, USA) and then contoured manually by three independent observers using
the built-in paint tool. The delineation was performed in lung window setting (mean,
−530~−430 HU; width, 1400~1600 HU) and then contoured manually by three independent
observers using the built-in paint tool. Consensus was reached by discussion if there was
interobserver variability.
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Zwanenburg, S Leger, M Vallières et al. [27]. 

2.4. Genomic Mutation Data Processing 

Figure 1. Study workflow overview. (A) Patient’s enrollment. (B) Region of interest (ROI) seg-
mentation of pulmonary nodules and acquisition of radiomic features. (C) Feature selection and
performance of the receiver operating characteristic (ROC) curve. (D) Performance of the radiomics
nomogram and clinical utility.

Next, radiomics features were performed using a Radiomics plugin for the 3DSlicer [25].
All CT voxels were resampled to 1 mm3 for normalization using a cubic interpolation. In or-
der to increase sensitivity relative to the original image, reduce image noise and normalize
the intensities across all patients, we used a bin width of 25 Hounsfield units to discretize
the intensities in the original image. In total, 870 radiomic features were extracted from
the CT images of each patient, including the covering tumor intensity, shapes, wavelets,
textures, and Gabor features [26]. All of the features defined in this package are in com-
pliance with the feature definitions described by the Imaging Biomarker Standardization
Initiative (IBSI), which are available in a separate document by A Zwanenburg, S Leger,
M Vallières et al. [27].

2.4. Genomic Mutation Data Processing

The TMB and EGFR mutation data were obtained from the database of the JSCH
biobank, as previously described [24]. Formalin-fixed paraffin-embedded (FFPE) ma-
lignant GGO samples were sliced and genomic DNA data was isolated from the slices.
We conducted commercial pan-cancer panels on the Hiseq NGS platforms (Illumina Inc.,
San Diego, CA, USA). The definition of TMB is the rate of peptide changing single nu-
cleotide variations (SNVs) per Mb, and TMB status is also the same as the previous
study [24] in which >4 is relatively high (TMBhigh) and ≤4 is low (TMBlow) [28].
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3. Statistical Analysis

According to the ratio of 7:3, all patients were randomly assigned to the training set
and the validation set. For the demographic characteristics, clinical characteristics and
imaging parameters of patients, continuous variables were expressed by means ± SD,
and categorical variables were described by percentages. Student’s t test was performed
to compare the differences of the continuous variables, and Chi-square test was used to
compare the distribution of the categorical variables between training set and validation set.
Univariable logistic regressions were conducted to preliminarily select variables associated
with the EGFR mutation and TMB status in the training set. Next, variables with p < 0.05 in
univariable logistic regressions as candidate variables were included in LASSO (least abso-
lute shrinkage and selection operator) regressions, which were performed 50 times to screen
important variables among clinical characteristics and imaging parameters, respectively.
Notably, before including lasso regressions, continuous variables were normalized. Then,
clinical characteristics and imaging parameters, which were selected more than 25 times
(frequency > 25) among 50 times lasso regressions, were included in the clinical model and
imaging model, respectively. Meanwhile, stepwise binary logistic regressions were used to
build the clinical model (only including clinical characteristics) and the integrative model
(including clinical characteristics and imaging parameters). Finally, the receiver operator
characteristic curve (ROC) was plotted, and its cutoff, sensitivity, specificity, positive predic-
tive value and negative predictive value were calculated to evaluate the clinical model and
the integrative model. In addition, nomograms were plotted to visualize two integrative
models of EGFR mutations and TMB status.

Statistical analysis and figures were completed by using R software (Version 4.0.3,
Vienna, Austria) and packages “compareGroups (Version 4.5.1)”, “glmnet (Version 4.1.3)”,
“ggplot2 (Version 3.3.5)”, “forestplot (Version 2.0.1)”, “pROC (Version 1.18.0)” and “rms
(Version 6.2-0)”. α = 0.05 was considered statistically significant.

4. Results
4.1. Patient Cohorts

We performed this study according to the Declaration of Helsinki. All patients signed
the informed consent. This study was also approved by the Ethics Committee of the
Jiangsu Cancer Hospital. The mean age was 57.82 ± 8.94 years, 30.56% was male and
12.96% smoked. The body mass index (BMI) was 23.14 ± 2.73 kg/m2, the mean arterial
pressure (MAP) was 92.85 ± 9.38 mmHg. There were 55 (50.93%) patients with EGFR
mutations and 49 (45.37%) patients with TMB-high status, respectively. According to
the ratio 7:3, 108 patients were randomly assigned to the training cohort (75 patients,
69.44%) and the validation cohort (33 patients, 30.56%). The difference or distribution of
characteristics were not significant between the training set and the validation set (all p
values > 0.05). The details are shown in Table 1.

Table 1. Characteristics of patients.

Characteristic
All

n = 108
Data Set

p Value
Train (n = 75) Validation (n = 33)

Age, year 57.82 ± 8.94 57.84 ± 8.48 57.79 ± 10.03 0.979
Sex, % 0.104
Male 33 (30.56) 27 (36.00) 6 (18.18)

Female 75 (69.44) 48 (64.00) 27 (81.82)
Smoking, % 0.544

No 94 (87.04) 64 (85.33) 30 (90.91)
Yes 14 (12.96) 11 (14.67) 3 (9.09)
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Table 1. Cont.

Characteristic
All

n = 108
Data Set

p Value
Train (n = 75) Validation (n = 33)

*BMI, kg/m2 23.14 ± 2.73 23.31 ± 2.91 22.75 ± 2.27 0.285
*MAP, mmHg 92.85 ± 9.38 91.96 ± 9.80 94.86 ± 8.12 0.114

*EGFR mutation, % 0.123
No 53 (49.07) 41 (54.67) 12 (36.36)
Yes 55 (50.93) 34 (45.33) 21 (63.64)

*TMB, % 0.537
No 59 (54.63) 39 (52.00) 20 (60.61)
Yes 49 (45.37) 36 (48.00) 13 (39.39)

*BMI, Body mass index; *MAP, Mean arterial pressure; *EGFR, Epidermal growth factor receptor; *TMB, Tumor
mutation burden

4.2. Prediction Model Construction for EGFR Mutations

In the first stage, 75 variables, including 8 clinical characteristics and 67 imaging
parameters, were statistically associated with EGFR mutations identified by univari-
able logistic regressions (all p < 0.05), as listed in Table S2. In the 2th stage, the above
variables were included in 50 times lasso regressions with family “binomial” for EGFR
mutations. The variable (Thrombin time (TT), Total bilirubin (TBiL), Red blood cell
(RBC), Platelet count (PLT), Glycated albumin (GA) percentag, Carbohydrate antigen
(CA), originalglem.MaximumProbability, LLHglcm.ClusterShade, HLLglcm.Contrast, LLL-
firstorder.Energy, LLLfirstorder.TotalEnergy, etc.) and their frequency selected among
50 times lasso regressions were visualized using the bar plot, as shown in Figure 2A. In
the 3th stage, the clinical model (Figure 3A) built by stepwise logistic regression demon-
strated that CA (OR = 2.164, 95%CI: 1.172–3.993, p = 0.014) and TBiL (OR = 0.436, 95%CI:
0.238–0.798, p = 0.007) were the predictors of EGFR mutations, and the integrative model
(Figure 3B) suggested that a radiomic wavelet feature, LLHglcm.ClusterShade (OR = 0.052,
95%CI: 0.004–0.679, p = 0.024), was a predictor of EGFR mutations as well as CA (OR = 2.140,
95%CI:1.125–4.072, p = 0.020) and TBiL (OR = 0.380, 95%CI: 0.191–0.757, p = 0.006).
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We next validated the predictive effects in the test set. For EGFR mutations, the
AUCs (Figure 3C) of clinical and integrative models were 0.6726 (0.4755–0.8697) and 0.7421
(0.5698–0.9144), respectively. AUCs of the integrative models for the EGFR mutation,
including imaging parameters, were larger than that of the clinical-only models, which
means that the discrimination (AUCs) of the integrative model was better. The specificity
and positive predictive value of the integrated model for EGFR mutations were both 0.917,
which means that the ability of the integrative model to identify and exclude non-mutation
was strong, and the proportion of patients who did have the mutation was higher among
those with the mutation found by the model.

4.3. Prediction Model Construction for TMB Status

In the first stage, 59 variables, 11 clinical characteristics and 48 imaging parameters
were statistically associated with TMB status identified by univariable logistic regres-
sions (all p < 0.05), as listed in Table S3. In the second stage, the above variables were
included in 50 times lasso regressions. The variable (Mean arterial pressure (MAP), Amy-
lase (AMY), Hepatitis B surface antibody (HBsAb), Low-density lipoprotein cholesterol
(LDL-C), Mean corpusular volume (MCV), Magnesium (Mg), lymphocyte, mononuclear
macrophage, LLLglcm.DifferenceVariance, HHLglszm.LargeAreaLowGrayLevelEmphasis,
LHLglcm.Correlation, LLLfirstorder.InterquartileRange, etc.) and their frequency se-
lected among 50 times lasso regressions were visualized using the bar plot, as shown
in Figure 2B. In the third stage, the clinical model (Figure 3D) for predicting TMB sta-
tus showed that AMY (OR = 0.271, 95%CI: 0.101–0.729, p = 0.010), HbsAb (OR = 0.378,
95%CI: 0.17–0.844, p = 0.018) and mononuclear macrophage (OR = 0.225, 95%CI: 0.09–0.561,
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p = 0.001) were predictors, and two radiomic features, HHLglszm.LargeAreaLowGrayLevel
(OR = 2.898, 95%CI: 1.143–7.342, p = 0.025) and originalfirstorder.InterquartileRange
(OR = 3.161, 95%CI: 1.318–7.584, p =0.010) were also predictors in the integrative model
for TMB status (Figure 3E). Next, with regards to TMB status, the AUCs of two models
(Figure 3F) were 0.7808 (0.6231–0.9384) and 0.8462 (0.7132–0.9791), respectively. It could be
also seen from the above that AUCs of the integrative models for TMB status were larger
than that of clinical models. Meanwhile, the sensitivity and negative predictive value of
the integrative model for TMB status were both 1.000, which means that the integrative
model could fully identify the TMB status of all patients.

4.4. Decision Curve Analysis

Decision curves [29] of predictive models for the EGFR mutation and TMB status were
plotted, as showed in Figure 4. For the EGFR mutation, risk-based interventions based on
the integrated model is recommended when the risk threshold is between 20% and 80%
(Figure 4A). For TMB status, risk-based interventions based on the integrated model is
recommended when the risk threshold is between 10% and 90% (Figure 4B).
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4.5. Nomograms for Predicting EGFR Mutation and TMB Status

Finally, two validated integrative models were visualized as the nomogram in the study
(Figure 4), which could be used to predict individual risk and guide individualized treat-
ment. In other words, we can calculate the total point according to the standardized vari-
able value and the corresponding point. Next, we could obtain the mutation probability
of certain patients. For instance, in Figure 4A, the total point of patients whose CA = 2.5
(Point ≈ 20), TBiL = 2 (Point ≈ 30) and LLHglcm.ClusterShade = 1 (Point ≈ 58) were about
108. Therefore, the probability of the patient harboring EGFR mutations was more than 70%.
In addition, two web-based dynamic nomograms for EGFR mutations (https://ww-jshtcm.
shinyapps.io/Dynamic_nomogram_EGFR/ accessed on 9 November 2022) and TMB status
(https://ww-jshtcm.shinyapps.io/Dynamic_nomogram_TMB/ accessed on 9 November 2022)
were deployed on the website.

https://ww-jshtcm.shinyapps.io/Dynamic_nomogram_EGFR/
https://ww-jshtcm.shinyapps.io/Dynamic_nomogram_EGFR/
https://ww-jshtcm.shinyapps.io/Dynamic_nomogram_TMB/
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5. Discussion

There are usually no typical signs or symptoms of lung cancer in the early stages.
The now wide use of low-dose CT in lung cancer diagnosis has led to a considerable
number of patients being diagnosed with sMPLC. Jing L, Dong Z, Xiao W et al. [30]
conducted a retrospective analysis of 164 patients and found that the overall survival and
progression-free survival rates with sMPLC were 72.6% and 61.0%, respectively. Kocaturk
CI, Gunluoglu MZ, Cansever L et al. [31] reported that the 5-year survival rate was 40.6%
for unilateral and 62.8% for bilateral sMPLC patients who received the surgical resection.
The revolutionary effects of TKI and ICI treatment on lung cancer brings new hope to those
patients. Therefore, it is of great importance to predict the TMB and EGFR status of patients
with sMPLC.

In the present study, we construct a prediction model from the training cohort
(75 PNs) and evaluated the performance of the model in an independent validation cohort
(33 PNs). For EGFR mutations, the AUCs of clinical and integrative models were 0.6726
(0.4755–0.8697) and 0.7421 (0.5698–0.9144), respectively. For the TMB status, the AUCs of
two models were 0.7808 (0.6231–0.9384) and 0.8462 (0.7132–0.9791), respectively. Compared
with our former study [24], we increased the sample size and improve the statistical meth-
ods, obtained an efficient CT-based radiomics model and better prediction performance.
The prediction model revealed that there was a significant association between CT features,
EGFR mutation and TMB status. Our works provide a non-invasive method to assess EGFR
and TMB information for patients, and offers an alternative supplement to biopsy.

Previously, studies focused on predicting the EFGR mutation and TMB status used
clinical factors and radiomics based on feature engineering such as gender, age, tumor
stage and predominant subtype [32,33]. Obviously, clinical features can only reflect tumor
information, partly on a pathological level. Radiomics studies can quantify medical figures
into image features, and identify the connections between these features and gene char-
acteristics by feature selection, statistical analysis and other methods to characterize the
phenotype of the tumors and clinical utility [20]. Wen Q, et al. [21] showed that radiomics
signatures demonstrated a positive performance for predicting PD-L1 and TMB with AUCs
of 0.730 and 0.759, respectively. The model that combined radiomics signatures with clinical
and morphological factors has improved the predictive efficacy reached for PD-L1 (AUC
= 0.839) and TMB (p = 0.818). We have also harbored better recognition ability (0.7421 for
EGFR and 0.8462 for TMB). Moreover, the positive predictive value of the integrated model
for EGFR mutations was 0.917, which indicates that the ability of the integrative model to
identify the EGFR mutation and nodules’ benefit from cancer genetic testing was strong.
At the same time, the negative predictive value of the integrative model for TMB status
was 1.000, which helps clinicians reduce unnecessary tests. Based on the different purpose
of the integrative model that was achieved, we therefore have reason to believe that the
model is practical, and we will be able to gain higher accuracy if multi-center cooperation
is established in the future.

Despite these encouraging results, this study does have some limitations. Firstly, this
study was a single-institutional and small-sample study, therefore we will construct a multi-
institutional and larger sample study in the future. Secondly, we conducted a retrospective
study, which may bring potential bias to the results of the study. In future studies, we
will prospectively apply our radiological characteristics to clinical practice, which is also
an important part of the pre-treatment evaluation. Thirdly, the image texture features in
our study were extracted from the data via manual segmentation by several experienced
imaging doctors; it was difficult to exclude the small blood vessels and bronchus in the
nodule, which may affect the accuracy of some features. Fourthly, the other driver muta-
tions such as ALK and TP53, and their correlation with the features within the radiomics
signature was not explored. Lastly, all of the patients included in this study had malignant
PNs (<3 cm), which limits the use of this method in patients with advanced disease. We
will therefore include advanced lung cancer patients in our future work to increase the
sample size.
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In conclusion, our present study shows that the quantitative radiomics features ex-
tracted from CT images were non-invasively associated with EGFR and TMB status. The
integrated model built by radiomics features combined with clinical factors that signifi-
cantly improved the predictive performance, which is of great help for physicians to make
effective clinical plans.
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Abbreviations

AMY Amylase
AUC Area under curve
BMI Body mass index
CA Carbohydrate antigen
CT Computed tomography
DCA Decision curve analysis
DNA Deoxyribonucleic acid
EGFR Epidermal growth factor receptor
FPR False positive rate
GA Glycated albumin
GGO Ground-glass opacity
HBsAb Hepatitis B surface antibody
ICI Immune checkpoint inhibitors
LASSO Least absolute shrinkage and selection operator
LDL-C Low-density lipoprotein cholesterol
LUAD Lung adenocarcinoma
MAP Mean arterial pressure
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MCV Mean corpusular volume
Mg Magnesium
NGS Next-generation sequencing
NSCLC Non-small cell lung cancer
NSE Neuron specific enolase
OS Overall survival
PCT Plateletocrit
PD-1 Programed death-1
PLT Platelet count
PN Pulmonary nodule
RBC Red blood cell
RDW Red cell volume distribution width
ROC Receiver operating characteristic curve
ROI Region of interest
sMPLC Synchronous multiple primary lung cancer
SABR Stereotactic ablative radiotherapy
TBiL Total bilirubin
TKI Tyrosine kinase inhibitors
TMB Tumor mutation burden
TPR True positive rate
TT Thrombin time
UGA Urine glucaric acid
UALB Urinary albumin
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