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Abstract: Breast cancer is the most common disease among women, with over 2.1 million new
diagnoses each year worldwide. About 30% of patients initially presenting with early stage disease
have a recurrence of cancer within 10 years. Predicting who will have a recurrence and who will not
remains challenging, with consequent implications for associated treatment. Artificial intelligence
strategies that can predict the risk of recurrence of breast cancer could help breast cancer clinicians
avoid ineffective overtreatment. Despite its significance, most breast cancer recurrence datasets are
insufficiently large, not publicly available, or imbalanced, making these studies more difficult. This
systematic review investigates the role of artificial intelligence in the prediction of breast cancer
recurrence. We summarise common techniques, features, training and testing methodologies, metrics,
and discuss current challenges relating to implementation in clinical practice. We systematically
reviewed works published between 1 January 2011 and 1 November 2021 using the methodology
of Kitchenham and Charter. We leveraged Springer, Google Scholar, PubMed, and IEEE search
engines. This review found three areas that require further work. First, there is no agreement on
artificial intelligence methodologies, feature predictors, or assessment metrics. Second, issues such as
sampling strategies, missing data, and class imbalance problems are rarely addressed or discussed.
Third, representative datasets for breast cancer recurrence are scarce, which hinders model validation
and deployment. We conclude that predicting breast cancer recurrence remains an open problem
despite the use of artificial intelligence.

Keywords: breast cancer; risk of recurrence; artificial intelligence; machine learning; feature predic-
tors; systematic review

1. Introduction

Cancer mortality rates are falling due to recent advancements around earlier diagnosis
and improved therapeutic options. However, further work is still needed considering that
breast cancer is still one of the most frequent cancers in Europe, and it is the second leading
cause of cancer mortality [1,2]. A breast cancer diagnosis has an impact on an individual’s
health, lifestyle, job, and family life [3]. It carries not only the danger of severe morbidity
and mortality, but also the risk of physical and psychosocial consequences that persist after
therapy is completed. Economic hardship owing to lost working hours and healthcare
costs might be an additional burden induced by this disease [4]. As a result, breast cancer
clinicians require precise tools to aid in clinical decision-making in order to enhance patient
prognosis, survival, and quality of life while lowering associated costs [4].

Women who have had early stage breast cancer are at risk of recurrence, either locally,
regionally or at distant sites. Approximately 30% of patients develop cancer again within
10 years—although 80% of these occur within five years of diagnosis [5]. At the moment, it
is difficult to discern between those who will have a recurrence and those who will not.

Artificial intelligence techniques are emerging to resolve medical issues such as diagno-
sis, prognosis, drug design, and testing [6–11] in different specialties. Specifically in breast
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cancer, artificial intelligence techniques have been used for the diagnosis [12] and prognosis
[13] of breast cancer, the classification and quantification of immunohistochemistry stained
images [14–16], and the prediction of pathological complete response (pCR) to neoadjuvant
chemotherapy [17,18], offering the opportunity for personalised care, improved therapy
response rates, reduced adverse effects, and decreased costs of unnecessary treatment.

Researchers would like to find papers of interest, contributions, and evidence in
order to prevent repetition and to enhance their results given the variety of approaches,
investigations, and published papers on predicting the risk of breast cancer recurrence
using artificial intelligence. There are some reviews on the risk of recurrence in breast cancer
based on identifying machine learning techniques and comparing results [19]. However,
artificial intelligence techniques are advancing so fast that it is necessary to update these
reviews frequently. This review aims to provide an overview of the prediction of breast
cancer recurrence using artificial intelligence techniques. It adds to the existing literature
by summarising artificial intelligence techniques used, the most appropriate features,
common training and testing methodologies, the common evaluation metrics, and system
implementation in clinical practice.

2. Method

The study of the application of artificial intelligence techniques to predict the risk of
recurrence of breast cancer was conducted according to the methodology of Kitchenham
and Charter [20]. Kitchenham adapted the medical guidelines for systematic literature
review to software engineering [21] and the guidelines of Kitchenham and Charter have
been adapted to reflect the specific issues associated with software engineering research.
This methodology composed of three stages: (i) planning the review—related works and
need for the review, and research question; (ii) conducting the review—data sources, and
extracting data and synthesis, and (iii) results—what artificial intelligence techniques are
being used, what type of features are being used, what are the common training and testing
methodologies, what model evaluation metrics are being used, and what systems have
been implemented in clinical practice, or validated in a real-world context.

2.1. Planning the Review
2.1.1. Related Works and Needs for the Review

This review aims to explore the literature surrounding artificial intelligence techniques,
features, training and testing methodologies, model evaluation metrics, and use of artificial
intelligence to predict the risk of recurrence of breast cancer. Considering there are different
strategies, studies, and a significant amount of published papers on predicting the risk
of recurrence of breast cancer using artificial intelligence, researchers need to identify
publications of interest, contributions, and evidence in order to avoid repetition and to
improve their results. In recognition of the gap within the existing literature, we conducted
a systematic literature review using electronic bibliographic databases from January 2011
to November 2021.

2.1.2. Research Questions

The research questions that we aimed to address were:

• RQ1: What artificial intelligence techniques have been used to predict the risk of
recurrence of breast cancer and what is their performance?

• RQ2: What type of features have been used?
• RQ3: What were the common training and testing methodologies used?
• RQ4: What model evaluation metrics have been used, and what are the advantages

and disadvantages of these metrics?
• RQ5: What systems have been implemented in clinical practice, or validated in a

real-world context?
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2.2. Conducting the Review
2.2.1. Data Sources

We conducted a systematic search of the literature in the following scientific and
academic databases and search engines: Springer, Google Scholar, PubMed, and IEEE. The
searches were conducted in English. Only studies using artificial intelligence techniques to
predict the risk of recurrence of breast cancer were selected.

Selecting appropriate search terms was a key step; keywords that were too broad
yielded an unwieldy number of irrelevant publications, but terms that were too particular
seemed to overlook significant research. This required some experimentation with a range
of terms to select the key words for a broad and inclusive review of the application of
artificial intelligence techniques to predict the risk of recurrence of breast cancer. We
performed a search using the following query:

("Predicting Breast Cancer Recurrence" OR "Risk of Recurrence Breast Cancer Prediction" OR
"Recurrence Prediction Breast Cancer") AND ("Artificial Intelligence" OR "Machine Learning")

We searched for studies reported between 1st January 2011 and 1st November 2021.
A total of 492 papers were found at this stage before excluding irrelevant papers. Table 1
shows the exclusion and inclusion criteria which were applied to papers based on the
purpose of our systematic review. After applying these exclusion criteria an additional five
papers which focused on the impact of breast cancer diagnostics on the risk of recurrence
were considered to be beyond the scope of this review. A total of 31 papers were finally
selected in this stage (see Figure 1).

Figure 1. Flow diagram summarising the literature search, inclusion, and exclusion process. Red
dotted squares correspond to excluded paper; green continuous squares correspond to selected
papers.
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Table 1. Exclusion and inclusion criteria applied to papers based on the purpose of our systematic
review.

Exclusion Inclusion

Papers that were not written in English Breast cancer risk of recurrence prediction
studies

Papers that were not peer-reviewed confer-
ence or journal papers (e.g., theses, disser-
tations, books, book chapters, pre-prints,
posters, PowerPoint presentations, or other
archived articles)

Studies using machine learning techniques
(regression, instance-based, regularization,
decision tree, Bayesian, clustering, associa-
tion rule learning, artificial neural network,
deep learning, dimensionality reduction,
and ensemble algorithms)

Not human studies
Surveys

2.2.2. Extracting Data and Synthesis

In order to verify the quality of the selected studies, each study that met the inclusion
criteria was abstracted by a reviewer and a questionnaire was completed for each paper.
Each question was designed to elicit information about potential limitations in the quality
of the study. The evaluation questions were: (i) Was the artificial intelligence solution well
described (what, how, who, where)?; (ii) Was the study population (i.e., number of patients,
availability, target population, and years of recurrence) well described?; (iii) Was the data
type (i.e., patient, clinical, molecular, or medical images) well described?; (iv) Were the
evaluation metrics well described? Answers that showed quality problems were assessed
to see whether they were significant enough to diminish confidence in the results.

3. Results
3.1. RQ1: What Artificial Intelligence Techniques Have Been Used to Predict the Risk of
Recurrence of Breast Cancer and What Is Their Performance?

Artificial intelligence has made a substantial contribution to cancer research. Despite
the fact that deep learning classifiers have dominated many research areas, traditional
machine learning models are more widely used (n = 26; 83.9%) than deep learning (n = 5;
16.1%) in the field of breast cancer recurrence risk prediction, according to our review. This
could be related to the difficulty of getting large datasets and conducting retrospective
analyses over a long period of time to train models. Most of studies compared a number of
methods and then selected the best one (n = 22; 71.0%); three studies, 9.7%, proposed an
ensemble method among the evaluated methods; and a small number tried only a single
method (n = 6; 19.4%), see Table 2.

According to our review, among machine learning methods, Support Vector Machines
(SVM) have been used most commonly for breast cancer recurrence risk prediction—used
in 17 studies. Naïve Bayes and Decision Trees have also been used extensively in this
research, with 16 and 14 studies respectively. Bayesian Neural Networks and Multivariate
Logistic Regression were the least used with only two studies for each. The distribution
of literature based on artificial intelligence prediction methods is shown in Figure 2 and
Table 2. In terms of the reliability and the prediction outcomes, SVM had the best accuracy
in most cases (n = 8; 25.8%) followed by Decision Trees and Naïve Bayes (n = 4; 12.9%).
The distribution of literature based on algorithms with the highest prediction accuracy is
shown in Figure 3 and Table 2. However, the prediction outcomes are based on each study
independently and they are not directly comparable due to the use of different datasets
and/or evaluation metrics.
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Table 2. Table showing the use of artificial intelligence algorithms in papers included in our review.

Publication Algorithms Training Set Validation Set Best Algorithm Best Algorithm
(Total/Recurrence) (Total/Recurrence) Accuracy

Lg et al. [22] Decision Tree C4.5, SVM, ANN 547/117
10-fold
Cross-Validation
(CV)

SVM Accuracy: 0.957, Sensitivity: 0.971,
Specificity: 0.945

Pritom et al. [23] Naïve Bayes, Decision Tree C4.5, and SVM 198/47 10-fold CV SVM 75.75% accuracy

Aline et al. [24] Deep multi-layer perceptrons 152/— 168/— Deep multi-layer
perceptrons

AUC: 0.63 low, 0.59 intermediate,
and 0.75 high risk

Mosayebi et al. [25]

Deep Multilayer Perceptron ANN, Bayesian
Neural Network, LVQ neural network,
KPCA-SVM, Random Forest, and Decision Tree
C5.0

7874/5471 nested 5-fold CV Decision Tree C5.0 Accuracy: 0.819, Sensitivity: 0.869,
and Specificity: 0.777

Alzubi et al. [26] Decision Tree J48, Naïve Bayes, bagging, logistic
regression, SVM, KNN, MLP, PART, and OneR 142/— 10-fold cross-

validation OneR Accuracy: 0.1408, Sensitivity: 0.901,
and Specificity: 0.72

Witteveen et al. [27] Logistic regression and Bayesian Networks 72,638/37,230 24,063/12,308 Logistic regression C-statistic: 0.71

Cirkovic et al. [28] Naive Bayes, Decision tree C4.5, SVM polynomial
kernel, logistic regression, K-NN, and ANN 146/— live-oneout CV ANN AUC: 0.847

Ramkumar et al. [29]
SVM with linear and Radial kernel, Basis function
kernel, Random Forest, Elastic Net, Multilayer
perceptron, Normal mixture modeling

298/— 196/— SVM Radial Kernel AUC: 0.678

Almuhaidib et al. [30] Random Forest, Decision tree, and Naïve Bayes 194/46 10-fold CV Random Forest Accuracy 0.6522, Sensitivity 0.6250,
and Specificity 0.659

Rosa Mendoza et al. [31] Univariate and multivariate logistic regression 215/— —/— Multivariate logistic
regression Sensitivity: 0.74 and Specificity 0.97

Wang et al. [32]
Random Forest, SVM with linear kernel, logistic
regression, Stochastic Gradient Descent Classifier
(SGDC), Naïve Bayes, KNN

4513/312 1934/134 KNN AUC: 0.888

Chou et al. [33] ANN, Decision trees, Logistic regression,
Composite models of DT-ANN and DT-LR 370/— 387/— ANN Accuracy: 70.93

Li et al. [34] Linear regression 84/— —/— Linear regression AUC: 0.88

Kim et al. [35] Random Forest, Decision Jungle, NN, Naïve Bayes,
and SVM 301/— 76/— Decision Jungle Accuracy: 0.90

Kim et al. [36] Weibull Time To Event Recurrent Neural Network
(WTTE- RNN) 10,494/— 2623/— WTTE- RNN Accuracy: 0.90
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Table 2. Cont.

Publication Algorithms Training Set Validation Set Best Algorithm Best Algorithm
(Total/Recurrence) (Total/Recurrence) Accuracy

Chakradeo et al. [37] Multiple Linear Regression, SVM (RBF kernel),
and Decision Tree 198/46 CV SVM Accuracy: 0.97, Precision: 0.93, and

Recall: 0.91
Rana et al. [38] SVM, Logistic Regression, KNN, and Naive Bayes 194/46 CV KNN Accuracy: 0.72

Mohebian et al. [39] Bagged Decision Tree (BDT), SVM, Decision Tree,
Multilayer perceptron neural network 579/112 4-fold CV Ensemble Learning AUC: 0.90

Eun et al. [40]
Random Forest, Decision Tree, KNN, Linear
discriminant analysis (LDA), linear SVM, and
Naïve Bayes

130/21 5-fold CV Random Forest AUC: 0.94

Bhargava et al. [41] Decision Tree J48 286/85 10-fold cross
validation Decision Tree J48 Precision: 0.76

Adeyemi et al. [42]

Naïve Bayes, Decision trees C4.5, and SVM the
stack ensemble models, Base (B) and Meta (M). B:
Naïve Bayes, SVM and M: C4.5; B: Naïve Bayes,
SVM and M: C4.5; B: SVM, C4.5 and M: Naïve
Bayes

201/85 10-fold CV
Ensemble method: B:
Naïve Bayes, SVM
and M: C4.5

Precision Recurrence: 0.554 and
No-Recurrence: 0.765

Yang et al. [43] AdaBoost and Cost sensitive learning 1061/37 3-fold CV Ensemble method ROC: 0.907
Massafra et al. [44] Naïve Bayesian, Random Forest, and SVM 256/— 10-fold CV SVM Accuracy: 80.39
Turkki et al. [45] Deep CNN 868/— 431/— Deep CNN C-index: 0.60
Kabiraj et al. [46] Naïve Bayes 275/85 10-fold CV Naïve Bayes Accuracy: 73.81

Sakri et al. [47] Naïve Bayes, Decisio Tree, and KNN 198/47 10-fold CV Naïve Bayes Precision Recurrence: 0.814 and
No-Recurrence: 0.381

Lou et al. [48] Multi-layer perceptron neural network ANN,
KNN, SVM, and Naïve Bayesian 798/— 171/— ANN AUC: 0.998

Ojha and Goel [49]
clustering algorithms: K-means, EM, PAM, and
Fuzzy c-means classification algorithms: SVM,
Decision Tree C5.0, Naïve bayes, and KNN

194/46 10 fold cross
validation

SVM and Decision
Tree C5.0 Accuracy: 0.81

Kim et al. [50] SVM, ANN, and Cox-proportional hazard
regression model 679/45 204 SVM AUC: 0.85

Woojae et al. [51] Naïve Bayesian 475/31 204 Naïve Bayesian AUC: 0.81

Zain et al. [52] Naïve Bayes, KNN, and Fast Decision Tree
(REPTree) 198/47 10 fold cross

validation Naïve Bayes F-Score: 0.721
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Figure 2. Bar plot showing the frequency of use of different artificial intelligence algorithms in papers
included in our review.

Figure 3. Artificial intelligence algorithms with the highest prediction accuracy in papers included in
our review.

3.2. RQ2: What Type of Features Have Been Used?

The type of data used to train a prediction model can significantly affect the perfor-
mance of the model, and impact on the model’s reliability and prediction outcomes [53].
Most of the research studies reviewed in this work included clinical data (n = 30; 96.8%),
followed by patient demographic information (n = 21; 67.7%), molecular data (n = 15;
48.4%), and pathological image data (n = 9; 29.0%). Most research combined multiple
types of data, as shown in Figure 4, which illustrates the distribution of papers based on
the type of data used to train the prediction model.
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Figure 4. Venn diagram showing the different data types used in research included in this review.

Regarding patient characteristics, the majority of studies (n = 17; 54.8%) identified age
at diagnosis as an important predictor, followed by menopausal status (n = 7; 22.6%) and
family history of breast cancer (n = 4; 12.9%). The distribution of patient characteristics is
summarised in Table 3.

Table 3. Feature predictors used based on patient information. n corresponds to the number of
studies using each feature; % is n/31 × 100, 31 being the total of studies included in this review.

Feature Number (n) Percentage (%)

Patient demographics

Marital status 2 6.5
Demographic information 2 6.5
Race/ethnicity 1 3.2
Years of education 1 3.2

Personal Medical History

Age at diagnosis 17 54.8
Menopausal status 7 22.6
Age at menarche 2 6.5
Smoking status 2 6.5
History of infertility 2 6.5
Alcohol usage 2 6.5
Death (related to breast cancer or unrelated) 2 6.5
History of other cancers 1 3.2
History of other chronic diseases 1 3.2
Breastfeeding 1 3.2
Body mass index 1 3.2
Charlson comorbidity index 1 3.2

Family history

Breast cancer 4 12.9
Other cancers 2 6.5

Regarding clinical and molecular features, we used the classification proposed in the
Eighth Edition of the AJCC Cancer Staging Manual [54,55]. The distribution of clinical and
molecular characteristics is summarised in Table 4.
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Table 4. Feature predictors used based on clinical and molecular information. n corresponds to the
number of studies using each feature; % is n/31 × 100, 31 being the total of studies included in this
review.

Feature Number
(n) Percentage (%)

Anatomic staging

1. Clinical staging

1.1 Diagnostic imaging
MRI scans 12 38.7
Ultrasonography 1 3.2

1.2 Core biopsy 2 6.5

2. Pathologic staging TNM

Nodal status 29 93.5
Tumour 28 90.3
Metastasis 7 22.6

3. Post-therapy staging

3.1 Clinical Information
Radiation 10 32.3
Hormone therapy 8 25.8
Chemotherapy 8 25.8
Type of surgery 7 22.6
Therapy 4 12.9
NAC 1 3.2
Anti-HER2 therapy 1 3.2

3.2 Pathological information
Response to neoadjuvant therapy 2 6.5
Complete pathologic response 1 3.2

4. Restaging in the event of tumour recurrence

Outcome (recurrence/not) 7 22.6
Recurrence time 6 19.4

Prognostic stage

Tumour grade 21 67.7
Hormone receptor 15 48.4
Tumour invasion 13 41.9
HER2 8 25.8
Tumour type 7 22.6
Ki-67 5 16.1
Oncogene expression 2 6.5
Multigene panels testing 1 3.2

Other molecular markets

Stromal TILs 1 3.2
CD44 1 3.2
ABCC4 1 3.2
ABCC11 1 3.2
N-cadherin 1 3.2
Pan-cadherin 1 3.2
Cytokeratin 5/6 (CK5/6) 1 3.2
Epidermal Growth Factor Receptor (EGFR) 1 3.2

Concerning anatomic staging, the majority of studies (n = 29; 93.5%) identified nodal
status as an important predictor of recurrence, followed by tumour size (n = 28; 90.3%)
and MRI scan diagnostic features (n = 12; 38.7%). The distribution of anatomic staging
is summarised in Table 4. The results confirm that the pathologic staging via the TNM (T
describes the size of the tumour and any spread of cancer into nearby tissue; N describes
spread of cancer to nearby lymph nodes; and M describes metastasis) system is a highly
discriminant feature in terms of breast cancer prediction and risk of recurrence. Concerning
prognostic stage characteristics, tumour grade was identified as an important predictor
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according to most of the studies (n = 21; 67.7%); followed by hormone receptor status
(n = 15; 48.4%), and tumour invasion (n = 13; 41.9%). The distribution of prognostic stage
characteristics is summarised in Table 4. This ranking is coherent with the interrelationships
between tumour grade, hormone receptor status, and tumour invasion and their connection
with pathologic TNM staging in breast cancer [56]

Regarding medical image features, the majority of studies (n = 12; 38.7%) employed
Magnetic Resonance Imaging (MRI) as an important input source, followed by histopatho-
logical images from Fine Needle Aspirate (FNA) (n = 6; 19.4%), and images from Tissue
Microarray (TMA) samples (n = 1; 3.2%). The distribution of images characteristics is
summarised in Table 5. Studies using MRI are based on texture features [34,40]—mean
pixel intensity, standard deviation, mean proportion of positive pixels, entropy, skewness,
and kurtosis. Studies using images from FNA samples utilised the same public dataset, the
Wisconsin Prognostic Breast Cancer dataset from the UCI machine learning repository, and
the same cell evaluation set of features [37,52]—radius, texture, perimeter, area, smoothness,
compactness, concavity, concave points, symmetry, and fractal dimension. Turkki et al. [45]
leveraged images from a TMA comprised of primary tumour tissue and utilised a feature
extractor with a CNN—different features present in an image such as edges, vertical lines,
horizontal lines, bends, texture, colour, and among others.

Table 5. Ranking of feature predictors used based on medical images information. n corresponds to
the number of studies using each feature; % is n/31 × 100, 31 being the total of studies included in
this review.

Rank Feature Number (n) Percentage (%)

3 Magnetic Resonance Imaging (MRI) 12 38.7
1 Fine Needle Aspirate (FNA) 6 19.4
4 TMA samples 1 3.2

3.3. RQ3: What Were the Common Training and Testing Methodologies Used?

We assessed dataset size, degree of class balance, validation strategies, sample tech-
niques, and data handling strategy, all of which have a direct influence on training and
testing performance [57]. Furthermore, we determined whether they had a public or private
dataset that is beneficial for reproducibility, Explainable Artificial Intelligence (XAI) [58]. A
summary is presented in Table 6.
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Table 6. Training and testing methodologies. Excluding = excluding uncompleted data; predictive =
predictive value imputation.

Publication Publicly Years of Balanced Validation Sampling Data Handling
Available Recurrence Classes Strategy Strategy Strategy

Lg et al. [22] No 2 No Cross validation Simple Expectation
maximization

Pritom et al. [23] Yes — No Cross validation Simple —
Aline et al. [24] No 5 No Validation set Stratified —
Mosayebi et al. [25] No 5 No Cross validation Stratified Excluding
Alzubi et al. [26] No — No Cross validation Stratified Excluding
Witteveen et al. [27] No 5 No Validation set Stratified —
Cirkovic et al. [28] No 5 No Cross validation Stratified —
Ramkumar et al. [29] No 5 No Validation set Stratified Excluding
Almuhaidib et al. [30] Yes — No Cross validation Simple Excluding
Rosa Mendoza et al. [31] No 2 No — Stratified Excluding
Wang et al. [32] No 5 No 70-30 Simple Excluding
Chou et al. [33] Yes 5 No Validation set Simple Excluding
Li et al. [34] Yes — No — Simple Excluding
Kim et al. [35] No — No Validation set Simple Excluding
Kim et al. [36] No 5 No 80-20 Simple Excluding
Chakradeo et al. [37] Yes — No Cross validation Simple Excluding
Rana et al. [38] Yes — No Cross validation Simple Excluding
Mohebian et al. [39] No 5 No Cross validation Simple Excluding
Eun et al. [40] No 7 No Cross validation Systematic Excluding
Bhargava et al. [41] Yes — No Cross validation Simple Excluding
Adeyemi et al. [42] Yes — No Cross validation Simple Excluding
Yang et al. [43] No 5 No Cross validation Simple Excluding
Massafra et al. [44] Yes 5–10 No Cross validation Simple Predictive
Turkki et al. [45] No 15 No Validation set Simple Excluding
Kabiraj et al. [46] Yes — No Cross validation Simple Excluding
Sakri et al. [47] Yes 4 No Cross validation Simple Excluding
Lou et al. [48] No 10 No Validation set Simple Excluding
Ojha and Goel [49] Yes — No Cross validation Cluster Excluding
Kim et al. [50] No 5 No Validation set Systematic Excluding
Woojae et al. [51] No 5 No 70-30 Stratified Excluding
Zain et al. [52] Yes — No Cross validation Simple Excluding

3.3.1. Dataset Size and Class Balance

With the introduction of computer systems, the digitisation of clinical examination
and medical records in healthcare systems has become a standard and widely accepted
practice. However, there are challenges with breast cancer recurrence dataset size and
class balance, given that around 30% of patients develop a recurrence of breast cancer
within 10 years and the difficulty in keeping records of follow-up patients for a long period
(e.g., changes in the patient’s domicile and centre of treatment, failure to attend follow-
up appointments, patient death). This challenge is revealed in this review study. The
majority of works relies on dataset sizes ranging from 100–500 cases (n = 17; 51.61%)
[23,24,26,28,30,31,37,38,40–42,44,46,47,49,52] and only four research papers reference a
dataset with >2000 incident cases [25,27,32,36]. Furthermore, none of the studies had
balanced data (see Table 6) as the ground-truth is typically unbalanced, with the recurring
class being less than 30%. Special strategies are required in artificial intelligence to manage
restricted and unbalanced data to lessen the impact on training and testing procedures
(e.g., data augmentation techniques); however, there is no indication of their application in
the research that we reviewed.

3.3.2. Sampling Strategies

Data selection is an important phase in artificial intelligence training and testing pro-
cedures. Selecting data has a direct impact on the performance of the resulting model [53].
Sampling is a strategy for picking instances/patients/registers in order to make statistical
inferences from them or in our case, to train and test artificial intelligence models. Probabil-
ity sampling is a sampling technique in which researchers choose samples from a larger
population using a method based on probability theory. In our analysis, four different
types of probability sampling techniques were observed (see Table 6): (i) simple random
sampling which is entirely by chance (n = 20; 64.5%); (ii) stratified random sampling, in
which the population is divided into subgroups that share a common characteristic (n = 8;
25.8%); (iii) cluster random sampling, in which the population is divided into subgroups
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known as clusters that are randomly selected to be included in the study (n = 1; 3.2%); and
(iv) systematic random sampling, which uses regular intervals (n = 2; 6.5%). The use of a
sampling technique improves the degree of representativeness and generalisation power of
the artificial intelligence models generated [59]. However, it may be time consuming and
tedious.

3.3.3. Data Handling Strategies

Health data often contain a lot of missing values. Missing values can be caused by
failure to record data due to a lack of standards or by data corruption. Handling missing
data is crucial during data preprocessing since many artificial intelligence algorithms do
not handle missing values, thereby affecting their performance. In our analysis, excluding
cases with incomplete data was the most commonly used strategy (n = 24; 77.4%). This
strategy contributes to training a robust model by removing any missing values. However,
there is a significant loss of information, and the strategy performs badly if the percentage
of missing values is high in contrast to the whole dataset. There are two particular cases in
which strategies to impute missing values were used (n = 2; 6.5%): continuous variable
substitution using Expectation Maximization [22] and predictive value imputation [44].
Medical data are particularly sensitive, and such strategies might result in data leakage or
outliers. In four studies, no evidence of a data handling strategy was found, and there were
not details regarding the management of cases with missing values [23,24,27,28], which
complicates replication and further comparison of results by other researchers. A summary
is presented in Table 6.

3.3.4. Validation Strategies

A cross-validation approach was employed by the majority of studies (n = 18; 58.1%).
Cross-validation is an internal validation strategy that is common with small datasets
since it involves splitting one input dataset into parts/holds—with some parts used for
training the classifier (training data), and the remainder used for validation (test data). This
approach is repeated until each part has been used as testing data at least once. However,
cross-validation cannot ensure the quality of a machine learning model since possibly
biased or imbalanced data leads to a biased evaluation. External model validation was
used in 11 research papers (35.5%), which test the original prediction model on a set of
independently derived external datasets, to validate the performance of a model that was
trained on initial input data. There are only two studies (6.5%) which do not describe any
validation strategy, which complicates the replication and further comparison of results by
other researchers (see Table 6).

3.3.5. Dataset Availability

Many artificial intelligence solutions are trained and tested on private/restricted
datasets, such as those holding sensitive patient information [60] or belong to private com-
panies that cannot or do not want to make their data publicly available. Dataset availability
is essential for repeatability, transparency, and to verifying one’s own implementation of
the other approaches, as well as explaining differing results [58,61]. Governments, as well
as health and research institutes, participate in Open Science by hosting publicly available
datasets that may be used further. However, dataset availability remains a concern in breast
cancer recurrence cohorts, as evidenced by this review in which less than half of the studies
(n = 13; 41.9%) used public datasets and the remainder used private datasets (see Table 6).

3.4. RQ4: What Model Evaluation Metrics Have Been Used, and What Are the Advantages and
Disadvantages of These Metrics?

Metrics used to evaluate prediction models are key tools used to select one model or
other. Choosing the wrong metric for model assessment will result in an incorrect model
selection or, in the worst case, being deceived about the predicted model performance.
Choosing an appropriate metric is challenging in artificial intelligence in general, but is
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particularly difficult for imbalanced classification/prediction problems [62]. In contrast
to traditional evaluation metrics, which evaluate all classes equally, unbalanced classifi-
cation/prediction issues often regard classification mistakes with the minority class as
more important than those with the majority class [62]. As a result, performance measures
focusing on the minority class may be necessary, which is difficult because it corresponds
to the minority class where we often lack the observations required to train an effective
model. The objective is to avoid or reduce bias towards the performance on cases poorly
represented due to the available data sample.

According to our review, the top six evaluation metrics used for breast cancer recur-
rence risk prediction are: (i) specificity (n = 20; 64.5%); (ii) sensitivity (n = 19; 61.3%);
(iii) accuracy (n = 18; 58.1%); (iv) AUC (n = 16; 51.6%); (v) F-Score (n = 8; 25.8%); and
(vi) precision (n = 7; 22.6%). The distribution of the evaluation metrics used for breast
cancer recurrence risk prediction is summarised in Table 7. Sensitivity, specificity, precision,
and F-Score may be useful for imbalanced classification/prediction because they are based
on the confusion matrix that provides more insight into not only the performance of a
predictive model, but also which classes are being predicted correctly, which incorrectly,
and what types of errors are being made [62]. However, reporting classification/prediction
accuracy for a severely imbalanced classification problem could be dangerously misleading.
A ROC curve is a diagnostic plot that calculates the false positive rate and true positive
rate for a series of predictions made by the model at different thresholds to summarize the
behaviour of the model [62]. AUC is useful for imbalanced classification/prediction issues,
specifically for problems where both classes are important.

Table 7. Ranking of evaluation metrics. n corresponds to the number of studies using each feature; %
is n/31 × 100, 31 being the total of studies included in this review.

Rank Feature Number (n) Percentage (%)

1 Specificity 20 64.5
2 Sensitivity 19 61.3
3 Accuracy 18 58.1
4 AUC 16 51.6
5 F-Score 8 25.8
6 Precision 7 22.6
7 Positive predictive value 4 12.9
8 Negative predictive value 4 12.9
9 Recall 4 12.9

10 Kappa statistic 2 6.5
11 Mean absolute error 1 3.2
12 Root mean squared error 1 3.2
13 Relative absolute error 1 3.2
14 Root relative squared error 1 3.2
15 Error rate 1 3.2
16 Youden’s J statistic 1 3.2
17 Standard error 1 3.2
18 Gini index 1 3.2
19 Entropy 1 3.2
20 Information gain 1 3.2

3.5. RQ5: What Systems Have Been Implemented in Clinical Practice, or Validated in a
Real-World Context?

In this systematic review, there is no evidence that any of the studies have been
implemented in clinical practice, or validated in a real-world context, with all of them being
described as theoretical solutions. Indeed, despite the popularity of artificial intelligence
solutions, we are concerned that there are several barriers preventing the integration of
these novel methods into clinical practice.

Artificial intelligence techniques to predict the risk of recurrence of breast cancer could
potentially improve the following areas: healthcare system services, decision-making time,
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and health-related quality of life for patients, as well as lower healthcare expenses and
medical mistake rates [63]. However, similar to other healthcare innovations, artificial
intelligence solutions should be rigorously assessed. Consequently, certain controlled trials
are required before being implemented in clinical practice. Medical mistakes are both costly
and hazardous, an error in predicting the risk of recurrence of breast cancer might have
catastrophic implications for health-related quality of life and outcome [64]. This may
explain, in part, the lack of artificial intelligence solutions to predict the risk of recurrence
of breast cancer available.

4. Discussion

In this study, we systematically reviewed the literature published between 1st January
2011 and 1st November 2021 on the application of artificial intelligence techniques to predict
the risk of recurrence of breast cancer. We considered papers that were written in English.
Our study shows dataset availability, training and validation description—dataset size,
balanced data, sampling strategy, data handling strategy—artificial intelligence methods
used, the best algorithm performance, features used—patient, clinical, molecular, and
pathological information—and evaluation metrics.

H&E image-based risk prediction using deep learning and machine learning has
potential clinical value if used as a pre-test for selecting patients for expensive gene-based
molecular assays. Molecular tests are not available in many low to medium income
countries and, where they are available, the tests are expensive and conducted centrally
so there is generally a long turnover time. Couture et al. [65] has compared image-based
classifiers with the PAM50 molecular test (PAM50 is a 50-gene signature that classifies
breast cancer into five molecular intrinsic subtypes for risk prediction). They used deep
learning algorithms on breast cancer H&E images to classify tumour grade, ER status,
PAM50 intrinsic subtype, histologic subtype, and risk of recurrence score (ROR-PT). It
is important to mention that the attributes that these deep learning approaches detect
such as receptor status, intrinsic subtype or even risk of recurrence, to predict complex
image properties are not visually apparent to pathologists from H&E images. Besides
a high degree of concordance between molecular test and image analysis in relation to
predict of ER positivity: these authors showed that PAM50 RNA-based molecular subtype
(Basal-like vs. non-Basal-like), and risk of recurrence score (ROR-PT) could be predicted
using deep learning approaches with approximately 75–80% accuracy, with ductal vs.
lobular histologic subtype accuracy as high as 94%. A similar approach using both deep
learning and machine learning algorithms was also employed by Whitney et al. [66] to
analyse routine H&E-stained images of early-stage ER+ breast cancer patients to predict
corresponding Oncotype DX recurrence risk. Oncotype DX is a 21 gene assay that is
currently employed to assess the risk of early-stage ER positive (+) breast cancers, and
guide clinicians in the decision of whether or not to use chemotherapy. Using the deep
learning extracted features of nuclear morphology in the stroma and epithelium followed
by four different supervised machine learning classifiers—the authors have clearly stratified
patients into low, intermediate, and high-risk groups of recurrence as conducted by the
OncotypeDx. Their classifier models trained on low vs. high and the low with intermediate
vs. high ODx cases generated the highest classification accuracy (79% and 85%) on the
validation set. These studies demonstrate that AI-based techniques have a bright future in
the clinic as a tool in combination with molecular assays. These algorithms can create an
inexpensive, rapid predictor of low and high-risk categories for early stage breast cancer
based on H&E images alone. However, it is evident that this is still an open problem after
performing this review. This conclusion is based on the following issues related to our
research questions found during the review process.

In answer to our first research question to identify and critically appraise what artificial
intelligence techniques are being used to predict the risk of recurrence of breast cancer and
their targeted outcomes, there is clear evidence of the effectiveness of artificial intelligence in
healthcare to improve patient diagnosis, prevention, and treatment, as well as cost efficiency
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and equality in health services, transforming the practice of medicine [67–69]. This type
of evidence is also needed for artificial intelligence systems that forecast the likelihood of
recurrence in breast cancer patients. Our systematic review returned 31 papers on artificial
intelligence techniques which support the risk of recurrence of breast cancer. One of our
findings was that Machine Learning techniques excluding Deep Learning methods are
more widely used than Deep Learning techniques. Despite the fact that Deep Learning
classifiers have dominated many research areas [70], healthcare included [71]. This could be
due to the difficulties of obtaining large datasets and conducting retrospective analysis over
time to train models. Furthermore, considering that interpretability is critical in healthcare
[58], we can conclude that most of the studies cover the minimal requirements according to
their artificial intelligence technique selection, even when they were not focused on that.
SVM is the most used method—17 out of the 31 studies used SVM, and SVM has the best
performance in 8 out of the 17 studies.

As regards our second research question, to identify what type of feature predictors
are being used based on the literature, the list of type of data most used, from most to least
used, is: clinical, patient information, molecular, and pathological images. Moreover, most
of the studies combined multiple types of data, obtaining better performance to predict the
risk of recurrence than when used independently. Based on clinical information, pathologic
staging TNM is the most used feature composed by Node—29 out of the 31 studies—
followed by Tumour and Metastasis—28 and 7 out of the 31 studies, respectively. These
finding of the present study are aligned with the medical guideline [54,55]. Considering
patient information, age at diagnosis is the most used feature—17 out of the 31 studies—
followed by menopause status—7 out of the 31 studies. These finding are aligned with
previous researches [72,73]. Based on molecular information, tumour grade is the most used
feature—21 out of the 31 studies—followed by hormone receptor and tumour invasion—15
and 13 out of the 31 studies, respectively. These finding are aligned with the medical
guideline [54,55]. Considering pathological images, MRI are the most used type of images—
12 out of the 31 studies. These finding are aligned with the medical guideline [74]. Finally,
this review confirms that consensus in the definition of feature selection and its validation
over appropriate datasets is still an open problem.

In response to our third study question to identify the common training and testing
methodologies, our findings cover different aspects. (i) Dataset size and class balance. Most
of these studies had a limited number of patients, <1000, especially for a common disease
such as breast cancer. However, number of patients developing recurrence, follow-up
recurrence window, and difficulty in keeping patients records for a long time present
challenges to collecting data on the risk of recurrence. None of the studies had balanced
data, recurrence cases are less than 30% in all datasets [5]. Nevertheless, there are some
strategies in artificial intelligence to overcome imbalanced data data augmentation [75] and
synthetic data [76]. (ii) Sampling strategies. Simple random is the strategy most used in
the evaluated studies—20 out of 31—which is a population selection entirely by chance.
This kind of strategies could affect equity and affect the inclusion of some features during
the training or testing procedures [58]. (iii) Data handling strategies. Taking into account
the small datasets size for predicting the risk of recurrence, reducing size of the datasets
becomes even more critical when most of the research does not deal with lack of data. This
lack of data standardization also causes issues with data transfer. It makes data collection
and cleansing more difficult [77]. (iv) Validation strategies. The cross-validation approach
was employed in the majority of research—18 out of 31. However, because potentially
biased or imbalanced data leads to a biased evaluation of a biased training model on a
biased test set, this strategy cannot guarantee the quality of a Machine Learning model. An
external model validation is the most recommended strategy, this was used in 11 out of 31
studies. This is directly affected due to dataset size. (v) Dataset availability. The majority of
studies used private datasets—18 out of 31—that contain data from specific healthcare or
research centers, affecting inclusion and generalization into the models. Additionally, this
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fact affects reproducibility and further comparison of the obtained results [58,61]. All these
findings are aligned with the review presented by Abreu et al. [19].

Our fourth research question is to identify and critically appraise what model eval-
uation metrics are being used, and what are the advantages and disadvantages. Given
the class imbalance present in the associated datasets, it is encouraging to find that most
of the studies used specificity, sensitivity, accuracy, and AUC—20, 19, 18, and 16 out of
the 31, respectively. Some studies have discussed precision and accuracy metrics in term
of trustworthiness for imbalanced classes [19], as they do not effectively identify genuine
positive and true negative rates. However, we found that all studies that use precision and
accuracy also use complementing metrics such as specificity, sensitivity, and AUC.

Finally, none of the 31 studies shows evidence of being used in clinical practice or
validated in a real-world context. Translating artificial intelligence proposals into medical
practice or increasing the likelihood of them being validated in a real-world setting is
still an open problem. However, artificial intelligence implementation needs to be rigor-
ously assessed to be embraced responsibly [78,79], considering that medical errors caused
by incorrect artificial intelligence are both costly and harmful. A blunder in forecast-
ing the probability of breast cancer recurrence could have disastrous consequences for
health-related quality of life and outcome [64]. However, there are some clinical practice
approximations in related areas. The Food and Drug Administration (FDA) approved the
cytology-based PAP smear test (Papanicolau test) using digital pathology and artificial
intelligence for screening cervical cancer a while ago. However, artificial intelligence uses
in routine clinical histopathology practices have been extremely limited [80]. In recent
years, a new AI-based software, Paige Prostate has been developed to identify the area of
prostate biopsy images with the highest likelihood of harboring cancer for further evalua-
tion by the pathologist if the cancer is not detected on the initial review [81]. In 2021, the
FDA authorized the marketing of Paige Prostate for the automated detection of cancer in
prostate biopsies to assist pathologists in the detection of areas that are suspicious for cancer
as an adjunct to the manual review of digitally scanned slide images. Moreover, Paige
Prostate was recently tested on real-world data from a diagnostic histopathology laboratory
located in a different country to classify slides into two categories: benign (no further
review needed) or suspicious (additional histologic or immunohistochemical analysis re-
quired). Using Paige Prostate (in comparison to diagnosis established by two independent
pathologists), the authors demonstrate that incremental improvements can be achieved
in diagnostic accuracy and efficiency and that it has the potential to be employed for the
automated identification of patients whose histological slides could forgo manual review
by a pathologist [82]. In 2019, one of the leading clinical digital pathology service providers
Phillips teamed up with Paige Prostate to bring artificial intelligence based solutions to
clinical pathology diagnostics. Philips IntelliSite Pathology Solution in combination with
CE marked Paige Prostate aims to provide an intuitive digital and computational pathology
workflow experience to clinicians in Europe(ref-link-1). Besides the conditional approval
for the US market, Philips IntelliSite Pathology Solution has market clearance in European
Economic Area, United Kingdom, Ireland, and Singapore [83].

5. Conclusions and Future Work

Predicting the risk of recurrence in breast cancer is crucial for choosing proper treat-
ment methods, as well as reducing morbidity and mortality [5]. Our literature search
screened 492 articles to identify potentially relevant studies. The study provides an
overview of artificial intelligence techniques, feature predictors, common training and
testing methodologies, evaluation metrics, and systems implementation in clinical practice
to predict the risk of recurrence in breast cancer. Although there are many research papers
on this topic in the past decade, it remains an open problem.

On the one hand, according to this review, artificial intelligence techniques have
performed well on independent and ensemble approaches, which is consistent with pre-
vious literature reviews [19]. Large datasets, on the other hand, are required to be made



J. Pers. Med. 2022, 12, 1496 17 of 21

publicly available in order to evaluate standardised models among the various proposals.
Big datasets, data augmentation, and synthetic data methodologies should be researched
extensively to enable Deep Learning solutions for the prediction of risk of recurrence in
breast cancer.

In summary, translation of artificial intelligence approaches into medical practice
remains a challenge. However, in order to increase changes of acceptance within clinical
context, artificial intelligence implementations must be thoroughly evaluated [78,79].
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