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Abstract: Aggression risk assessments are vital to prevent injuries and morbidities amongst patients
and staff in psychiatric settings. More recent studies have harnessed artificial intelligence (AI) methods
such as machine learning algorithms to determine factors associated with aggression in psychi-
atric treatment settings. In this review, using Cooper’s five-stage review framework, we aimed to
evaluate the: (1) predictive accuracy, and (2) clinical variables associated with AI-based aggression
risk prediction amongst psychiatric inpatients. Databases including PubMed, Cochrane, Scopus,
PsycINFO, CINAHL were searched for relevant articles until April 2022. The eight included studies
were independently evaluated using critical appraisal tools for systematic review developed by
Joanna Briggs Institute. Most of the studies (87.5%) examined health records in predicting aggression
and reported acceptable to excellent accuracy with specific machine learning algorithms employed
(area under curve range 0.75–0.87). No particular machine learning algorithm outperformed the
others consistently across studies (area under curve range 0.61–0.87). Relevant factors identified
with aggression related to demographic and social profile, past aggression, forensic history, other
psychiatric history, psychopathology, challenging behaviors and management domains. The limited
extant studies have highlighted a potential role for the use of AI methods to clarify factors associated
with aggression in psychiatric inpatient treatment settings.

Keywords: aggression risk; artificial intelligence; inpatient; prediction; psychiatry; violence risk

1. Introduction

Patients with psychiatric disorders, including schizophrenia, affective conditions, and
substance use disorders, have been associated with a greater risk of aggression [1]. Aggression
is defined as a range of hostile behaviors intended to cause harm [2]. Specifically, patients
with psychiatric disorders were three to four times more likely than their siblings without
psychiatric disorders to be either subjected to aggression or perpetrate aggression [1].
A meta-analysis also found that one in five psychiatric inpatients was assaultive during
their hospitalization [3]. Such aggressive episodes can potentially result in physical injuries,
prolonged hospitalization and feelings of fear and trauma in victims [4]. Of note, healthcare
workers can be victims of such aggression. Ninety-one percent of all healthcare workers,
including psychiatrists, psychologists, nurses, social workers and allied health workers,
had previously reported experiencing verbal abuse, 45% experienced physical aggression
and 23.8% sustained injuries [5]. More than a quarter (26%) of psychiatric nurses suffered
serious injuries such as fractures, permanent disabilities or eye injuries during their work
dealing with restraints of patients under their care [6]. Consequently, such injuries can
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aggravate burnout, emotional and psychiatric issues, and affect morale and job satisfaction
amongst healthcare workers [7,8]. Being able to predict the occurrence of such aggressive
episodes prior to their onset would allow for better preparation to prevent or mitigate the
onset and manage the aggressive episode if it occurs.

There are risk assessment tools that have been utilized widely to predict aggression
in patients with psychiatric conditions [9]. However, some of these aggression risk assess-
ment tools face limitations in terms of sensitivity and specificity, generalizability to other
populations, limited sample size, clinical parameters or data points [9–12]. Less-valid and
reliable aggression risk assessments potentially predispose patients to unfair stigma and
discrimination. False positive assessment scores render lower-risk patients to unjustifiable
restrictions and higher risk patients to possibly less-warranted medical attention [13].

With the advances in harnessing artificial intelligence (AI) methods to evaluate big
data, it is hoped that this may help to address existing limitations and allow for more
accurate aggression risk prediction amongst patients seen clinically. Initially used in other
areas of medicine, artificial intelligence algorithms, including machine learning methods,
have been increasingly evaluated in psychiatry for their feasibility in the: (1) classification
of patients from healthy individuals based on composite data in psychotic disorders [14,15]
and affective disorders [16]; (2) prediction of depressive disorders [17] and anxiety disor-
ders [18]; and even (3) drug repurposing for potential new treatments in substance use
disorders [19]. In aggression risk assessment, predictive analysis can be used to evaluate
specific contributory and dynamic factors related to aggression, including personalized
data from physiological, movement sensors and electronic health records [20].

Therefore, in view of emerging data on the use of artificial intelligence in psychiatry,
especially with regard to feasibility and great potential in aggression risk prediction, we
conducted a systematic review and synthesis of the extant literature with two specific aims,
namely: (1) to determine the predictive accuracy using artificial intelligence methods for
aggression risk prediction amongst psychiatric inpatients, and (2) to elucidate associated
clinical factors in predicting aggression risk amongst psychiatric inpatients.

2. Methodology

This systematic review was guided by the Joanna Brigg’s Institute (JBI) guidelines for
the conduct of systematic review [21]. The methodological rigor in this paper was guided
by the five-stage framework [22], namely problem formulation, data collection, evaluation,
analysis and interpretation.

2.1. Problem Formulation

In this problem formulation stage, we considered the issues related to the use of artifi-
cial intelligence methods in predicting aggression within inpatient psychiatric treatment
settings. The questions included:

1. What is the predictive accuracy for aggression risk prediction amongst psychiatric
inpatients using artificial intelligence methods?

2. What are the associated clinical variables identified in predicting aggression risk
amongst psychiatric inpatients?

For the first question, predictive accuracy was determined by measures in relevant
studies, including area under curve (AUC), sensitivity, specificity, positive and negative
predictive values wherever available.

2.2. Data Collection

In this data-collection stage, Pubmed was searched using the key words ‘violen*’
AND ‘inpatien*’ and ‘(artificial intelligence)’. The initial search led to an identification of
all keywords. They were ‘(artificial intelligence)’ OR ‘(machine learning)’ OR ‘(natural
language processing)’ OR ‘(neural network)’ OR ‘(data science)’ OR ‘(expert* system*)’ OR
robot* OR digital* OR technolog* OR device* AND inpatien* AND violen* OR aggressi*
OR assault* (Table A1). The team searched for published studies through several electronic
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databases: PubMed, Cochrane, Scopus, PsycINFO, CINAHL, ERIC, EMBASE, and Sci-
enceDirect. Three databases were searched for unpublished studies: Proquest Dissertation
and Theses Global, clinicaltrials.gov and ISRCTN Website. The authors also examined
reference lists of review papers, including systematic reviews, meta-analyses, and original
research. All empirical studies that were published from inception till the end of April 2022
were included. Please see Figure 1. A total of eight studies were eventually included in
this review.
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2.3. Evaluation (Study Selection and Quality Assessment)

For study selection, inclusion criteria were: (1) target setting was the inpatient psychi-
atric setting with patient populations across the range of psychiatric diagnoses, (2) use of
artificial intelligence methods to predict or manage violence, and (3) only studies in English
were included. Qualitative and opinion papers were excluded.

For quality assessment, studies were evaluated for methodological quality by two
team members independently. For this stage, we used the Joanna Briggs Institute Critical
Appraisal tool for diagnostic test accuracy studies [23]. The inter-rater reliability for the scored
items was 75% between the raters. Discrepancies for two papers were settled through thorough
discussions within the team and resolved with another independent team member. Overall,
the quality scores of the included studies ranged from one to seven (Appendix A).

2.4. Data Analysis and Interpretation

Data analysis and interpretation steps were conducted by collating, summarizing, and
charting the study findings. For each study, details such as clinical setting, participant or
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data characteristics, specific measures, if available, and relevant findings were included (see
Table 1 for details). In terms of data analysis, statistical pooling was not possible due to the rel-
atively small number of studies and heterogeneity of study designs and patient populations.

Table 1. Details of included studies.

Authors/Year
Country/Setting

Patients/
Health Records Variables Measured Measure Main Findings

Goodwin et al., 2019

United States

Inpatient setting

Autism spectrum disorder,
aged 6–17 years old

(n = 20)

Wearable wrist biosensor,
E4, which measures heart
rate, heart rate variability,
sweat glands autonomic
innervation, and changes
in sympathetic nervous

system arousal.

Nil

Data were evaluated in
cycles of 15 seconds.

Aggressive behaviors
could be predicted 1 min

before they happened,
with 3 min of prior

biosensor information.

Günther et al., 2020

Switzerland

University Hospital of
Psychiatry Inpatient

Setting

Schizophrenia, with
offence history (n = 358)

Data obtained from
physical records,

including psychiatric
assessments, treatments
and reports from legal

documents.

Symptoms were measured
with close adoption of
Positive and Negative

Symptoms Scale,
classifying symptoms as

present or not.

569 variables narrowed
down to 10 predictor
variables: aggression

threat, actual aggression,
prior direct coercive

methods, poor impulse
control,

uncooperativeness,
hostility, Haloperidol
prescription, higher

PANSS scores, higher
antipsychotic dosage and

unfavorable legal
prognosis.

Hofmann et al., 2022

Switzerland

University Hospital of
Psychiatry Zurich
Inpatient Setting

Schizophrenia spectrum
disorder (n = 352)

Data obtained from
physical records including
demographic data, social

data, childhood and youth
history, psychiatric history,
criminal history, forensic

data, circumstances of
current hospitalization

and psychopathological
symptoms.

Symptoms were measured
with the adopted Positive
and Negative Symptoms
Scale, classifying whether

symptoms were absent,
partially present or

substantially present.

507 probable variables
narrowed down to 10

predictor variables:
complaints about staff,

adverse behaviors
towards patients,

antisocial behaviors,
breaking of ward rules,

time at high dependency,
higher PANSS score, and
adapted PANSS scores for

hostility, tension,
uncooperativeness and
poor impulse control.

Menger et al., 2018

Netherlands

University Medical Center
Utrecht, Inpatient Setting

Electronic health records
(n = 1,015,931)

Data from electronic
health records written by
psychiatrists or nurses in

free text format.
Psychiatrists’ notes

included patient history
and treatment. Nurses’
notes included patients’

well-being and activities.

Nil

Classical models like
Naïve Bayes and Decision

Trees did not achieve
equivalent performance
with other algorithms,

likely due to their
simplicity and inability to
detect complex patterns.

Menger et al., 2019

Netherlands

Inpatient Setting

Electronic health records
of patients with psychotic
disorders, mood disorders,

personality disorders,
substance-related

disorders
Site 1 (n = 2209 patients)
Site 2 (n = 3253 patients)

Data from electronic
health records of patients

who were admitted. Notes
were from 4 weeks prior to
patients’ admission up to

the initial 24 h of
admission. The free text
data were converted to
numerical form using

paragraph2vec algorithm.

Staff Observation
Aggression Scale-Revised

Internal validation:
Site 1: AUC = 0.80,
specificity = 0.94,
sensitivity = 0.33

Site 2: AUC = 0.76,
specificity = 0.95,
sensitivity = 0.34

External validation:
Site 1: AUC = 0.72,
specificity = 0.93,
sensitivity = 0.25

Site 2: AUC = 0.64,
specificity = 0.93,
sensitivity = 0.13
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Table 1. Cont.

Authors/Year
Country/Setting

Patients/
Health Records Variables Measured Measure Main Findings

Suchting et al., 2018

United States

Harris County Psychiatric
Center, Inpatient setting

Electronic health records
(n = 29,841)

Data from electronic
health records, including

demographic data,
psychosocial assessment,

childhood, education,
military and work history,
medical and psychiatric

history, substance use and
treatment, abuse, and
financial and living

situation.

Affective Disorders Rating
Scale

328 probable variables
narrowed down to 20

predictor variables:
homelessness, forensic
assault history, abuse

history (witnessed and
perpetrated), younger age,
aggressive history, lower

educational levels, having
suicidal ideation upon
admission, underwent

special education,
depressive history,

problematic work history,
no children, poor sleep,

family history of suicide,
single, impaired mental

state, risk issues, financial
difficulties and no prior

work history.

Van Le et al., 2018

Australia

Wilfred Lopes Centre,
forensic inpatient

Electronic Health Records
(n = 220,000)

Electronic health records
of time-sequenced
narrative records

illustrating observations
and comments about each

patient.
Terms were extracted

using different
dictionaries: symptom,

sentiment and frequency.

Dynamic Appraisal of
Situational Aggression

(DASA)
Historical Clinical Risk

Management-20 (HCR-20)

Short-Term Assessment of
Risk and Treatability

(START)

DASA:
Support Vector Machine
and Logistic Model Tree

produced the best models
with all three dictionaries.
Support Vector Machine
had accuracy = 0.77, and
LMT had accuracy = 0.75.
Best prediction of DASA

scores weas from the
examination of sentiment

language, accuracy
0.56–0.77.

HCR-20:
Algorithms performed

better for symptoms rather
than frequency dictionary.

START dataset:
Root Mean Square Error of

6.29–14.92, and deemed
non-reliable.

Wang et al., 2020

Canada

Centre for
Addiction and Mental

Health, Inpatient setting

Schizophrenia spectrum
disorder (n = 275)

Data from electronic
health records, including

demographic data,
psychiatric history,

lifetime alcohol and drug
use, suicidal behaviors,

personality, experiences of
abuse or neglect, family

history of mental
disorders and suicide.

Modified Overt
Aggression Scale

Columbia- Suicide
Severity

Rating Scale

Childhood Trauma
Questionnaire

NEO Five Factor
Inventory

Predictors of aggression
that were significant
included older age

(p < 0.001), increased
hospitalizations

(p < 0.001), lower
agreeableness (p = 0.015)
and previous history of

physical neglect (p = 0.042).

Predictors of
non-aggression included

immigration after 18 years
old (p = 0.033) and family
history of mood disorders

(p = 0.048).

AUC = Area under curve; n = number; p = value; P = Participant; PANSS = Positive and negative syndrome scales.
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3. Results
3.1. General Features of Included Studies

We evaluated 31 studies for eligibility and excluded 23 studies due to different reasons,
leaving eight relevant studies which were included in this review (Figure 1). The method-
ological qualities of the studies (see Appendix A) were diverse, with quality scores ranging
from one to seven.

The included studies were conducted mainly in the West, namely, the United States
(n = 2), Netherlands (n = 2), Switzerland (n = 2), Australia (n = 1) and Canada (n = 1). Partic-
ipants varied from children, forensic patients to patients with diagnoses including autism
spectrum disorder, schizophrenia and mood disorders. Sample sizes ranged from 20 to 358.
Five studies described the inclusion of data from electronic health records [24–28], while
two studies examined patients’ files [29,30]. The numbers of involved health records ranged
from 29,841 to 101,5931 records. Another study captured relevant data for aggression risk
prediction using wearable sensors that collected psychophysiological information [31]. The
details of the individual studies are summarized in Table 1.

3.2. Preparation of Data Points and Process in AI Modelling

Seven studies analyzed data from healthcare records using artificial intelligence mod-
els, with five specifically using data from electronic health records [24–28]. These studies
described several steps in processing their data for machine learning analysis.

First, texts are extracted for analysis. The texts could be derived from different
dictionaries (symptom, sentiment, frequency and diagnosis) [25], guided by existing tools
to quantify psychopathological symptoms [29] or proposed by clinicians and data science
experts [24,29].

Next, the extracted text underwent further processing [26,27]. The tools used to process
the texts included Natural Language Toolkit (NLTK), bag-of-words, Tf-idf (Term frequency–
Inverse Document Frequency), word2vec and Paragraph2vec. Alternatively, the extracted
texts were recoded as categorical and continuous data, and categorical data were recorded
as binary data [29,30].

Variables with massive missing data (>33%) were excluded [29,30], and other missing
variables were handled by imputation [29,30]. Conversely, in another study, missing data
were dealt with using the creation of ‘missing’ categorical data or via machine learning
algorithms such as imputation and data partitioning [24].

Data modelling was conducted with R statistical program [24,29,30] or python [26,28].
Data were split for training and testing. Three studies described this process, where two
studies reported using 30% of the data for testing [29,30] while one study used 20% [24].
Four studies highlighted the issue of overfitting [25,27,29,30], which is a machine learning
model that fits the training data so well that it impacts model performance on new data [32].
It is the most significant bias that can result from machine learning. Various studies
described strategies to minimize overfitting issues such as nested cross-validation [26],
nested re-sampling [29,30], five-fold cross-validation strategy, ten-fold stratified cross
validation [25], reduction in identified variables [29,30] and using specific algorithms such
as elastic net and lasso (least absolute shrinkage and selection operator). Additionally,
samples allocated for the testing set were excluded from the training set [25].

Finally, data points were tested using different machine learning models such as logis-
tic regression, decision trees, random forest, gradient boosting, k-nearest neighbor, support
vector machines, naïve bayes and evaluated with accuracy markers such as sensitivity,
specificity, area under the curve (AUC), positive and negative predictive values.

3.3. Accuracy of Artificial Intelligence Methods in Predicting Aggression Risk and
Relevant Variables

Our first research question is “What is the predictive accuracy for aggression risk
prediction amongst psychiatric inpatients using artificial intelligence methods?”
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Most studies reported the Area under the Curve (AUC) value as the accuracy value
in the Receiver Operator Characteristics (ROC) curve (Table 2). ROC curve is the graph
that plots sensitivity against one minus specificity, which effectively differentiates between
true negatives and positives [33]. AUC summarizes the receiver operating characteristic
(ROC) curve by providing a measure that differentiates between positive and negative
cases. Interpretation of ROC scores were as follows: 0.9 and above (outstanding), 0.80
to <0.90 (excellent), 0.7 to <0.8 (acceptable) and 0.50 to <0.70 (poor discrimination) [34].
The included studies reported acceptable to excellent accuracy with specific employed
machine learning algorithms (AUC range between 0.75–0.87). No single machine learning
algorithm outperformed the others consistently across the few studies (AUC range between
0.61–0.87).

A study examined the effects of biosensor wearable on wrist [31]. The global model
was evaluated by a single classifier containing data from all sessions and participants,
whereas person dependent model pertained to personalized evaluation of multiple sessions
of a sole participant. It achieved an AUC of 0.71 for the global model and 0.84 for person
dependent model. No specific algorithm outperformed consistently amongst studies that
utilized AI methods to analyze healthcare records for aggression risk prediction, which
included models such as naïve bayes [29], support vector machine [25,27,30], generalized
linear model [24], logistic regression [29], random forest, model tree [25] and recurrent
neural network [27].

In terms of the factors influencing study findings, one study found that predictive
accuracy was greater for earlier rather than later aggression and shorter rather than longer
hospitalizations [26]. Results were also influenced by other factors such as the type of text
classification and dictionary used. Text embedding was found to perform better than bag-
of-words strategies [27]. Document embedding, as compared with other strategies, allowed
deep learning models to perform better [27]. The study conducted in Australia found that
the sentiment dictionary, which consisted of negative and positive sentiment/ opinion
words relevant to emotions, outperformed the symptom dictionary, diagnosis dictionary
and frequency dictionary in aggression prediction [25].

3.4. Relevant Clinical Variables in Predicting Aggression Risk Amongst Psychiatric Inpatients

Our second research question is “What are the relevant clinical variables identified
in predicting aggression risk amongst psychiatric inpatients?” In terms of relevant clini-
cal variables from rating tools and health records identified in the few studies, they can
be grouped into factors pertaining to demographic and social profile (e.g., younger and
older age, single, childless, fewer years of education, special education, unemployment,
problematic work history, financial issues, homelessness, experience of physical neglect);
personality (e.g., lower agreeableness); family history (e.g., of suicide); past aggression
history (e.g., aggressive threats, witnessed, perpetrated abuse); forensic history (e.g., assault
history, poor legal prognosis); other psychiatric history (e.g., depression, suicidal ideation,
insomnia, multiple psychiatric admissions); mental status (e.g., uncooperativeness, hos-
tility, irritability, agitation, poor impulse control, psychotic features); rating scales (e.g.,
high PANSS total scores, positive PANSS score for tension); challenging behaviors (e.g.,
antisocial behaviors, negative behaviors towards staff and fellow patients, breaking ward
rules, complaints about staff); and management domains (e.g., coercive measures needed,
time in high security wards, seclusion, haloperidol prescription and higher antipsychotic
dose) [24,26,29,30].
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Table 2. AUCs of machine learning models.

Authors Machine Learning Models

Logistic
Regression

Support
Vendor

Machine
GLM Random

Forest GBM K-Nearest
Neigbour

Decision
Tree Naive Bayes J48 Others NN RNN CNN

Goodwin
et al., 2019

Global:
* 0.71
PD:

** 0.84
Günther

et al., 2020 ** 0.85 ** 0.84 ** 0.86 ** 0.84 ** 0.80 * 0.79 ** 0.85

Hofmann
et al., 2022 ** 0.85 ** 0.87 ** 0.83 ** 0.85 ** 0.80 ** 0.85

Menger et al.,
2018

+BB: * 0.76
+BTI: * 0.76
+WE: * 0.76
+DE: * 0.77

+BB: * 0.73
+BTI: * 0.72
+WE: 0.69
+DE: 0.67

+BB: 0.69
+BTI: * 0.70
+WE: * 0.70
+DE: 0.69

+BB: * 0.73
+BTI: * 0.72
+WE: * 0.75
+DE: * 0.75

+BB: * 0.77
+BTI: * 0.75
+WE: 0.65
+DE: * 0.79

+BB: * 0.73
+BTI: * 0.72
+WE: 0.68
+DE: * 0.76

Menger et al.,
2019

Internal
validation: *
0.76–** 0.80

External
validation:
0.64–* 0.72

Suchting
et al., 2018 * 0.78 * 0.74 * 0.78 * 0.71

# Van Le et al.,
2018

+ST: 0.69
+SY: 0.64

+F:
0.61

+ST: * 0.74
+SY: * 0.70

+F: 0.69

Bagging
+ST: 0.70
+SY: 0.68

+F:
0.69

+ST: * 0.75
+SY: * 0.70

+F:
* 0.73

+ST: 0.68
+SY: 0.68

+F:
0.59

Jrip
+ST: 0.64
+SY: 0.65

+F:
0.63

Wang et al.,
2020 0.64 0.64 ˆ 0.63

0.63
RBF =
0.62

0.64 for Lasso
and Elastic

net

Abbreviations: BB = Bag-of-words binary; BTI = Bag-of-words term frequency—inverse document frequency; CNN = Convolutional Neural Network; DE = document embeddings;
F = Frequency dictionary; GBM = Gradient boosting machine; GLM = Generalised Linear Model; PD = person dependent; NN = Neural Network; RBF = radial basis function;
RNN = Recurrent Neural Network; ST = Sentiment dictionary; SY = Symptom dictionary; WE = word embeddings;. ** excellent AUC value (0.80 to < 0.90), * acceptable AUC value (0.7
to < 0.8) as defined by Hosmer Jr et al., 2013; Bold = best performing algorithm according to AUC; ˆ best performing model according to accuracy; # results stated for accuracy.
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4. Discussion

Overall, there are few findings from this review. First, whilst the prediction accuracy
across tried models and studies had observed an acceptable to excellent range for specific
algorithms (AUC range 0.75–0.87), no single machine learning model outperformed the
others consistently across the studies (AUC range 0.61–0.87). Second, factors associated with
the risk of aggression related to the demographic and social profile, history of aggression,
forensic history, other psychiatric histories, mental status and challenging behaviours
during admission and management domains.

In terms of accuracy in the prediction of aggression risk based on AUC values, most
studies had acceptable to excellent accuracies, but there was no single model that out-
performed consistently across the studies. Our findings were comparable (AUC in the
acceptable to excellent range) with that of recent studies which employed machine learning
models in clinical predictions within inpatient settings related to suicide (AUC 0.77) [35],
readmissions (AUC 0.75–0.76), and length of hospital stay (AUC 0.85–0.86) [36]. In our
review, only two studies examined the newer supervised deep-learning models [24,27].
The newer supervised machine learning models have incorporated text sequence into
their algorithms, and one study found that the deep learning model, especially when
coupled with document embedding, achieved slightly better ROC [27] when compared
with earlier machine learning algorithms. However, the optimization and balance of data
point inclusion and fit of relevant included variables within a specific AI model need
further evaluation.

In terms of predictors of aggression, patients with certain demographic and social
characteristics were more prone to aggression. The findings in this review were congruent
with previous findings which included younger age [37–42], older age [43], being unmar-
ried [38,44–46], being childless [47], lower education [44], unemployment [44,48–50], lower
intelligence [38], financial issues [51,52] and homelessness [53]. Of note, an earlier study
found an association between homelessness and crimes, but not specifically aggressive
crimes [54]. Being subjected to physical neglect was also a predictor of aggression in this
review. In contrast, existing literature highlighted other related factors such as physical
abuse [55,56], separation from caregivers during growing up years [49], parental abuse
and antisocial behaviors towards family members, family illnesses and conflicts [50] as
pertinent predictors of aggression.

A common clinical predictor was having prior assaultive history, including aggressive
threats, witnessed and perpetrated abuse [24,29,50], which is consistent with extant find-
ings [57–59]. Our findings of other aspects in the psychiatric history were also reported
in earlier studies, such as depression [40], insomnia [60], suicidal ideations [61,62] and
frequent admissions [43]. Like findings from this review, earlier studies had also found
that high total PANSS scores predicted aggression [29,50], especially for items such as
poor impulse control [63,64], irritability [65], uncooperativeness [66], hostility [41,64] and
tension [29,30]. This review found that forensic history and having a poor legal prognosis
were predictive of aggression. Likewise, a meta-analysis of 110 studies found that forensic
history was the strongest static factor for predicting aggression [64]. In contrast to findings
from this review, other studies also observed positive psychotic symptoms [40,50], negative
symptoms [50] and poorer insight [40,66] as predictive of aggression.

In terms of the management domain, the usage of haloperidol and high antipsychotic
dosage were associated with aggression. The use of haloperidol and high antipsychotic
dosage [39] were probably an effect, rather than a cause for aggression [67]. In addition, it
was thought that poor compliance with pharmacological and non-pharmacological thera-
pies were correlated with aggression [64], as well as the discontinuation of pharmacological
treatment in patients with psychotic disorders such as schizophrenia [50]. In contrast
with the current review, other studies also identified additional predictors of aggression,
including involuntary admission [68] and off-hour admission [43].

There are several possible inter-relationships between the factors mentioned. For ex-
ample, homelessness may interact with mental illness, unemployment, need for financial aid
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and aggression. People with mental illnesses were more likely to be unemployed, aggravating
their financial difficulties, which can be associated with homelessness and vice versa [69,70];
homelessness has been independently linked to aggression [71,72]. In addition, the rela-
tionship between poorly controlled mental illnesses such as psychotic disorders, level of
psychopathology based on PANSS score ratings, and aggression is also plausible. People
with poorly controlled psychotic disorders can have more severe psychotic psychopathol-
ogy and aggression, with higher PANSS total and subdomain scores, and may require
involuntary admissions for management of the psychiatric illness and a higher psychotropic
dose at the beginning for stabilization [73].

There are several ethical considerations surrounding the use of AI in aggression risk
prediction. First is the issue of privacy and surveillance related to principles of respect
for persons and non-maleficence. The possibility of such data collection for aggression
prediction can potentially translate to blanket surveillance of all patients. Hence, setting
certain limits to data access, for example, only on a “need to know and predict basis” for
on-duty staff may be useful to protect patients’ privacy [74]. Second, to benefit practical
interventions in the clinical settings, evolving clinical context and factors need to be consid-
ered when interpreting findings derived from AI platforms and algorithms [74]. Third, any
clinical management plan that incorporates data using AI methods to predict and prevent
aggression needs to be reviewed over time to ensure that patients are not subjected to
unnecessary or unfair seclusion measures.

There are several limitations within this review. First, there were few studies examining
the use of AI methods in aggression risk prediction. Second, the heterogeneity of the
included studies with the small number of studies to date limited further quantitative
analyses, including parcellation of subtypes of aggression. Third, most studies were
conducted cross-sectionally and longer-term effects of AI methods in aggression risk
prediction were not examined. Fourth, there was also a paucity of data on how AI helps in
mitigating and managing aggression in psychiatric inpatient settings over time.

There are several possible future research directions. First, as aggression risk prediction
is dynamic; an area where artificial intelligence can be harnessed is its ability to provide
iterative and relevant predictions with continual input of current and new data from health
records. The dynamic data can potentially shed light on the changing unique clinical
profiles of patients related to aggression over time. Second, different machine learning
algorithms and models can be combined to better identify longitudinal predictive variables
for personalized prevention of aggressive behaviors in inpatient psychiatric treatment
settings. Third, incorporating relevant clinical and biological information such as data from
clinical assessments, laboratory tests, neuroimaging and neurocognitive assessments can
proffer insights into underlying biological factors associated with aggression. It is hoped
that the stigma against patients with aggressive tendencies in inpatient settings can be
further reduced as we better understand personalized etiological and predictive markers
for aggression and reformulate preventive efforts.

5. Conclusions

In conclusion, the review revealed that the limited extant studies using machine
learning methods had shown its potential to elucidate relevant factors in aggression risk
prediction within psychiatric inpatient treatment settings. Further research is needed to
investigate the inclusion of additional, longitudinal data points and assess using different
machine learning models in order to better understand the inter-relationships between
these static and dynamic factors and clinical outcomes over time.
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