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Abstract: Signaling threshold regulating transmembrane adaptor 1 (SIT1) encodes a disulfide-linked
homodimeric lymphocyte-specific glycoprotein involved in immune cell activation. However, the
relationship between SIT1 and the prognosis of skin cutaneous melanoma (SKCM) and tumor-
infiltrating lymphocytes remains elusive. Here, we first compared the differences in SIT1 expression
levels between SKCM tissues and adjacent normal tissues. Next, we found that the immune cell
infiltration levels and signature pattern of immune infiltration were positively associated with the SIT1
gene mRNA levels. TCGA_SKCM RNA-seq data unveiled that the SIT1 upregulated several immune-
associated signaling pathways in GSEA analysis. The high expression of SIT1 was closely related
to improved survival in patients with SKCM. A pathway enrichment analysis of SIT1-associated
immunomodulators indicated the involvement of the NF-κB signaling pathways. Based on SIT1-
associated immunomodulators, we built a 13-gene signature by LASSO Cox regression which served
as an independent prognostic factor for the survival of melanoma patients. By using the signature risk
score, we achieved a good prediction result for the immunotherapy response and survival of SKCM
patients. Our findings provided evidence for SIT1’s implication in tumor immunity and survival of
SKCM patients. The nominated immune signature is a promising predictive model for prognosis and
immunotherapy sensitivity in SKCM patients.

Keywords: gene signature; SIT1; immune response; skin cutaneous melanoma; tumor mutation
burden; nomogram

1. Introduction

Skin cutaneous melanoma (SKCM) with an aggressive phenotype is one of the most
commonly diagnosed and has the highest mortality rate among all types of skin can-
cers, which causes approximately 57,000 deaths worldwide each year [1]. Melanoma
was reported to exhibit high immunogenicity and immune cell infiltration in previous
studies [2,3]. Over the past decade, immune therapies have dramatically changed the land-
scape of SKCM treatment [4–7]. Pembrolizumab and nivolumab have been approved
for the treatment of patients with advanced or metastatic melanoma and as an adjuvant
treatment for patients with a high risk of relapse in many areas across the world [8,9].

However, not all SKCM patients would benefit from immunotherapy. In fact, only a
small percentage of melanoma patients showed good responses and improved long-term
survival when receiving immunotherapy. The molecular mechanisms of immunother-
apy resistance are complex, whereas tumor stroma-intrinsic factors such as insufficient
tumor antigenicity, tumor-intrinsic interferon-γ signaling repression, tumor loss of MHC,
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oncogenic signaling hyperactivation, loss of tumor suppressor, tumor dedifferentiation,
and stemness play important roles in the process [10]. Immune markers such as PD-L1
expression and levels of immune cell infiltration, such as CD8 + T cell infiltration, may
help in identifying the patients with good responses to immunotherapies [11,12], how-
ever, there were exceptions in many SKCM cohorts as well, which may be due to local
immunosuppressive factors and T cell dislocation [13,14]. So far, no ideal markers have
been found for SKCM patients’ sensitivity to immunotherapy. Systemic knowledge of
factors affecting effective immunotherapies for melanoma is still lacking [15]. Thus, the
molecular features representing the complex intratumoral immune microenvironment
still need investigation. Therefore, it is essential to fully understand SKCM immunology
and the underlying mechanisms to improve the success rate of immunotherapy. With the
appearance of high-dimensional datasets and advanced bioinformatics algorithms [16,17],
it is realistic to further investigate the immune activity and multiple-gene expression in
multiple tumor types, which facilitate us to study the molecular characteristics affecting
immune cell infiltration, response to immunotherapy, and the prognosis of SKCM patients.

Signaling threshold regulating transmembrane adaptor 1 (SIT1), encoded by the SIT1
gene, represents a disulfide-linked homodimeric glycoprotein belonging to the lymphocyte-
specific transmembrane adaptor protein family, which is a group of molecules that affect
the immunity processes [18]. SIT contains five tyrosine-based signaling motifs in the
cytoplasmic domain that could mediate the binding affinity of the SH2 domain with intra-
cellular signaling molecules. Previous studies have shown that SIT inhibits TCR-mediated
signaling [19,20]. However, the mechanism is not clear. Since SKCM has shown a good
response to cancer immunotherapy and the immune implication of the SIT1 gene in SKCM
remains mostly unknown so far, we systematically elucidate the association between SIT1
and SKCM immunity as well as the SIT1-mediated immune response-associated signaling
pathways. Association between SIT1 gene expression and SKCM patients’ survival has also
been discussed. Then, we generated a prognostic immune signature using SIT1-associated
immunomodulators. Melanoma patients were divided into two groups according to the
median of signature-based risk scores in order to study the difference in tumor mutation
burden (TMB) and the efficacy of immunotherapy. Finally, we built a nomogram by combin-
ing the signature-based risk score with other important clinical features based on the TCGA
database, followed by validation in an independent GEO cohort. In summary, our present
work may promote the illustration of immune cell infiltration and prognostic factors in
SKCM patients.

2. Materials and Methods
2.1. Data Preparation

Detailed information on mRNA expression (HTSeq—FPKM, n = 472), phenotype
(n = 481), and survival (n = 479) from the Cancer Genome Atlas (TCGA_SKCM) database
was downloaded from the GDC hub of UCSC Xena website (http://xena.ucsc.edu/public)
on 15 April 2022. Tumor samples from the metastatic lesion were discarded from the
present study for patients for whom two or more samples have been denoted. Normalized
mRNA expression data of fragments per kilobase per million were converted to transcripts
per million (TPM) and log-transformed (log2(TPM + 1)) before data analysis. Ensemble IDs
were transferred into gene symbols according to the gene probe map downloaded from
the GDC hub. A total of 450 tumor samples with complete overall survival data in the
TCGA_SKCM dataset were selected for further study after the data filtering process.

Through the GEOquery package in R version 4.0.5 (R Foundation for Statistical Comput-
ing, Vienna, Austria) [21], we downloaded the normalized mRNA expression data of five
skin melanoma GEO datasets (GSE65904, GSE22153, GSE19234, GSE98394, and GSE35640)
from the Gene Expression Omnibus (GEO) database. We conducted signal intensity normal-
ization across arrays of the above datasets by using the normalizeBetweenArrays function
from the limma package in R software. The gene symbols were converted from the probe
map according to the previous study [22].

http://xena.ucsc.edu/public
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We downloaded the simple nucleotide variation data (workflow type: VarScan2
Variant Aggregation and Masking) from the GDC database (https://portal.gdc.cancer.gov/)
(accessed on 15 April 2022) of the TCGA_SKCM cohort. The maf file was analyzed by the
maftools package in R.

The differences in SIT1 expression between tumorous and normal tissues in vari-
ous cancer types were analyzed in the Oncomine database (https://www.oncomine.org/
resource/main.html) (accessed on 15 April 2022) [23]. The cut-off of p values and fold
change were 0.001 and 1.5, respectively. All methods were carried out in accordance with
relevant guidelines and regulations.

2.2. Correlation between SIT1 and Tumor Immune Cell Infiltration

SIT1 expression and its association with immune cell infiltration in SKCM and UVM
(uveal melanoma) were analyzed through the TIMER website (https://cistrome.shinyapps.
io/timer/) (accessed on 15 April 2022). The correlation between tumor purity and gene
expression levels was shown in the left-most panel [24]. Besides, the interconnections
between SIT1 mRNA levels and expression of immune cell biomarkers were analyzed
through TIMER and Gene Expression Profiling Interactive Analysis (GEPIA) websites [25]
using correlation modules. Immune cell biomarkers were selected from previous stud-
ies [26–28]. Spearman’s correlation was used to investigate the association between SIT1
and immune cell biomarkers, and results with p < 0.001 were considered significant.

SIT1-associated signaling pathways were studied by gene set enrichment analysis
(GSEA) [29] using the GSEA software version 4.0.0 (UC San Diego and Broad Institute,
California, USA), which was downloaded from the website (software.broadinstitue.org/
gsea/index.jsp) (accessed on 15 April 2022). C2.cp.kegg.v7.4. symbols.gmt was chosen as
the gene set database. Patients from TCGA_SKCM datasets were divided into two groups
(SIT1high vs. SIT1low) according to the median of the SIT1 mRNA expression data. The
pathways were determined following pFWER < 0.05 and normalized enrichment score
(NES) > 1.

2.3. Immunomodulators

The TISIDB (http://cis.hku.hk/TISIDB/) (accessed on 15 April 2022) [30] database
was used to screen the immunomodulators associated with SIT1 expression. The inclusion
criteria were that immunoinhibitors or immunostimulators must have a p-value < 0.05
when correlated with SIT1 gene expression by the Spearman correlation test.

The top 50 immunomodulators associated with the SIT1 gene were selected by
the Comparison module of the cBioPortal for Cancer Genomics (www.cbioportal.org)
(accessed on 15 April 2022). GO annotation and Kyoto Encyclopedia of Genes and
Genomes pathway enrichment analysis were carried out using web-based tools (https:
//string-db.org/) (accessed on 17 April 2022) and WEB-based GEne SeT AnaLysis Toolkit
(http://www.webgestalt.org/) (accessed on 17 April 2022) [31] through subjecting the
selected genes to the website.

2.4. Construction of the Prognostic Model

Gene signatures were generated by putting SIT1-associated immunomodulators into
the least absolute shrinkage and selection operator (LASSO) Cox regression model. The
glmnet package in R was used to complete the regression process. After the genes were
selected, a multivariate Cox analysis was used to calculate the corresponding coefficients.
The signature scores were calculated by the sum of products of each gene and its corre-
sponding coefficients as follows: score = (CD80 × −0.23723) + (ICOSLG × −0.08386) +
(IL2RA ×−0.04791) + (KLRK1 ×−0.24327) + (TMIGD2 × 0.42982) + (TNFRSF14 × 0.08690)
+ (TNFRSF4 × −0.12586) + (TNFSF15 × 0.19597) + (TNFSF4 × −0.03398) + (ADORA2A
× −0.63896) + (CD274 × −0.08743) + (IDO1 × −0.10688) + (NECTIN2 × 0.15422). To
normalize signature scores across different datasets, we transformed the score into a risk
score with the following formula: risk score = (score-Min)/absolute (Max). The prognostic
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accuracy of the risk scores in different datasets was determined using the time-dependent
receiver operating characteristic (ROC) curves through the timeROC package in R [32].

2.5. Construction of Nomogram

A nomogram built through the rms package in R software was used to predict a
patient’s prognosis. Important characteristics and signature risk scores were included in
the nomogram. The patients were stratified into low-, medium-, and high-risk groups by
the superior and inferior quartiles of the risk score. The concordance index (C-index) and a
calibration curve were used to estimate the predictive accuracy of the nomogram.

2.6. Statistical Analysis

Most statistical analyses were conducted using R version 4.0.5 (R Foundation for
Statistical Computing, Vienna, Austria). Heatmap plots, violin plots, survival curves,
and risk factor analyses were performed in Hiplot (https://hiplot.com.cn) (accessed on
20 April 2022), a comprehensive web platform for scientific data visualization. Wilcoxon
tests were conducted to compare gene expression between groups. Generally, results with
p < 0.05 were considered statistically significant.

3. Results
3.1. mRNA Level of SIT1 in Various Tumor Types

Using the TCGA database, we searched Transcriptome-seq data of SIT1 in different
tumors together with their adjacent normal tissues. SIT1 expression was higher compared
to adjacent normal tissues in cholangiocarcinoma, lung adenocarcinoma, esophageal carci-
noma, liver hepatocellular carcinoma, head and neck squamous cell, kidney renal papillary
cell carcinoma, and kidney renal clear cell carcinoma. On the contrary, SIT1 expression was
lower in tumor tissues than normal tissues in colon adenocarcinoma, kidney chromophobe,
lung squamous cell carcinoma, rectum adenocarcinoma, and thyroid carcinoma (Figure 1A).
For skin cutaneous melanoma (SKCM), SIT1 mRNA was much higher in metastatic tumors
than in primary tumors, however, there was no comparison of data for SIT1 expression in
SKCM tissues and adjacent normal tissues because of a very small normal tissue sample
size in the dataset.

The Oncomine database was also used to evaluate SIT1 expression in various human
tumors (Figure 1B). The SIT1 expression levels in breast and gastric cancers were higher
than in the adjacent normal tissues (Figure 1B). In contrast, SIT1 expression in cervical
and colorectal cancers was lower compared to the normal tissues in some datasets. In
leukemia and lymphoma, the results from different datasets were inconsistent. For SKCM,
no significant difference was found between the tumor and normal tissues.

Since the TCGA dataset did not contain a sufficient number of adjacent normal skin
tissues, to further evaluate the difference in SIT1 mRNA expression between the tumor
and adjacent normal tissues, we analyzed the difference in SIT1 mRNA expression in the
GSE98394 dataset (Figure 1C). Interestingly, the result showed that SIT1 expression in
tumors was higher compared to adjacent normal tissues; the difference was significant
(p < 0.001).

3.2. Association between SIT1 and Immune Cells

We studied the association between SIT1 mRNA expression and immune cells through
the TIMER website. The results showed that SIT1 mRNA expression levels were positively
correlated to various types of immune cells in many types of cancers (Figures S1 and S2).
In SKCM, the SIT1 mRNA levels were uniformly positively correlated to CD8 + T cell, CD4
+ T cell, B cell, dendritic cell, neutrophil, and macrophage (Figure 2A). In contrast, there
was no significant correlation between SIT1 expression and CD4 + T cell, dendritic cell,
and macrophage infiltration in UVM (Figure 2B). In addition, the immune cell infiltration
levels varied between different SIT1 gene copy numbers in head and neck squamous
cell carcinoma, lung squamous cell carcinoma, stomach adenocarcinoma, and SKCM

https://hiplot.com.cn
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(Figure S3). In SKCM, different groups of SIT1 gene copy numbers seemed to demonstrate
different B cell, CD8 + T cell, CD4 + T cell, neutrophil, and dendritic cell infiltration levels
(Figure 2C). However, no significant relevance between SIT1 gene copy numbers and
immune cell infiltration levels was found in UVM, which might be due to a relatively
small sample size (Figure 2D). In addition, the infiltration levels of CD8 + T cell, B cell,
dendritic cells, neutrophil, and SIT1 mRNA expression were positively associated with
SKCM patients’ overall survival (Figure S4A). In VUM, CD8 + T cell infiltration levels,
neutrophil infiltration levels, and SIT1 mRNA expression were associated with survival
(Figure S4B). Since the sample size of TCGA_VUM is quite small, in order to get a reliable
conclusion, we subsequently focused solely on the study of SIT1 in SKCM patients.
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Figure 2. Correlation of SIT1 expression, gene copy numbers with immune infiltration levels in
melanoma and SIT1-associated immune signaling pathways screened by Gene Set Enrichment
Analysis. (A) The mRNA expression of SIT1 is uniformly positively correlated to CD8 + T cell,
CD4 + T cell, B cell, dendritic cell, neutrophil, and macrophage and negatively related to tumor
purity in SKCM. (B) SIT1 expression has no significant correlations with infiltrating levels of CD4
+ T cell, dendritic cell and macrophage infiltration, and tumor purity in UVM cell. Immune cell
infiltration levels of different groups of SIT1 copy number and in SKCM (C) and UVM (D) cohorts.
SIT1-associated immune signaling pathways screened by GSEA in SKCM (E). * p < 0.05; ** p < 0.01;
*** p < 0.001.

The RNA-seq data of TCGA_SKCM tumor samples were separated into SIT1high and
SIT1low groups by the medium SIT1 mRNA level. GSEA analysis indicated that SIT1 was
positively associated with some immune-associated signaling pathways, including nat-
ural killer cell-mediated cytotoxicity (NES = 2.24, pFWER = 0.005), FC epsilon RI signal-
ing pathway (NES = 2.29, pFWER = 0.003), B cell receptor signaling pathway (NES = 2.23,
pFWER = 0.005), and T cell receptor signaling pathway (NES = 2.33, pFWER = 0.002) (Figure 2E).

In order to find the key molecular factors and signaling pathways through which SIT1
might regulate the immune response in SKCM, we screened SIT1-associated immunomod-
ulators in the TISIDB database. After processing the data, we found 58 related immune
genes, including 38 immunostimulators (C10orf54, CD27, CD276, CD28, CD40, CD40LG,
CD48, CD70, CD80, CD86, CXCL12, CXCR4, ENTPD1, ICOS, ICOSLG, IL2RA, IL6, KLRC1,
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KLRK1, LTA, MICB, PVR, TMEM173, TMIGD2, TNFRSF13B, TNFRSF13C, TNFRSF14, TN-
FRSF17, TNFRSF18, TNFRSF25, TNFRSF4, TNFRSF8, TNFRSF9, TNFSF13, TNFSF13B,
TNFSF14, TNFSF15, and TNFSF4) (Figure 3A) and 20 immunoinhibitors (ADORA2A, BTLA,
CD160, CD244, CD274, CD96, CSF1R, CTLA4, HAVCR2, IDO1, IL10, IL10RB, LAG3, LGALS9,
PDCD1, PDCD1LG2, PVRL2, TGFB1, TGFBR1, and TIGIT) (Figure 3A). The top 50 genes
that were closely related to these immunomodulators were added to the immunomod-
ulators’ protein networks as shown in Figure 3B by the STRING website. As shown in
Figure 3C, most of the immunomodulators were expressed in the cell membrane to regu-
late the biological activity by affecting protein-binding interaction. The KEGG pathway
enrichment analysis shows that the NF-κB signaling pathway is related to SIT1-mediated
immune events (Figure 3D).

J. Pers. Med. 2023, 12, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. Discrimination and analysis of SIT1-associated immunomodulators. (A) The heatmaps of 
correlation between the SIT1 gene and immunoinhibitors, immunostimulators in SKCM and UVM. 
(B) Protein interaction network of 58 SIT1-associated immunomodulators and top 50 related genes 
in SKCM from the STRING website. (C) Gene ontology analysis of the above 108 genes in SKCM. 
(D) Kyoto Encyclopedia of Genes and Genomes pathway analysis of the above 108 genes. 

3.3. Association between SIT1 Expression and Immune Markers 
To validate the relationship between SIT1 and the above associated immune cells, we 

further studied the correlation between SIT1 and immune markers of these immune cells 
in SKCM. We also studied the biomarkers of detailed T cells, such as Th1, Th2, Tfh, Th17, 
Treg, and exhausted T cell (Table S1). After the adjustments with the tumor purity value, 

Figure 3. Discrimination and analysis of SIT1-associated immunomodulators. (A) The heatmaps of
correlation between the SIT1 gene and immunoinhibitors, immunostimulators in SKCM and UVM.
(B) Protein interaction network of 58 SIT1-associated immunomodulators and top 50 related genes
in SKCM from the STRING website. (C) Gene ontology analysis of the above 108 genes in SKCM.
(D) Kyoto Encyclopedia of Genes and Genomes pathway analysis of the above 108 genes.
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3.3. Association between SIT1 Expression and Immune Markers

To validate the relationship between SIT1 and the above associated immune cells, we
further studied the correlation between SIT1 and immune markers of these immune cells
in SKCM. We also studied the biomarkers of detailed T cells, such as Th1, Th2, Tfh, Th17,
Treg, and exhausted T cell (Table S1). After the adjustments with the tumor purity value,
the mRNA expression levels of SIT1 were still positively correlated with the level of most
biomarkers of the previously mentioned detailed immune cells in SKCM.

We observed that the biomarker expression levels of the B cell, monocyte, and Th1 cell
immunomarker genes were closely correlated with SIT1 expression in SKCM (Cor > 0.500,
p < 0.0001) (Table S1, Figure S5). MS4A4A of M2 Macrophage, CD11b, CCR7 of Neutrophils,
KIR2DL4, KIR3DL2 of natural killer cell, and HLA-DPB1, HLA-DRA, HLA-DPA1, HLA-DQB1
of dendritic cell greatly correlated with SIT1 levels in SKCM (Cor > 0.500, p < 0.0001).

Furthermore, we assessed the interrelationship among SIT1 levels and CD8 + T cells,
B cells, monocytes, and Th1 cell immune markers in the GEPIA dataset; the results were
similar in TIMER (p < 0.0001; Table S1). Thus, SIT1 may regulate tumor-specific cytotoxicity
in SKCM. We also observed a close association between expression levels of SIT1 and
biomarkers of Treg and exhausted T cell, such as FOXP3, CCR8, PDCD1, LAG3, TIM-3, and
GZMB (Table S1). Thus, further studies are required to determine whether SIT1 plays a
driver or passenger role during the immune escape process in SKCM microenvironments.

3.4. The Prognostic Implication of SIT1 and SIT1-Associated Immunomodulators in SKCM

To further evaluate the prognostic value of SIT1 in SKCM, TCGA and several in-
dependent GEO (GSE65904, GSE22153, and GSE19234) datasets were included in the
following analysis to improve the reliability of the results. Patients were divided into two
groups (SIT1high vs. SIT1low) by the median of the SIT1 mRNA expression levels in the
TCGA dataset. For GEO datasets, the superior quartile was used to replace the median
owing to a small sample size. The results showed that a high SIT1 level corresponded
to a favorable prognosis in SKCM patients in TCGA (OS hazard ratio (HR) = 0.483, 95%
confidence interval (CI) = 0.366–0.639, p < 0.001) (Figure 4A), and GSE65904 (DSS HR
= 0.589, 95% CI = 0.367–0.947, p = 0.029) (Figure 4B) datasets. Similar tendencies were
observed in GSE22153 and GSE19234 datasets, with borderline levels of significant p values
(OS HR = 0.569 and 0.135, 95% CI = 0.287–1.126 and 0.018–1.020, p = 0.105 and = 0.052,
respectively) (Figure 4C,D). The effects were the same for DFS in the GSE65904 dataset
(Figure S6). These results indicate that SIT1 expression is strongly associated with the
prognosis of SKCM patients.

Then, we used the TCGA dataset with 450 patients as the discovery cohort to build
a SIT1-associated immunomodulator prognostic signature in SKCM patients through the
LASSO Cox regression analysis. An optimal 13-gene prognostic signature was made after
the previous process. The biological functions of signature genes are shown in Table S2.
The signature risk scores were equal to the sum of the products of expression value and
coefficient of each gene. We choose the GSE65904 dataset with a relatively large sample
size (210) as the validation cohort to measure the prognostic value of the signature-based
risk score. The associations between the risk score and clinicopathological features were
analyzed first. In the TCGA dataset, there were more patients older than 60 (p = 0.047) and
with a Breslow depth larger than 2 cm (p < 0.0001) in high-risk patients. More patients
were at a low Clark level (I–III, p = 0.002) and T stage (T1–T2, p < 0.0001) in the low-
risk population. High-risk patients seemed to have more death than low-risk patients
(p = 0.0002) (Table S3). However, there were no significant differences in age, gender, stage,
and death between different risk groups in the GSE65904 dataset (Table S4). As shown in
Figure 5A,B, most signature genes were independently associated with OS. Then, we used
the log-rank test to study the association of the risk score with survival in the TCGA dataset;
as we expected, the high-risk patients had significantly shorter survival than low-risk
patients (log-rank test, p < 0.001) (Figure 5C). The same tendency was confirmed in the
GSE65904 dataset (log-rank test, p < 0.001) (Figure 5D). The area under the curve (AUC)
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values of time-dependent receiver operating characteristic curves (ROC) at 3 years for the
risk score and stage in the TCGA dataset were 0.719 (95% CI = 0.658–0.780) and 0.645 (95%
CI = 0.586–0.704), respectively. An AUC of 0.771 (95% CI = 0.712–0.829) was achieved
when the risk score and stage were combined (Figure 5E). The AUC values of the risk score,
stage, and combined factors in the GSE65904 dataset were 0.716 (95% CI = 0.632–0.800),
0.623 (95% CI = 0.554–0.693), and 0.753 (95% CI = 0.673–0.833), respectively (Figure 5F).
Figure 6A,B shows the distribution of signature gene expression profiles and survival
statuses in different risk score groups for SKCM in both datasets. Figure 6C,D shows
that a high-risk score was significantly associated with increased mortality risk in SKCM
patients in the univariate Cox regression models in both datasets [HR = 6.341 and 151.399,
95% CI = 4.111–9.782 and 11.051–2074.238, p < 0.001 and < 0.001, respectively]. Similar
results were found in multivariate Cox regression after adjusting for age, gender, stage,
etc. (HR = 4.914 and 164.238, 95% CI = 3.022–7.991 and 11.543–2336.846, p < 0.001 and
< 0.001, respectively).
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Figure 5. The construction of prognostic signatures for SKCM based on 58 SIT1-associated im-
munomodulators and SIT1. The hazard ratios of the prognostic signature genes are shown in the
forest plots for SKCM patients in the TCGA (A) and GSE65904 (B) datasets. Kaplan–Meier curves of
different risk groups in the TCGA (C) and GSE65904 (D) datasets for SKCM. Time-dependent receiver
operating characteristic curves at 3 years for SKCM in the TCGA (E) and GSE65904 (F) datasets.
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Distribution of signature gene expression profiles along with survival statuses in different risk score
groups in the TCGA (A) and GSE65904 (B) datasets. Univariate and multivariate Cox regression
analyses of the signature risk score in the TCGA (C) and GSE65904 (D) datasets.

3.5. The Predictive Value of SIT1-Associated Immunomodulators Signature for the Efficacy of
Immunotherapy on Melanoma Patients

As the risk scores were calculated from the expression of SIT1-associated immunomod-
ulators, which may indicate the immune activity, we further tested if it could predict the
efficacy of the immunotherapy response. Current hot immunotherapy-targeted gene expres-
sions in melanoma patients were compared between different risk groups from the datasets
TCGA_SKCM and GSE65904. The low-risk population was found to have higher expres-
sion of PD-1/PD-L1 signaling pathway- (PDCD1LG2, CD274, and PDCD1) (Figure 7A),
CTLA4/CD80-86 signaling pathway- (CD80, CTLA4, and CD86) (Figure 7B), TIM3/TIM3L
signaling pathway- (HAVCR2 and LGALS9) (Figure 7C), LAG3/LAG3L signaling pathway-
(LAG3 and CLEC4G) (Figure 7D), and TIGIT/CD96 signaling pathway- (TIGIT and CD96)
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(Figure 7E) -related genes than the high-risk population. This indicates that immunotherapy
targeted for the above signaling pathways may have a better response in low-risk patients.
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Figure 7. The association between signature risk score and efficacy of immunotherapy for SKCM pa-
tients. (A–E) Comparison of hot immune pathway key genes (PD-1/PD-L1 signaling pathway-related
genes, CTLA4/CD80-86 signaling pathway-related genes, TIM3/TIM3L signaling pathway-related
genes, LAG3/LAG3L signaling pathway-related genes, TIGIT/CD96 signaling pathway-related
genes.) expression between low- and high-risk groups based on the TCGA (A) and GSE65904 datasets
(B). (C) Responder melanoma patients from the GSE35640 dataset show lower risk scores than other
patients. (D) Melanoma patients with high-risk scores from the GSE35640 dataset contain seldom
responders. (E) ROC curve showing predictable efficacy of immunotherapy based on our signature
risk score for SKCM patients in the GSE35640 dataset (AUC = 0.694). (F) Responder melanoma pa-
tients from the GSE35640 dataset show lower risk scores than other patients. (G) Melanoma patients
with high-risk scores from the GSE35640 dataset contain seldom responders. (H) ROC curve showing
predictable efficacy of immunotherapy based on our signature risk score for SKCM patients in the
GSE35640 dataset (AUC = 0.694).
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Melanoma patients from the GSE35640 dataset were used to test the above hypothesis
further. Those patients had exhibited different treatment response s(response and non-
response) after receiving MAGE-A3 cancer immunotherapy. We divided the patients into
two groups by the treatment responses and compared the risk scores between those groups.
The results showed that the responder group had a significantly lower risk score than the
other group (Figure 7F). From Figure 7G, we observed there are seldom responders in high-
risk patients. The signature risk scores show a good predictability for the patients’ response
to immunotherapy in the GSE35640 dataset with an AUC reaching 0.694 (Figure 7H).

Since high TMB also indicates a better immunotherapy response, we wondered if there
is any difference between high- and low-risk patients. As seen in Figure 8A,B, the low-
risk population seems to have a higher mutation frequency of all genes (96.38% vs. 88.44%).
There were also more prevalent mutations in low-risk than high-risk populations (Figure 8C).
As expected, the low-risk group also had a significantly higher TMB (5.14 vs. 4.54/MB,
p = 0.012) (Figure 8D) than the other group.
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These results indicate a good predictive value of SIT1-associated immunomodulators
signature for the efficacy of immunotherapy on melanoma patients.

3.6. Construction of Nomogram

A nomogram was built by combing signature risk scores and other important charac-
teristics (age, gender, and stage) from the TCGA dataset to predict a patient’s prognosis
(Figure 9A), whereas the GSE65904 dataset was used to test its accuracy. Our prognostic
nomogram reached a C-index of 0.708 (95% CI = 0.632–0.784) in the TCGA dataset and
0.647 (95% CI = 0.537–0.757) in the GSE65904 dataset, suggesting an acceptable and stable
predictability. As shown in Figure 9B,C, the predicted 3-year survival probability closely
matched the real 3-year survival probability in the TCGA and GSE65904 datasets. Similar
results were found in calibration curves for 1- and 5-year survival (Figure S7A–D).

J. Pers. Med. 2023, 12, x FOR PEER REVIEW 15 of 22 
 

 

Figure 8. Analysis of tumor mutation in low- and high-risk melanoma patients. (A) Mutation land-
scape of low-risk melanoma patients. (B) Mutation landscape of high-risk melanoma patients. (C) 
Comparison of prevalent mutation frequency between low-risk group and high-risk group. (D) Dif-
ferent tumor mutation burden in low- and high-risk groups. 

These results indicate a good predictive value of SIT1-associated immunomodulators 
signature for the efficacy of immunotherapy on melanoma patients. 

3.6. Construction of Nomogram 
A nomogram was built by combing signature risk scores and other important char-

acteristics (age, gender, and stage) from the TCGA dataset to predict a patient’s prognosis 
(Figure 9A), whereas the GSE65904 dataset was used to test its accuracy. Our prognostic 
nomogram reached a C-index of 0.708 (95% CI = 0.632–0.784) in the TCGA dataset and 
0.647 (95% CI = 0.537–0.757) in the GSE65904 dataset, suggesting an acceptable and stable 
predictability. As shown in Figure 9B,C, the predicted 3-year survival probability closely 
matched the real 3-year survival probability in the TCGA and GSE65904 datasets. Similar 
results were found in calibration curves for 1- and 5-year survival (Figure S7A–D). 

 
Figure 9. Establishment and validation of the prognostic nomogram combining signature risk scores 
and important risk factors in SKCM. (A) A nomogram for predicting 1-, 3-, and 5-year survival 
probabilities for SKCM patients. The calibration curves of 3-year survival in the TCGA (B) and 
GSE65904 (C) datasets. The 45° dashed line represents a close match between predicted and real 
probabilities. However, we did not include other important risk factors (etc. T stage, N stage, M 

Figure 9. Establishment and validation of the prognostic nomogram combining signature risk scores
and important risk factors in SKCM. (A) A nomogram for predicting 1-, 3-, and 5-year survival
probabilities for SKCM patients. The calibration curves of 3-year survival in the TCGA (B) and
GSE65904 (C) datasets. The 45◦ dashed line represents a close match between predicted and real
probabilities. However, we did not include other important risk factors (etc. T stage, N stage, M stage,
Breslow depth, and BRAF/NRAS mutations) in our predictive model because they were unavailable
in the TCGA or GSE65904 datasets, which might significantly decrease the accuracy of the nomogram.
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4. Discussion

Immunotherapy by targeting checkpoints has dramatically improved the prognosis
of SKCM patients. However, only a small percentage of melanoma patients could benefit
from the treatment. Previous studies have found that immune cell infiltration plays an
important role in immunotherapy [33–36] and the function of different immune cells varies
in anti-tumor immune response [37]. In addition, the eradication of tumors by the immu-
nity response is a complicated multi-step process [38]; thus, failure in any one of those
critical steps may decrease the treatment efficacy. However, the mechanism underlying
immunotherapy failure is still undefined. Therefore, it is still important to improve the
efficiency of immunotherapeutic drugs and the identification of patients who could benefit
from the treatment. Individualized treatment strategies in SKCM patients require biomark-
ers or models with good predictable accuracy on the prognosis or immunotherapy efficacy.

The signaling threshold regulating transmembrane adaptor 1 (SIT1), encoded by the
SIT1 gene, was not identified until 1999. Previous studies have shown that SIT1 regulated
human T cell activation by recruiting the SH2 domain-containing tyrosine phosphatase
SHP2 via an immunoreceptor tyrosine-based inhibition motif [39]. Moreover, SIT1 is able
to inhibit the TCR-mediated activation of protein kinase C [20]. However, the mechanism
by which SIT1 regulates human immunity is not fully understood. In addition, there are
few studies showing the relationship between SIT1 and cancer biology or immunity. The
immunity implications of the SIT1 gene in malignant tumors remain mostly unknown.

In this study, we found that SIT1 mRNA expression levels varied between differ-
ent tumors and adjacent normal tissues. Our results also demonstrate that SIT1 mRNA
expression levels were positively correlated to various types of immune cells in many
types of cancers, including SKCM. SIT1 expression levels also strongly correlate with the
expression of the CD8 + T cell, Th1 cell, Treg, exhausted T cell, monocyte, and B cell
biomarkers in SKCM. GSEA analysis indicates that SIT1 is positively correlated with T
cell, B cell, and natural killer cell-related pathways. KEGG pathway analysis reveals that
the NF-κB signaling pathway might be involved in the SIT1-mediated immune response.
These results strongly indicate that SIT1 may influence SKCM immunity by affecting T cell,
B cell, and natural killer cell activity. SIT1 expression is also significantly associated with
SKCM prognosis. We built a novel prognostic immune gene signature by SIT1-associated
immunomodulators, which shows a better predictive value than previously reported gene
signatures (Figure S9). A nomogram was constructed by combing signature risk scores and
other important characteristics (age, gender, and stage) from the TCGA dataset to predict a
patient’s prognosis (Figure 9A), whereas the GSE65904 dataset was used to test its accuracy.
Our prognostic nomogram showed acceptable and stable predictability.

Previous studies reported that SIT1 is mainly expressed in the plasma membrane of T-
and B-lymphocytes [19,20,40–42]. However, a lower SIT1 protein expression was also found
in the plasma of a very small percentage of melanoma cells using the immunohistochemistry
method through the Protein Atlas website (Figure S8). There was also a study that reported
that the SIT1 protein was detected in extracellular exosomes, but its biological function is
still unknown. It is possible that a few melanoma cells express SIT1 protein and release it
into the tumor microenvironment by exosome to regulate tumor immune response. Since
SIT1 mRNA expression levels are negatively correlated to tumor purity in many types
of cancers in our analysis and its protein is mainly expressed in T- and B-lymphocytes, a
relatively higher SIT1 mRNA expression in tumor microenvironments represent a high
degree of lymphocytes infiltration. It seems logical for patients with high SIT1 mRNA
expression to have a good prognosis. However, many studies have reported that high
degrees of lymphocyte infiltration does not mean an activated immune response [43]. Thus,
the biological function of SIT1 in melanoma immunity is complicated; it would be very
important and interesting to focus on the subject in the future.

In order to formulate suitable personalized treatment strategies, it is important to
improve the predictive accuracy of immunotherapy responses in melanoma patients. The
success of immune treatment by checkpoint blockade and adoptive T cell therapy demon-
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strates the vital role of CD8 + T cells in mediating anti-tumor responses [14]. Most patients
cannot continuously benefit from immunotherapy because of dysfunction or deficiency
of CD8 + T cells. It is essential to preserve the anti-tumor activity of CD8 + T cells for the
prolonged survival of SKCM patients. Thus, it is logical to deduce that the combinational
use of different immune-inhibitory pathway inhibitors may be more effective in melanoma
patients. Several studies have demonstrated the encouraging results of combinational
immunotherapy. Nivolumab-plus-ipilimumab immunotherapy significantly prolonged
the OS of melanoma patients compared with nivolumab or ipilimumab monotherapy [16].
Other combinations of inhibitors, such as anti-PD-1 plus LAG3 blockade, have reached a
16% objective response rate and 45% disease control rate in melanoma patients following
progression after prior PD-1 blockade [17]. A previous study has also indicated that anti-
PD-L1 and anti-TIGIT antibodies synergistically enhanced tumor-infiltrating lymphocyte
activity in melanoma [18]. Low-risk melanoma patients, predicted by our signature, ex-
hibited an elevated expression of inhibitory receptors and ligands as well as high TMB,
which should be more sensitive to mono or combined immunotherapy. As we expected, the
signature risk score has a good predictive accuracy of MAGE-A3 cancer immunotherapy
response in melanoma patients.

Open access to high-dimensional datasets and advanced bioinformatics algorithms
helps us to screen for more reliable and robust SKCM biomarkers more easily than in the
past. Many prognostic gene expression-based signatures have been built by different teams
researching SKCM recently [22,44–48]. Among the prognostic signatures, the majority
was built based on immunity-related genes [49,50]. The genes of prognostic signature
from Hu et al. were related to IFNγ. Liu et al. developed a prognostic immune-related
gene signature for 10 distinct genes in the TCGA_SKCM database. With the signature,
melanoma patients in the low-risk group showed high TMB and a good response to
MAGE-A3 immunotherapy. Similar studies constructed a prognostic signature with M2
macrophage or CD8 + T cell infiltration-related coexpressed genes, which also showed good
prognostic ability. Metastasis-related genes were also used to build a prognostic marker by
Wan et al. In order to test our gene signature, we compare it with the above existing gene
signatures and confirmed it showed better predictive value than others (Figure S9).

Our prognostic signature consisted of thirteen genes, which were CD80, ICOSLG,
IL2RA, KLRK1, TMIGD2, TNFRSF14, TNFRSF4, TNFSF15, TNFSF4, ADORA2A, CD274,
IDO1, and NECTIN2. Among them, CD80, ICOSLG, IL2RA, KLRK1, TNFRSF4, TNFSF4,
ADORA2A, CD274, and IDO1 were determined to be favorable biomarkers for OS prognosis,
whereas TMIGD2, TNFRSF14, TNFSF15, and NECTIN2 were determined to be unfavorable
biomarkers. The most favorable biomarkers have been reported to mainly regulate the
T cell biological process. CD274 encodes PD-L1, which is well known for its suppressive
role in blocking T-cell activation and has therefore already been used as a target in cancer
immunotherapy. Many studies have proven its huge value in treating cancer patients by
targeting PD-L1 [51]. CD80 is a membrane receptor that is activated by the binding of
CD28 or CTLA-4 and induces T-cell proliferation and cytokine production [52,53]. ICOSLG
acts as a costimulatory signal for T-cell proliferation and cytokine secretion [54]. It also
induces B-cell proliferation and differentiation into plasma cells [55]. IL2RA is involved
in the regulation of immune tolerance by controlling regulatory T cell activity and in-
ducing cell death of T cells [56]. KLRK1 can result in the activation of NK and T cells,
which have been chosen as a therapeutic target for the treatment of immune diseases and
cancers [57,58]. TNFRSF4 binds with TNFSF4 to co-stimulate T-cell proliferation then func-
tions in T-cell antigen-presenting cell interactions and mediates the adhesion of activated
T cells to endothelial cells [59]. IDO1 regulates T lymphocyte division, apoptosis, and
differentiation [60]. ADORA2A is a guanine nucleotide-binding protein-coupled receptor
that can increase intracellular cAMP levels. It plays an important role in many biological
functions including immune function [61,62]. The most unfavorable biomarkers have also
been reported to be linked with T-cell activity. TMIGD2 enhances T-cell proliferation and
cytokine production via an AKT-dependent signaling cascade [63]. TNFRSF14 functions
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in signal transduction pathways that activate T-cell immune response [59]. TNFSF15 is
not expressed in either B or T cells, so it is probably expressed in melanoma cells. It can
activate NF-κB and MAP kinases and facilitates the differentiation and polarization of
macrophages [64]. NECTIN2 can be either a costimulator or a coinhibitor of T-cell function,
depending on the competitive binding receptors [65]. Upon binding to CD226, it stimulates
T-cell proliferation and cytokine. Upon interaction with PVRIG, it inhibits T-cell prolif-
eration. The gene signature was only constructed using immunomodulators, so it may
be suitable for predicting cancer immunotherapy response, however, it is not perfect for
providing a prognostic signature for melanoma patients owing to that immunity is only
one of the key factors regulating cancer prognosis.

There are several limitations in our present study. Since our results were calculated
from public datasets, publication bias in these datasets may increase the inaccuracy of
our results. Besides, the present study was a retrospective analysis, which needs to be
validated in the future by large and prospective studies. At last, the complicated molecular
mechanisms of SIT1-medicated tumor immunity have not been addressed in this study.

5. Conclusions

Our research provides evidence that SIT1 may regulate SKCM tumor immune mi-
croenvironments. The SIT1-associated immunomodulator signature risk scores were inde-
pendent risk factors of OS and the efficacy of immunotherapy in SKCM. In addition, the
nomogram combining the risk score with other important variables (stage, gender, and
age), shows acceptable C-index value and well-matched calibration curves in discovery
and validation cohorts. It is foreseeable that the predictive accuracy will be improved along
with the development of high-dimensional databases and bioinformatic methods, thus
beneficial individualized treatment strategies will be accessible in the near future.

Supplementary Materials: The following supporting information can be downloaded from: https:
//www.mdpi.com/article/10.3390/jpm13010013/s1, Figure S1. Correlation between SIT1 expression
levels and immune cell subsets. The correlation heatmap indicates immune cell types significantly
associated with SIT1 expression levels in most cancer cohorts; Figure S2. Associations between
SIT1 mRNA and immune cell infiltration levels. Association between SIT1 mRNA and immune cell
infiltration levels in cancer cohorts except SKCM and UVM; Figure S3. Associations between SIT1
gene copy numbers and immune cell infiltration levels. Association between SIT1 copy numbers
and immune cell infiltration levels in cancer cohorts except SKCM and UVM. * p < 0.05; ** p < 0.01;
*** p < 0.001.; Figure S4. Kaplan–Meier curves describe the association between survival and six
tumor immune cells as well as the SIT1 gene via the TIMER web-based tool (https://cistrome.
shinyapps.io/timer/) (accessed on 15 April 2022). Kaplan–Meier curves describe the association
between survival and six tumor immune cells as well as the SIT1 gene for SKCM (A) and UVM
(B); Figure S5. The correlation between the expression level of SIT1 and immune marker genes in
SKCM. Markers include CD8A and CD8B of CD8 + T cell; CD19 and CD79A of B cell; CD86 and
CSF1R of monocytes; TBX21, STAT4, STAT1, IFNG, and TNF of Th1 cell. (A–D) Scatterplots of
correlations between SIT1 expression and gene markers of CD8 + T cell (A), B cell (B), monocytes (C),
and Th1 cell (D) in SKCM; Figure S6. Kaplan–Meier survival analysis of SIT1 in SKCM of GSE65904
dataset. Kaplan–Meier survival analysis of SIT1 for DFS in the GSE65904 dataset. DFS: disease-free
survival; Figure S7. Establishment and validation of the prognostic nomogram in SKCM with the
inclusion of the risk score. The calibration curve of 1-year (A) and 5-year survival (B) in the TCGA
datasets. The calibration curve of 1-year (C) and 5-year survival (D) in the GSE65904 dataset. The
45º dashed line represents a perfect uniformity between nomogram-predicted and real possibilities;
Figure S8. Different SIT1 protein expressions in SKCM tumor cells. Positive (A) and negative (B)
expression of SIT1 protein in SKCM tumor cells; Figure S9. Comparisons of the predictivity between
this study and other studies. (A) Predictivity of our risk score in melanoma patients’ 1-year, 3-year,
and 5-year survival from the TCGA_SKCM and GSE65904 datasets. (B) Predictivity of Yuan’s study
in melanoma patients’ 1-year, 3-year, and 5-year survival from the TCGA_SKCM and GSE65904
datasets. (C) Predictivity of Liu’s study in melanoma patients’ 1-year, 3-year, and 5-year survival
from the TCGA_SKCM and GSE65904 datasets. (D) Predictivity of Hu’s study in melanoma patients’
1-year, 3-year, and 5-year survival from the TCGA_SKCM and GSE65904 datasets. (E) Predictivity
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of Tian’s study in melanoma patients’ 1-year, 3-year, and 5-year survival from the TCGA_SKCM
and GSE65904 datasets. (F) Predictivity of Song’s study in melanoma patients’ 1-year, 3-year, and
5-year survival from the TCGA_SKCM and GSE65904 datasets. (G) Predictivity of Wan’s study
in melanoma patients’ 1-year, 3-year, and 5-year survival from the TCGA_SKCM and GSE65904
datasets. (H) Predictivity of Yan’s study in melanoma patients’ 1-year, 3-year, and 5-year survival
from the TCGA_SKCM and GSE65904 datasets; Figure S10. Relation between risk score and immune
cell infiltration. (A–F) Correlation between risk score and the infiltrating number of CD8 T cells in
melanoma patients from the SKCM_TCGA dataset by analysis with TIMER (A), QUANTISEQ (B),
MCPCOUNTER (C), XCELL (D), EPIC (E), and CIBESORT (F). ESTIMATE analysis of immune score
(G) and microenvironment score (H) shows a significant difference between high-risk and low-risk
melanoma patients. (I) Stromal score shows a borderline significant difference between high-risk and
low-risk melanoma patients; Table S1: correlation analysis between SIT1 and markers of immune cells
in SKCM of TIMER and GEPIA; Table S2: functions of the genes included in the prognostic signatures;
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