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Abstract: (1) Background: Many co-infections of Mycobacterium tuberculosis (MTB) and severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have emerged since the occurrence of the
SARS-CoV-2 pandemic. This study aims to design an effective preventive multi-epitope vaccine
against the co-infection of MTB and SARS-CoV-2. (2) Methods: The three selected proteins (spike
protein, diacylglycerol acyltransferase, and low molecular weight T-cell antigen TB8.4) were pre-
dicted using bioinformatics, and 16 epitopes with the highest ranks (10 helper T lymphocyte epitopes,
2 CD8+ T lymphocytes epitopes, and 4 B-cell epitopes) were selected and assembled into the candi-
date vaccine referred to as S7D5L4. The toxicity, sensitization, stability, solubility, antigenicity, and
immunogenicity of the S7D5L4 vaccine were evaluated using bioinformatics tools. Subsequently,
toll-like receptor 4 docking simulation and discontinuous B-cell epitope prediction were performed.
Immune simulation and codon optimization were carried out using immunoinformatics and molecu-
lar biology tools. (3) Results: The S7D5L4 vaccine showed good physical properties, such as solubility,
stability, non-sensitization, and non-toxicity. This vaccine had excellent antigenicity and immuno-
genicity and could successfully simulate immune responses in silico. Furthermore, the normal mode
analysis of the S7D5L4 vaccine and toll-like receptor 4 docking simulation demonstrated that the
vaccine had docking potential and a stable reaction. (4) Conclusions: The S7D5L4 vaccine designed
to fight against the co-infection of MTB and SARS-CoV-2 may be safe and effective. The protective
efficacy of this promising vaccine should be further verified using in vitro and in vivo experiments.

Keywords: Mycobacterium tuberculosis (MTB); SARS-CoV-2; multi-epitope vaccine (MEV);
bioinformatics; immunoinformatics

1. Introduction

Tuberculosis (TB) is an infectious disease mainly transmitted by the respiratory tract,
and its pathogen is Mycobacterium tuberculosis (MTB) [1,2]. According to the Global Tuber-
culosis Report 2022 released by the World Health Organization, an estimated 10.6 million
new cases of TB and 1.4 million TB-related deaths occurred among human immunodefi-
ciency virus-negative people in 2021 [3]. In addition, the emergence of the coronavirus
disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2), may have negatively impacted TB prevention, diagnosis, and treatment [3].
Furthermore, a growing number of co-infections of MTB and SARS-CoV-2 have been re-
ported in previous studies [4,5]. Mortality from co-infection with MTB and SARS-CoV-2
was reported to be markedly higher in older adults than younger patients; however, the
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reasons for this remain unclear [6]. Therefore, a novel vaccine against co-infection with
MTB and SARS-CoV-2 is necessary [7].

Previous studies have shown that the antigen diacylglycerol acyltransferase (Ag85a,
Rv3804c) is a candidate antigen for developing a vaccine against MTB infection [8]. A
multicenter, double-blind, randomized, placebo-controlled phase II clinical trial has evalu-
ated the safety and immunogenicity of the Ag85a antigen (NCT03878004), and the results
showed that Ag85a had a higher median fusion response, and 94% of the volunteers re-
sponded to Ag85a [9]. Furthermore, the low molecular weight T-cell antigen, TB8.4 (Mtb8.4,
Rv1174c) is another possible vaccine candidate. A previous study found that a multi-stage
MTB subunit vaccine, LT70, consisting of the Mtb8.4 antigen induced a long-term protective
effect against MTB [10]. In addition, the Mtb8.4 antigen showed good immunogenicity,
induced robust cellular and humoral responses, and resulted in a protective effect against
MTB infection [11–13].

The SARS-CoV-2 gene encodes both structural and non-structural proteins [14]. Four
structural proteins are critical in the assembly and invasion of the SARS-CoV-2 spike
protein, which is one of the structural proteins and constitutes spikes on the surface of
the virus, which attach to host cells by binding to their receptors [14]. Meanwhile, spike
protein can also be attached to target cells by binding to human angiotensin-converting
enzyme 2 [15], suggesting that vaccines based on spike proteins can induce antibodies to
block the binding and fusion of SARS-CoV-2 or neutralize viral infection [16–18]. Therefore,
the Ag85a and Mtb8.4 antigens of MTB and the spike protein of SARS-CoV-2 were selected
to construct a novel multi-epitope vaccine (MEV) in this study.

Traditional vaccine development methods are time-consuming and labor-intensive [19].
However, the emergence of bioinformatics and bioinformatics technology has changed
the conventional vaccine construction strategy, making vaccine research and development
more efficient and economical [20,21]. In recent years, an increasing number of MEVs have
been successfully developed using bioinformatics and bioinformatics tools [22–25].

Therefore, this study employed bioinformatics and bioinformatics tools to predict the
potential immunodominant epitopes of the MTB antigen and SARS-CoV-2 spike protein.
Further, an MEV was designed, and its structural, immunological, and chemical charac-
teristics were analyzed. As a result, this study provides a new vaccine candidate for the
prevention of MTB and SARS-CoV-2 co-infection.

2. Materials and Methods
2.1. Sequence and Structure Retrieval

The sequences of the spike glycoprotein of SARS-CoV-2 (ID: P0DTC2), Ag85a of MTB
(ID: P9WQP3), and Mtb8.4 of MTB (ID: O50430) in FASTA format were obtained from
the UniProt database (https://www.uniprot.org/, accessed on 15 October 2022). These
proteins were selected based on their excellent antigenic potential and essential role in
immune activation against MTB infection [1,2].

2.2. Prediction of Linear B-Cell Epitopes

B cells and humoral immunity play an important role in host defense against MTB
by affecting the development of immune responses [26]. The ABCpred server (https:
//webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html, accessed on 15 October
2022) was used to predict linear B-cell epitopes from the selected antigens. This server
effectively predicts linear B-cell epitope regions using artificial neural networks and has
been widely applied in vaccine research [27]. The parameters were set as follows: epitope
length = 16, and screening threshold = 0.51. The epitopes with scores greater than the
threshold were selected and eventually used as dominant B-cell epitopes to construct
candidate vaccines.

https://www.uniprot.org/
https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html
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2.3. Prediction of Helper T-Lymphocyte (HTL) Epitopes

The Immune Epitope Database (IEDB) includes samples from non-human primates,
humans, and other animal species. The major histocompatibility complex (MHC)-II server
(http://tools.iedb.org/mhcii/, accessed on 16 October 2022) in the IEDB database was
used in this study to predict HTL epitopes, as in our previous studies [1,24,25]. The
parameters were set as follows: prediction method = IEDB recommendation 2.22, MHC
allele = human leukocyte antigen (HLA) reference set (HLA-DP, HLA-DR, HLA-DQ),
MHC source species = human, and epitope length = 15. Next, potential HTL epitopes
were selected using a percentile rank score method. The lower the percentile rank score,
the higher the epitope binding to MHC-II. Epitopes with percentile levels less than 0.5
were selected for further analysis. Then, the IFN-γ inducibility of selected epitopes was
predicted using the IFN-γ Epitope Server (http://crdd.osdd.net/raghava/ifnepitope/
index.php, accessed on 16 October 2022) [28]. According to the prediction results, the
epitopes with positive prediction values were selected. Finally, VaxiJen v2.0 (http://
www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html/, accessed on 16 October 2022)
was employed to predict the antigenicity of selected epitopes with a threshold set at
0.5 [29]. Epitopes that passed the above screening were identified as immunodominant
HTL epitopes for vaccine construction.

2.4. Prediction of Cytotoxic T-Lymphocyte (CTL) Epitopes

The detection of MHC-I antigenic peptides exposed to target cells and recognized by
cytotoxic CTLs is essential for adaptive immune responses. Therefore, the IEDB MHC-I
server was employed to predict CTL epitopes for the three associated antigens. This server
(http://tools.iedb.org/mhci/, accessed on 18 October 2022) predicts the epitopes bound
to MHC-I molecules and uses the artificial neural network 4.0 to represent 36 of HLA-A
alleles, 34 of HLA-B alleles, and 10 of HLA-C alleles [30]. According to the percentile
rating, the CTL epitopes with a threshold higher than 0.5 were selected for subsequent
analysis. Then, the VaxiJen v2.0 server was employed to analyze the antigenicity of the
above epitopes, and the threshold was set as 0.5, according to a previous study [29]. Finally,
the Class I immunogenicity server (http://tools.iedb.org/immunogenicity/, accessed on 18
October 2022) was used to analyze the immunogenicity of these epitopes, and CTL epitopes
with immune scores greater than zero were selected. The selected CTL epitopes were
identified as immunodominant CTL epitopes for vaccine construction. Finally, sensitization
and toxicity of immunodominant CTL epitopes were predicted using the ToxinPred (http:
//crdd.osdd.net/raghava/toxinpred/, accessed on 18 October 2022), AllerTOP v.2.0 (http:
//www.ddg-pharmfac.net/AllerTOP/, accessed on 18 October 2022), and Allergen FP v.1.0
(http://ddg-pharmfac.net/AllergenFP/, accessed on 18 October 2022) servers.

2.5. Selection of Adjuvants and Guaranty Linkers for Vaccine Construction

Linkers were used to connect the immunodominant CTL, HTL, and B-cell epitopes
to construct an MEV against co-infection of MTB and SARS-CoV-2. The KK, AAY, and
GPGPG linkers were the most common linkers used in multi-epitope-based vaccine develop-
ment [1,31]. An adjuvant and pan-HLA DR-binding epitope (PADRE) (amino acid sequence,
AGLFQRHGETKATVGEPV) was added to the amino-terminal of the MEV. Adjuvants can
enhance the efficacy of vaccines by improving the differentiation of memory cells, effec-
tively inducing the initial immune response [32]. A 50S ribosomal protein L7/L12 (locus
RL7 MYCTU) (ID: P9WHE3) was selected as an adjuvant due to its ability to improve the
prediction of vaccine immunogenicity. The sequence was obtained from the UniProt database
and introduced at the amino-terminal of the MEV via connectors [33].

2.6. Toxicity Detection, Solubility Prediction, and Physicochemical Properties of Predicted
Vaccine Structures

First, the ToxinPred server, consisting of 1805 hazardous peptides [34], was used
to predict the virulence of the vaccine candidates. This server classifies toxic and non-

http://tools.iedb.org/mhcii/
http://crdd.osdd.net/raghava/ifnepitope/index.php
http://crdd.osdd.net/raghava/ifnepitope/index.php
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toxic peptides according to a support vector machine model. Then, the Protein-Sol server
(https://protein-sol.manchester.ac.uk/, accessed on 20 October 2022) was employed to
evaluate the solubility of the vaccine candidates. A prediction score > 0.45 indicated that
the solubility of the candidate vaccine was higher than the average experimental solubility
in the database, suggesting that the candidate MEV is soluble. Next, the physicochemical
properties of the MEV were investigated using the Expasy Protparam server (https://
web.expasy.org/protparam/, accessed on 20 October 2022). This server can indicate the
theoretical isoelectric point (PI), amino acid composition, molecular weight, aliphatic index,
instability, grand average of hydrophilicity (GRAVY), and the full average in vitro and
in vivo half-life [35].

2.7. Prediction of Immunogenicity, Antigenicity, and Sensitization of Vaccines

The IEDB Immunogenicity server was employed to explore the immunogenicity
of the MEV. The antigenicity of the MEV was predicted using the ANTIGENpro (http:
//scratch.proteomics.ics.uci.edu/, accessed on 25 October 2022) and VaxiJen v2.0 servers.
The parameters were set to default values in both servers. Based on cross-validation exper-
iments, the ANTIGENpro server achieves 76% accuracy with the combined dataset [36].
Subsequently, the AllerTOP v.2.0 and Allergen FP v.1.0 servers were used to evaluate the
sensitization of the MEV. AllerTOP v.2.0 applies machine learning techniques to classify
allergens by exploring the physicochemical properties of proteins. Through five rounds of
cross-validation, AllerTOP v.2.0 demonstrated 85.3% accuracy [37]. Finally, AllerFP v.1.0,
which has been shown to correctly identify 88% of allergens [38], was used to screen known
allergens and non-allergens.

2.8. Secondary Structure and 3D Structure Prediction, Optimization, and Verification

The secondary structures of the MEVs were predicted using two servers, the Prabi
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html, ac-
cessed on 25 October 2022) and PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/, accessed
on 25 October 2022) servers. PSIPRED is a secondary structure generation tool, which
can predict folds, transmembrane topology, domain recognition, transmembrane helices,
etc. [39]. The Prabi server uses Garnier–Osguthorpe–Robson 4 (GOR4) method to analyze
the secondary structure of peptides, and the accuracy of this method has been shown to
be about 64.4% [40]. Next, the I-TASSER server (https://zhanggroup.org//I-TASSER/,
accessed on 25 October 2022) was used to predict the 3D spatial structure of the vaccine
candidates. The 3D spatial structure of the target proteins was simulated using a template
structure and comparative similarity index provided by the protein database [41].

Meanwhile, the estimation accuracy of the prediction is based on the modeling con-
fidence score (C-score). Generally, a higher C-score indicates higher accuracy [42]. The
GalaxyRefine web server (https://galaxy.seoklab.org, accessed on 25 October 2022) was
then used to improve the accuracy of the candidate vaccines [43]. The ProSA web server
(https://prosa.services.came.sbg.ac.at/prosa.php, accessed on 25 October 2022) was em-
ployed to evaluate the feasibility of the MEV. The frames were entered accurately using
the ProSA web server to estimate the exact input structure of the total quality score as a Z-
score. When the Z-score exceeded the nature of the native protein, the structure contained
errors [44]. Finally, the SWISS-MODEL server (https://swissmodel.expasy.org/assess,
accessed on 25 October 2022) was used to draw a Ramachandran diagram for candidate
vaccines [45]. The structure evaluation page shows the most relevant scores provided by
MolProbity and helps to quickly identify low-quality residues in the structure [44]. The
results before and after optimization were compared.

2.9. Prediction of Discontinuous B-Cell Epitopes

B-cell epitopes include linear and discontinuous epitopes, but most are discontinuous.
Therefore, predicting discontinuous B-cell epitopes is crucial to further refine the spatial
structure of the vaccine candidates. The ElliPro server (http://tools.iedb.org/ellipro/,

https://protein-sol.manchester.ac.uk/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://scratch.proteomics.ics.uci.edu/
http://scratch.proteomics.ics.uci.edu/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html
http://bioinf.cs.ucl.ac.uk/psipred/
https://zhanggroup.org//I-TASSER/
https://galaxy.seoklab.org
https://prosa.services.came.sbg.ac.at/prosa.php
https://swissmodel.expasy.org/assess
http://tools.iedb.org/ellipro/
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accessed on 26 October 2022), a commonly used nonlinear B-cell epitope prediction server,
was selected for prediction, with a screening threshold of 0.693. The epitopes with scores
greater than the threshold were established and eventually used as discontinuous B-cell
epitopes to construct the MEV [46].

2.10. Candidate Vaccine Docked to Toll-like Receptor (TLR) 4 Molecules

TLR is an essential component of innate immunity that recognizes pathogens and
initiates the signaling of proinflammatory cytokines. During MTB and SARS-CoV-2 co-
infection, host drug resistance depends on TLR4 [47]. Therefore, TLR4 was selected as an
adjuvant to the vaccine candidate. The ClusPro 2.0 online server (https://cluspro.bu.edu/
home.php, accessed on 26 October 2022) was chosen to perform ligand–receptor docking
analysis on candidate vaccines [48] and select the model with the lowest complex binding
energy. The palm database (PDB) file of TLR4 used for docking analysis was obtained from
the National Center for Biotechnology Information Molecular Modeling Database (PDB ID:
4G8A) (https://www.ncbi.nlm.nih.gov/structure/, accessed on 26 October 2022).

2.11. Immune Simulation

The immune simulation was performed using the C-ImmSim server (https://150.14
6.2.1/C-IMMSIM/index.php, accessed on 1 November 2022), an innovative method for
analyzing the immune system [49]. This program provides an immune system simulator
with machine-learning techniques for predicting MHC-peptide binding interactions [49].
In this study, all parameters were set to default. In total, 3 injections of 1000 antigens were
performed at an interval of 4 weeks, and the level of immune response induced by antigens
was measured each time.

2.12. Normal Mode Analysis (NMA) of the Complex

NMA of the complex was simulated using the iMODS web server (https://imods.iqfr.
csic.es/, accessed on 1 November 2022). The NMA of the complex was verified using the
covariance matrix, backbone deformation diagram, eigenvalues, elastic network model,
and B-factor values [50].

2.13. Codon Optimization

Codon optimization can increase the expression of recombinant proteins, mainly when
heterologous expression methods are applied [51]. To express the vaccine candidate, the
K12 Escherichia coli (E. coli) strain was selected as the host organism because it is classified
as non-pathogenic to humans [52]. Due to the discrepancy in codon usage between humans
and E. coli, the GenSmart Codon Optimization (Version Beta 1.0) server (https://www.
genscript.com/tools/gensmart-codon-optimization/, accessed on 1 November 2022) was
used to improve the codon expression rate by adapting to prokaryotes.

3. Results
3.1. Selection of Immunodominant Epitopes

HTL epitopes with percentile rank scores < 0.5 were identified using the MHC-II web
server. The HTL epitope with the highest ranking according to the antigenicity values > 0.7
and the highest interferon (IFN) prediction score was then selected (Table 1). Then, CTL
epitopes with percentile rank scores < 0.5 were identified using the MHC-I web server.
The highest-ranked CTL epitopes were then selected according to the immunogenicity
score of each antigen. Finally, B-cell epitopes were identified using the ABCpred server to
predict the truncation binding score of the epitopes. B-cell epitopes with the scores > 0.85
were selected.

Sensitization and toxicity tests were performed on B-cell, HTL, and CTL epitopes.
Finally, the epitopes that passed all tests were selected as candidate immunodominant
epitopes, including 10 HTL, 2 CTL, and 4 B-cell epitopes (Table 1).

https://cluspro.bu.edu/home.php
https://cluspro.bu.edu/home.php
https://www.ncbi.nlm.nih.gov/structure/
https://150.146.2.1/C-IMMSIM/index.php
https://150.146.2.1/C-IMMSIM/index.php
https://imods.iqfr.csic.es/
https://imods.iqfr.csic.es/
https://www.genscript.com/tools/gensmart-codon-optimization/
https://www.genscript.com/tools/gensmart-codon-optimization/
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Table 1. Detailed information of the HTL, CTL, and B-cell epitopes used to construct the S7D5L4 vaccine.

Protein Peptide
Sequence Length Alleles Percentile

Rank a
Antigenicity

Score b
IFN-γ
Score c

Immunogenicity
Score d

ABC Pred
Score e

AllerTOP
V 1.0

AllergenFP
v.2.0 Toxin Pred

HTL epitopes

S protein

GYQPYRVVVLSFELL 15 HLA-
DPA1*01:03/DPB1*02:01 0.36 1.074 0.6533982 Non f Non f Non f

QPYRVVVLSFELLHA 15 HLA-
DPA1*01:03/DPB1*02:01 0.36 0.9109 0.60855322 Non Non Non

PYRVVVLSFELLHAP 15 HLA-
DPA1*03:01/DPB1*04:02 0.25 0.8161 0.56872818 Non Non Non

RVVVLSFELLHAPAT 15 HLA-DRB1*01:01 0.24 0.7485 0.5092653 Non Non Non

Ag85a
PVEYLQVPSPSMGRD 15 HLA-DRB1*04:01 0.46 0.7094 0.99952242 Non Non Non
SAVVGLSMAASSALT 15 HLA-DRB1*09:01 0.34 0.6602 0.86704792 Non Non Non
LPVEYLQVPSPSMGR 15 HLA-DRB1*04:01 0.38 0.7922 0.82782141 Non Non Non

Mtb8.4
AAAQFNASPVAQSYL 15 HLA-DRB1*09:01 0.34 0.6839 0.45466067 Non Non Non
AAQFNASPVAQSYLR 15 HLA-DRB1*09:01 0.34 0.6176 0.56966616 Non Non Non
GAAAQFNASPVAQSY 15 HLA-DRB1*09:01 0.35 0.5933 0.39892204 Non Non Non

CTL epitopes

S protein
YIKWPWYIW 9 HLA-A*23:01 0.1 0.9673 0.42524 Non Non Non

Ag85a
DINTPAFEWY 10 HLA-A*26:01 0.24 1.8593 0.38838 Non Non Non

B-cell epitopes

S protein
AGTITSGWTFGAGAAL 16 0.97 Non Non Non
GVSVITPGTNTSNQVA 16 0.95 Non Non Non

Ag85a
YSDWYQPACGKAGCQT 16 0.93 Non Non Non

Mtb8.4
DAVINTTCNYGQVVAA 16 0.86 Non Non Non

a The percentile ranking of the selected epitopes: epitopes with ranking score <0.5 were selected. b The antigenicity score: epitopes with antigenicity score >0.5 were selected. c IFN-γ
score: epitopes with a positive score and the highest score were selected. d The immunogenicity score: epitopes were selected in order of score. e The linear B-cell epitope prediction
score: epitopes were selected in order of score. f Non: no sensitization or toxicity.
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3.2. Primary Structure Construction of the S7D5L4 Vaccine

All selected epitopes were ligated to construct an MEV (Figure 1). The 50S ribosome
(L7/L12) was selected as an adjuvant and ligated with PADRE using an EAAAK linker.
Then, the PADRE and CTL epitopes were bound by an AAY linker. At the same time,
GPGPG and KK were used to link the HTL epitopes and B-cell epitopes, respectively.
Finally, the resultant MEV was named, S7D5L4.
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Figure 1. Schematic diagram of the S7D5L4 vaccine. The 454-amino acid peptide sequence contains
an adjuvant (light orange) at the amino terminus. It is linked to the pan HLA DR-binding epitope
(PADRE) (orange) by the EAAAK linker (indigo blue). The AAY linker is linked to PADRE in a
multi-epitope sequence. CTL epitopes (yellow) are ligated using an AAY linker. HTL epitopes (blue)
are linked using GPGPG linkers, whereas B-cell epitopes (red) are linked via KK linkers. Finally,
a 6x-His tag was inserted into the carboxyl terminus for purification and identification, and the
resultant candidate was named, S7D5L4.

3.3. Toxicity Detection, Solubility Prediction, and Physicochemical Properties of the S7D5L4 Vaccine

The physiochemical properties of the S7D5L4 vaccine are summarized in Table 2.
Our results show that the S7D5L4 vaccine was non-toxic. In addition, the prediction
results of the Protein-Sol server show that the solubility of the S7D5L4 vaccine was 0.462,
indicating acceptable solubility. Moreover, the molecular weight of the S7D5L4 vaccine was
46,825.3 Da, with a total of 454 amino acids. Its theoretical PI value was 6.38, suggesting
that the vaccine would be acidic. Furthermore, the S7D5L4 vaccine exhibited a half-life
of more than 30 h in human reticulocytes (in vitro), more than 20 h in yeast (in vivo), and
more than 10 h in E. coli (in vivo). In addition, the instability index of the S7D5L4 vaccine
was 26.51, indicating that the vaccine was considered stable. Furthermore, its aliphatic
index was 80.24 (Table 2), and its GRAVY score was −0.033, demonstrating that the vaccine
was hydrophilic (Table 2).

3.4. Immunogenicity, Antigenicity, and Sensitization of the S7D5L4 Vaccine

The results show that the predicted antigenicity of the S7D5L4 vaccine was 0.7811
according to VaxiJen v2.0 and 0.4299 according to ANTIENpro. In addition, the immuno-
genicity of S7D5L4 was 1.045499, according to IEDB Immunogenicity (Table 2). Therefore,
the S7D5L4 vaccine had acceptable immunogenicity and antigenicity. At the same time, an
ideal vaccine must be non-allergenic. Therefore, the AllerTOP v.1.0 and AllergenFP v.2.0
servers were used to predict the allergenicity of the S7D5L4 vaccine, and the results show
that the S7D5L4 vaccine was non-allergenic (Table 2).
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Table 2. Prediction of S7D5L4 parameters.

Parameters Results

Biological characteristics

Antigenicity 0.7811 a

0.4299 b

Immunogenicity 1.45499

Half-life (h) c

Mammalian reticulocytes
(in vitro) >30

Yeast (in vivo) >20
E. coli (in vivo) >10

Physicochemical properties
Molecular weight (Da) 46,825.3
Number of amino acids 454

Isoelectric point 6.38
Instability index 26.51

Fat index 80.24

Basic features
Toxicity Non-toxic

Sensitization Non-allergenic
Solubility 0.462

GRAVY score −0.033
a The score of antigenicity predicted using the VaxiJen v2.0 server. b The score of antigenicity predicted using the
ANTIENpro server. c The half-life of a candidate sequence in hours.

3.5. Secondary Structure Prediction and 3D Structure Modeling of the S7D5L4 Vaccine

The secondary structure of the S7D5L4 vaccine was successfully simulated using the
PSIPRED and Prabi servers (Figure 2A). The S7D5L4 vaccine included 31.72% α-helixes,
20.70% β-strands, and 47.58% random coils. Subsequently, the 3D structural model of
the S7D5L4 vaccine was designed using the I-TASSER server, and five 3D models were
successfully predicted, with Z-scores ranging from 1.08 to 4.52. The C-score of each
model was −1.9, −2.35, −2.99, −3.08, and −3.21, with higher C-scores indicating higher
confidence [41]. Therefore, the best model with a C-score of −1.9 was selected to simulate
the 3D structure of S7D5L4 (Figure 2B). The template modeling score (TM-score) of the
chosen model was 0.49 ± 0.15, and the root-mean-square deviation (RMSD) was 11.6 ± 4.5.
The TM-score was developed as a scale to compare similarities between structures [53] and
is generally recommended for solving RMSD problems by circumventing the sensitivity of
RMSD to local inaccuracies.

3.6. Optimization of the Tertiary Structure of the S7D5L4 Vaccine

The GalaxyRefine web server was used to refine the 3D model of the S7D5L4 vaccine.
The server can achieve higher-quality prediction results by improving the consistency
of the structure. Through energy minimization and loop refinement, five optimized 3D
models were obtained again. Model 3 was selected for further study (Figure 2C), as it was
considered optimal. The GDT-HA (sequence-dependent superposition scores with the high
accuracy version), RMSD, MolProbity, Clash score, low rotamers, and Rama-favored values
of model 3 were 0.9094, 0.545, 2.629, 26.3, 0.6, and 81.0, respectively. Next, the ERRAT and
ProSA web servers were used to verify the errors and quality of the model. The results
show that the optimized Z-score was −3.36 (Figure 3A). After optimization, the overall
quality factor of the model was improved to 64.3392%. The energy diagram is shown
in Figure 3B. The Ramachandran plot score shows that the rotamer region was 14.85%,
the outlier region was 13.84%, and the favored region was 65.62% before optimizing
the vaccine candidates (Figure 3C). After optimization, the rotamer region changed to
0.61%, the outlier region was 4.24%, and the favored region was 81.03% (Figure 3D).
Therefore, the favored region of the S7D5L4 vaccine was significantly improved from
65.62 to 81.03%.
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Figure 2. Secondary and tertiary structure prediction of the S7D5L4 vaccine. (A) I-TASSER predicted
3D models of vaccine candidates. (B) Optimized 3D model using I-TASSER. (C) The selected vaccine
contained 31.72% α-helixes, 20.70% β-strands, and 47.58% random coils. The amino acid sequence of
the S7D5L4 vaccine was indicated in purple to red from the N-terminal to the C-terminal.
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Figure 3. Evaluation and validation of tertiary structure models of the S7D5L4 vaccine. (A) The
ProSA web server provided a Z-score of −3.36. (B) Tertiary structure energy map of S7D5L4 validated
by the ERRAT web server. (C) The Ramachandran plot shows the following composition: favored
region, 65.62%; outlier region, 13.84%; and rotamer region, 14.85%. The favored, outlier, and rotamer
regions were shown in dark green, green, and light green, respectively. Amino acid residues before
optimization were indicated by red dots. (D) The optimized Ramachandran plot shows the following
composition: favored region, 81.03%; outlier region, 4.24%; and rotamer region, 0.61%. The favored,
outlier, and rotamer regions were shown in dark green, green, and light green, respectively. Amino
acid residues after optimization were indicated by blue dots.
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3.7. Discontinuous B-Cell Epitopes

The S7D5L4 vaccine was analyzed using the ElliPro server for discontinuous B-cell
epitopes. The results show that three discontinuous B-cell epitopes were successfully
predicted. For predicted discontinuous B-cell epitopes, a prediction model with a score
>0.69 is usually selected. Therefore, we finally selected two discontinuous B-cell epitopes
with scores of 0.693 (Figure 4A) and 0.729 (Figure 4B). The amino acid fragments of the
selected epitopes are shown in Table 3.
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Figure 4. Discontinuous B-cell epitope prediction and molecular docking simulation of the S7D5L4
vaccine. Yellow figures in (A,B) represent two discontinuous B-cell epitopes. The rest of the amino
acid sequences were shown in gray. (C) The model with the lowest complex binding energy was
selected for demonstration and subsequent analysis, and the docking results of S7D5L4 and TLR4
were simulated using ClusPro 2.0.

Table 3. The discontinuous B cell epitopes residues of the S7D5L4 predicted by the ElliPro.

No Residues Number of Residues Score

1

A:G331, A:P332, A:G333, A:A341, A:A345, A:Q346, A:S347, A:A349, A:A350,
A:Y351, A:Y352, A:I353, A:K354, A:W355, A:P356, A:W357, A:Y358, A:I359,
A:W360, A:A361, A:A362, A:Y363, A:I365, A:N366, A:T367, A:P368, A:A369,
A:F370, A:E371, A:Y373, A:K374, A:K375, A:G376, A:T377, A:I378, A:T379,
A:S380, A:G381, A:W382, A:T383, A:F384, A:G385, A:A386, A:G387, A:A388,
A:A389, A:L390, A:K391, A:G393, A:V394, A:S395, A:V396, A:I397, A:T398,
A:P399, A:G400, A:T401, A:N402, A:T403, A:S404, A:N405, A:Q406, A:V407,
A:A408, A:K409, A:K410, A:Y411, A:S412, A:D413, A:Y415, A:Q416, A:P417,
A:A418, A:C419, A:G420, A:K421, A:A422, A:G423, A:C424, A:Q425, A:T426,
A:K427, A:K428, A:D429, A:A430, A:V431, A:I432, A:N433, A:T434, A:T435,
A:C436, A:N437, A:Y438, A:G439, A:Q440, A:V441, A:V442, A:A443, A:A444,
A:H445, A:H446, A:H447, A:H448, A:H449, A:H450

105 0.792 #

2

A:Q135, A:H136, A:H137, A:G138, A:E139, A:G140, A:A143, A:T144, A:V145,
A:G146, A:E147, A:P148, A:V149, A:E150, A:K151, A:Y158, A:V160, A:V161,
A:V162, A:L163, A:G169, A:P170, A:G171, A:P172, A:G173, A:Q174, A:P175,
A:Y176, A:R177, A:V178, A:V179, A:V180, A:L181, A:S182, A:F183, A:E184,
A:L185, A:L186, A:H187, A:A188, A:G189, A:P190, A:G191, A:P192, A:G193,
A:P194, A:Y195, A:R196, A:V197, A:V198, A:V199, A:L200, A:S201, A:F202,
A:E203, A:L204, A:L205

84 0.693 #

# Only epitopes with a score greater than 0.69 could be accepted, so No 1 and No 2 were selected.
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3.8. The S7D5L4 Vaccine Docked to TLR4 Molecule

We used the ClusPro 2.0 server to doc the S7D5L4 vaccine with TLR4 and generated
30 predicted complexes. According to the prediction results, the top 10 models with the
lowest complex binding energies were extracted (Table 4). Finally, the model with the
weakest complex binding energy (Cluster: 0) (Figure 4C) was selected for subsequent
analysis and optimization.

Table 4. Prediction results of docking of S7D5L4 with TLR4 molecules a.

Cluster Members Representative Weighted Score

0 27
Center −921.5 b

Lowest Energy −1208.1 b

1 27
Center −1004

Lowest Energy −1072.3

3 20
Center −962.3

Lowest Energy −1058.4

4 16
Center −1057.3

Lowest Energy −1057.3

11 13
Center −883.5

Lowest Energy −1031.6

13 12
Center −932.2

Lowest Energy −1114.5

14 12
Center −1088.4

Lowest Energy −1143.5

15 12
Center −995.9

Lowest Energy −1040.1

22 10
Center −1014.6

Lowest Energy −1014.6

29 9
Center −1089

Lowest Energy −1089
a Thirty models were successfully predicted, and the top 10 models are shown according to the lowest complex
binding energy. b The model ranked lowest in terms of complex binding energy was therefore selected for
subsequent analysis (bold font).

3.9. Immune Simulation of the S7D5L4 Vaccine

The C-ImmSim server was used to simulate immune responses. The S7D5L4 vaccine
successfully stimulated the innate immune system and induced immune responses in the
simulation. The results show that the S7D5L4 vaccine could induce B cells to produce
high levels of IgM and IgG antibodies (Figure 5A), suggesting the establishment of im-
mune memory. Similarly, high responses with corresponding memory development were
observed in T-helper and cytotoxic T-cell populations (Figure 5B,D). We found that the
population of active cytotoxic T lymphocytes gradually increased and began to decline
after reaching a peak on day 60 after stimulation. However, resting cytotoxic T lympho-
cytes showed the opposite trend (Figure 5D). We also observed that the S7D5L4 vaccine
promoted substantial proliferation of active B lymphocytes (Figure 5C). Moreover, the
S7D5L4 vaccine induced high levels of IFN-γ and IL-2 with repeated exposure injections at
four-week intervals (Figure 5E).

3.10. NMA of the Complex

The iMOD server was used to perform NMA to evaluate the physical mobility and
stability of the docking complex between the S7D5L4 vaccine and TLR4 receptor [54]. The
hinge position was visualized using high strain (Figure 6A). The ratio between the RMSD
and B factor values was calculated using NMA (Figure 6B). In addition, the eigenvalue of the
complex was 3.7743716 × 10−6, and the energy dissipation during structural deformation
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was closely related to the eigenvalue (Figure 6C). Furthermore, the correlation between
residue pairs was detected in the covariance matrix (Figure 6D). Finally, the elastic network
model assumed connections between atoms and springs, confirming the stability of the
S7D5L4 model (Figure 6E).
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Figure 5. The immune responses induced by the S7D5L4 vaccine in the C-ImmSim server.
(A) The primary B-cell antibodies produced after antigen stimulation, IgM + IgG (yellow), over
time. (B) Changes in the secretion levels of HTLs. (C) Secretion by active B cells (purple) after antigen
stimulation. (D) Changes in the secretion levels of CTLs. (E) Change in cytokine secretion levels,
mainly IFN-γ (purple) and IL-2 (yellow).

3.11. Codon Optimization

The GenSmart Codon Optimization (Version Beta 1.0) server was used to optimize
the codon of S7D5L4 in E. coli. The average guanine and cytosine content of the optimized
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codon was 59.84%, indicating that the S7D5L4 vaccine might be expressed in an E. coli host,
as the ideal guanine and cytosine content ranged from 30 to 70%.
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4. Discussion

The spread of SARS-CoV-2 through droplets has seriously threatened world health
security [55]. Moreover, the co-infection of SARS-CoV-2 with MTB is a proven risk factor
for increased mortality and severity, and the specific mechanism remains unclear [56]. Im-
munoinformatic predictions expand the breadth of the vaccine design environment, which
may provide a solution to prevent MTB co-infection with SARS-CoV-2. The current revolu-
tion in sequencing technology and the establishment of genomes for various pathogens
lead to the continuous development of methods for designing vaccines. Furthermore,
immunoinformatics for vaccine development will save time and money on research [57].

Meanwhile, the development of cloud servers and computing tools to process pro-
teomics and genomics has further changed the research status of computerized vaccine
prediction to include fungi, bacteria, viruses, and even cancer [58]. Therefore, the use
of immunoinformatics for epitope vaccine prediction is preferrable. In this study, we
obtained the amino acid sequences of three candidate antigens from the UniProt server
and subsequently carried out model building, optimization, and evaluation. During the
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vaccine design phase, we added necessary TLR adjuvants, improving the stability, immune
response, and longevity of the S7D5L4 vaccine [59]. The addition of TLR adjuvants also
enables S7D5L4 to recognize cognate TLR ligands, even those that come from different
immune cells, and induce immune responses by stimulating naive CD4+ T cells [60]. Fur-
thermore, we used GPGPG, AAY, and KK linkers to successfully connect epitopes. Linkers
are indispensable structures in vaccine construction and can aid in vaccine expression, fold-
ing, and stability [61]. For example, the AAY linker influences the stability of participating
structures by providing proteasome cleavage sites [62]. In addition, KK linkers can help
maintain the independent immunogenic activity of epitopes [63]. Finally, we obtained the
complete sequence and structure of the S7D5L4 vaccine.

The molecular weight of S7D5L4 was 46,555.01 Da, and the predicted solubility value
was 0.462, indicating that the S7D5L4 vaccine had acceptable quality and solubility [64].
In addition, the instability index of the S7D5L4 vaccine was 26.51, which is far less than
the threshold value of 40. Previous studies have shown that proteins with an instability
index greater than 40 must be unstable [65]. Additionally, the aliphatic index of the
S7D5L4 vaccine was 80.24, indicating that the side chains were composed of aliphatic
groups, and the S7D5L4 vaccine had high thermal stability potential. For proteins with
molecular weights less than 100,000 Da, the aliphatic index is an important index to
evaluate the thermal stability potential of the protein [66]. Interestingly, we found that the
S7D5L4 vaccine was characterized by non-toxicity, non-sensitization, good antigenicity,
and immunogenicity. Overall, these characteristics of the S7D5L4 vaccine ensure that it
could be a worthy candidate for subsequent in vivo validation.

The MEV prediction strategy was adopted in this experiment, which has more advan-
tages than the whole-protein strategy for vaccine design. MEVs can stimulate an immune
response to epitopes but do not induce systemic autogenous immune responses [67]. In
this study, T- and B-cell epitopes were included, enabling cellular and humoral responses.
As we did not include the whole protein, the associated side effects of the non-essential
epitopes produced by the entire protein antigen were minimized. This method may
also stimulate the generation of protective and specific immune responses to the greatest
extent [68], which was confirmed in our immune stimulation, in which the S7D5L4 vaccine
induced cellular and humoral immunity. In this study, the IFN-γ release score of HTL
epitopes was also predicted, and the epitope with positive IFN-γ release and the highest
score was finally selected. Adequate IFN-γ release from CD4+ and CD8+ T cells is crucial
for controlling concurrent MTB infections [69]. A drawback of most current neutralizing
antibodies is that those without T-cell immunity cannot provide lasting immunity and pro-
tection. Therefore, T-cell immunity is essential [70]. For SARS-CoV-2, the specific memory
responses of the CD4+ and CD8+ T cells were more persistent. In conclusion, the S7D5L4
vaccine showed good biological properties and structure and should undergo subsequent
in vitro and in vivo verification. This vaccine should be continuously optimized until it is
successfully used to prevent the co-infection of MTB and SARS-CoV-2.

Nevertheless, this study had several limitations. First, the S7D5L4 vaccine consisted
of TLR4 but not TLR2, which might decrease its ability to activate the MyD88-NK-κB
signaling pathway. Second, the physicochemical and immunological characteristics of the
S7D5L4 vaccine were only investigated in silico; thus, verification through in vitro and
in vivo experiments is lacking.

5. Conclusions

In this study, we designed a multi-epitope vaccine, S7D5L4, using an immunoinfor-
matic online server, among other tools. The S7D5L4 vaccine comprised 10 HTL, 2 CTL, and
4 B-cell epitopes, in addition to adjuvants. The results show that the S7D5L4 vaccine was
characterized by high antigenicity, immunogenicity, non-sensitization, non-toxicity, good
solubility, and stability. In addition, the S7D5L4 vaccine had good affinity for TLR4 and
induced a high level of innate and adaptive immune responses in silico.
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62. Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein

Sci. Publ. Protein Soc. 2018, 27, 129–134. [CrossRef]
63. Khan, M.; Khan, S.; Ali, A.; Akbar, H.; Sayaf, A.M.; Khan, A.; Wei, D.Q. Immunoinformatics approaches to explore Helicobacter Pylori

proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci. Rep. 2019, 9, 13321. [CrossRef] [PubMed]
64. Khatoon, N.; Pandey, R.K.; Prajapati, V.K. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit

vaccine using immunoinformatics approach. Sci. Rep. 2017, 7, 8285. [CrossRef] [PubMed]
65. Kaur, A.; Pati, P.K.; Pati, A.M.; Nagpal, A.K. Physico-chemical characterization and topological analysis of pathogenesis-related

proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE 2020, 15, e0239836. [CrossRef] [PubMed]
66. Nehete, J.Y.; Bhambar, R.S.; Narkhede, M.R.; Gawali, S.R. Natural proteins: Sources, isolation, characterization and applications.

Pharmacogn. Rev. 2013, 7, 107–116. [CrossRef]
67. Meza, B.; Ascencio, F.; Sierra-Beltrán, A.P.; Torres, J.; Angulo, C. A novel design of a multi-antigenic, multistage and multi-epitope

vaccine against Helicobacter pylori: An in silico approach. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2017,
49, 309–317. [CrossRef]

68. Lim, H.X.; Lim, J.; Jazayeri, S.D.; Poppema, S.; Poh, C.L. Development of multi-epitope peptide-based vaccines against
SARS-CoV-2. Biomed. J. 2021, 44, 18–30. [CrossRef]

http://doi.org/10.1038/nprot.2010.5
http://doi.org/10.1093/nar/gkt458
http://www.ncbi.nlm.nih.gov/pubmed/23737448
http://doi.org/10.1093/nar/gkm290
http://doi.org/10.1093/nar/gky427
http://www.ncbi.nlm.nih.gov/pubmed/29788355
http://doi.org/10.1186/1471-2105-9-514
http://www.ncbi.nlm.nih.gov/pubmed/19055730
http://doi.org/10.3390/v13112302
http://doi.org/10.1038/nprot.2016.169
http://doi.org/10.1371/journal.pone.0009862
http://doi.org/10.1093/nar/gku339
http://doi.org/10.1016/j.genrep.2017.08.006
http://doi.org/10.1126/science.277.5331.1453
http://doi.org/10.1002/prot.20264
http://doi.org/10.1038/s41598-021-81749-9
http://doi.org/10.1016/j.envres.2020.109819
http://doi.org/10.1002/iub.2356
http://doi.org/10.1080/14760584.2020.1794832
http://doi.org/10.1007/978-3-030-41769-7_19
http://doi.org/10.4110/in.2015.15.2.51
http://doi.org/10.1038/ni.1863
http://doi.org/10.1016/j.compbiomed.2016.06.015
http://doi.org/10.1002/pro.3289
http://doi.org/10.1038/s41598-019-49354-z
http://www.ncbi.nlm.nih.gov/pubmed/31527719
http://doi.org/10.1038/s41598-017-08842-w
http://www.ncbi.nlm.nih.gov/pubmed/28811600
http://doi.org/10.1371/journal.pone.0239836
http://www.ncbi.nlm.nih.gov/pubmed/32986761
http://doi.org/10.4103/0973-7847.120508
http://doi.org/10.1016/j.meegid.2017.02.007
http://doi.org/10.1016/j.bj.2020.09.005


J. Pers. Med. 2023, 13, 116 18 of 18

69. de Martino, M.; Lodi, L.; Galli, L.; Chiappini, E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front.
Pediatr. 2019, 7, 350. [CrossRef]

70. Panagioti, E.; Klenerman, P.; Lee, L.N.; van der Burg, S.H.; Arens, R. Features of Effective T Cell-Inducing Vaccines against
Chronic Viral Infections. Front. Immunol. 2018, 9, 276. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fped.2019.00350
http://doi.org/10.3389/fimmu.2018.00276

	Introduction 
	Materials and Methods 
	Sequence and Structure Retrieval 
	Prediction of Linear B-Cell Epitopes 
	Prediction of Helper T-Lymphocyte (HTL) Epitopes 
	Prediction of Cytotoxic T-Lymphocyte (CTL) Epitopes 
	Selection of Adjuvants and Guaranty Linkers for Vaccine Construction 
	Toxicity Detection, Solubility Prediction, and Physicochemical Properties of Predicted Vaccine Structures 
	Prediction of Immunogenicity, Antigenicity, and Sensitization of Vaccines 
	Secondary Structure and 3D Structure Prediction, Optimization, and Verification 
	Prediction of Discontinuous B-Cell Epitopes 
	Candidate Vaccine Docked to Toll-like Receptor (TLR) 4 Molecules 
	Immune Simulation 
	Normal Mode Analysis (NMA) of the Complex 
	Codon Optimization 

	Results 
	Selection of Immunodominant Epitopes 
	Primary Structure Construction of the S7D5L4 Vaccine 
	Toxicity Detection, Solubility Prediction, and Physicochemical Properties of the S7D5L4 Vaccine 
	Immunogenicity, Antigenicity, and Sensitization of the S7D5L4 Vaccine 
	Secondary Structure Prediction and 3D Structure Modeling of the S7D5L4 Vaccine 
	Optimization of the Tertiary Structure of the S7D5L4 Vaccine 
	Discontinuous B-Cell Epitopes 
	The S7D5L4 Vaccine Docked to TLR4 Molecule 
	Immune Simulation of the S7D5L4 Vaccine 
	NMA of the Complex 
	Codon Optimization 

	Discussion 
	Conclusions 
	References

