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Abstract: Unrestricted Kinematic alignment (KA) in total knee arthroplasty (TKA) replicates the
joint line of each patient by adjusting the cuts based on the anatomy of the patient. Mechanical
alignment (MA) aims to restore a neutral mechanical axis of the leg, irrespective of the joint line
orientation. The purpose of the present study was to compare contact pressure and contact areas of
the polyethylene (PE) bearing surface as well as von Mises stress of the PE-tibial tray interface for MA
and KA in the same patient, using CT data and finite element analysis. Finite element models were
created from lower leg CT scans of 10 patients with knee osteoarthritis with different phenotypes.
Mechanical PE properties were experimentally determined by tensile tests on dumbbell specimens.
For numerical simulation purposes an adjusted non-linear material model with the maximum load
to failure of 30.5 MPa, was calibrated and utilized. Contact pressure points were the deepest parts
of the polyethylene inlay. Contact pressures were either very similar or were increased for MA
knees throughout the gait cycle. KA either increased or had a comparable contact area, compared
to MA. KA and MA produced comparable von Mises stresses, although both alignments breached
the failure point of 30.5 MPa in all 3 valgus knees. This might indicate a higher probability of failure
at the inlay-tibial baseplate interface. By maintaining the joint line orientation, KA reduces or has
comparable contact pressures on the PE bearing surface by increasing or maintaining the contact area
throughout one gait cycle in a validated finite element analysis model in 10 different knee phenotypes.
The von Mises stress on the PE-tibial component interface was comparable, except for the valgus
knees, where the load to failure was achieved in both alignment strategies and slightly higher stresses
were observed for KA. Further studies for different knee phenotypes are needed to better understand
the pressure changes depending on the alignment strategy applied.

Keywords: total knee arthroplasty; kinematic alignment; mechanical alignment; UHMWPE; finite
element analysis

1. Introduction

In total knee arthroplasty (TKA), unrestricted kinematic alignment (KA) has been
proposed as an alternative to mechanical alignment (MA). Whereas MA aims to restore
a neutral mechanical axis of the leg [1], KA aims to restore the native joint kinematics by
aiming to restore the 3 kinematic axes of the knee [2]. Some of the concerns around KA
were based on previous studies reporting increased loosening rates of the implants, in
particular of the tibial component [3]. One of the pillars of MA was the fact that the implant
position perpendicular to the mechanical axis equalizes the load on the medial and lateral
aspects of the components, thus ensuring the longevity of the implant [1].
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Mid- to long-term data did not demonstrate a difference in revision rate [4–6] and
demonstrated comparable or slightly favorable clinical outcomes of KA over MA [5,7].
Regardless, some studies suggest that unrestricted KA can cause high loads on both the
bone-implant interface as well as on the implants [8,9].

In earlier biomechanical tests, KA improved knee kinematics but demonstrated in-
creased stress on the tibia [8]. Similarly, earlier finite element (FE) analyses found improved
kinematics of KA over MA, but with increased contact stresses [9]. More recent FE studies
have shown decreased stresses [10] or no difference [11].

Most previous studies revolve around a very small number of knee models or even
one knee model, with a limited number of knee phenotypes, interpret KA in inconsistent
ways, and use older or non-existing implants.

The purpose of this study was to compare polyethylene contact pressure, contact area
and von Mises stresses in a cohort of 10 patients with different knee phenotypes.

2. Materials and Methods
2.1. Patient Data and Models

Data of 10 patients with knee osteoarthritis (OA) undergoing knee arthroplasty were
used for the study, which was approved by our local ethical committee (Johannes Kepler
University Linz, 1146/2021). CT scans of the hip, knee, and ankle were obtained using
an established protocol used for partial and total knee arthroplasty [12]. Hip-knee-ankle
angle (HKA), femoral mechanical angle (FMA), and tibial mechanical angle (TMA) were
calculated for each patient [13]. Patient knee phenotypes were classified according to the
classification proposed by Hirschmann et al. [14].

The transformation from CT data into a 3D model was done using 3D Slicer [15]. The
models were edited and preprocessed using Siemens NX (Siemens AG, Munich, Germany)
and Abaqus (Simulia Dassault Systems, Providence, RI, USA). The analyses were per-
formed using the Abaqus Knee Simulator (Dassault Systems). The former computer-aided
design (CAD) software provided the environment to perform preparations concerning
the alignment strategies in a geometrical manner whereas the latter one was used to set
up the numerical simulation including discretization, material models, boundary condi-
tions, and loads. All analyses were performed using the CAD models of the 5C© total
knee arthroplasty system (Implantcast, Buxtehude, Germany), using a cruciate retaining
polyethylene with 9 mm thickness. Thus, the ligament properties also had to be considered
within the numerical analysis. To realize this, the anatomically necessary ligaments were
modeled by utilizing nonlinear, elastic connector properties to keep the calculational effort
reasonable. Further, a hyperelastic material model describes the mechanical response of the
shell elements discretized vastus intermedius, rectus femoris, and the patella ligament. The
5C© (Implantcast) has 12 femoral component sizes, with sizes 8–12 also in a narrow version.
The component is posterior referenced, single-radius, bone sparing, with non-linear growth
between 1.7 and 2.9 mm between sizes anterior-posterior. There are 12 tibial component
sizes, with 7 inlay heights.

2.2. Implantation and Alignment

For MA TKA, CT-referenced digital implantation was performed by adjusting the
femoral and the tibial cut perpendicular to the respective mechanical axes, by removing
7 mm from the most distal point of the femoral condyle and 7 mm from the deepest
point of the prouder side of the tibial plateau. Assuming a native 1–2 mm cartilage
thickness, this achieves the implant thickness of 8 and 9 mm respectively. The tibial
component was implanted at 3◦ of the posterior slope, the femur was flexed at 6◦, and
rotated parallel to the trans-epicondylar axis. For KA TKA, 7 mm were removed in all planes
with the implants oriented parallel to these cuts. The tibial component was implanted
at 3◦ of the posterior slope, the femur was flexed at 6◦. The femur was sized to avoid
notching and mediolateral overhang. A dual fellowship-trained orthopedic knee surgeon
and a biomechanical engineer performed the implant position and determined the sizes
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for all cases. In total 20 models were generated referring to KA and MA TKA for each
analyzed patient.

2.3. Finite Element Analysis

In this study, the average gait cycle of a human being was analyzed according to a
representation of the corresponding apparent forces and torques in the human knee, using
a validated FE model [16]. Concerning the material modeling of the single components,
the bones were assumed as rigid because the main focus was on the deformation and
interaction of the single implant’s tibia tray, tibia insert, and femoral component. The
first and third ones were modeled as steel using a linear elastic model with a Young’s
modulus of E = 210,000 MPa and a Poisson ratio of v = 0.3. The tibial insert was modeled
as a non-linear hybrid material model specially designed for ultra-high molecular weight
polyethylene (UHMWPE). The model contains 18 parameters which were calibrated by
experimentally carried out tensile tests on the UHMWPE grade Gur-4130, manufactured in
compression molding applying a compression force of ten tons [17]. The material model is
based on the work of Bergström et al. [18–20]. As a reference, the maximum engineering
stress before failure was recorded at a value of σ_(eng,max) = 30.5 MPa.

After the finite element calculations had finished, the contact pressure and contact
area of the UHMWPE insert were calculated. The measurement points were the medial and
lateral deepest points on the UHMWPE insert, Figure 1. Finally, the maximum measured
von Mises stress between the tibia insert and the tibia tray was investigated.
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Figure 1. Measurements points concerning the extraction of the contact pressure values.

3. Results

Patient demographics and phenotypes are shown in Table 1.

Table 1. Hip-Knee-Ankle (HKA) angle configurations of the analyzed knee joints.

Patient Age (Years) Gender Knee Phenotype

P1 71 M VAR(HKA)3, VAR(FMA)3, VAL(TMA)3
P2 73 F VAL(HKA)9, VAL(FMA)6, VAL(TMA)6
P3 59 M VAR(HKA)9, NEU(FMA)0, VAR(TMA)3
P4 56 F VAR(HKA)3, NEU(FMA)0, VAR(TMA)3
P5 62 M VAR(HKA)9, VAR(FMA)3, VAR(TMA)3
P6 57 M VAL(HKA)6, NEU(FMA)0, VAL(TMA)6
P7 84 M VAL(HKA)9, VAL(FMA)3, VAL(TMA)6
P8 75 F VAR(HKA)6, NEU(FMA)0, NEU(TMA)0
P9 82 F VAR(HKA)6, NEU(FMA)0, NEU(TMA)0
P10 83 M VAR(HKA)9, VAR(FMA)6, VAR(TMA)9

As a result of evaluating the measurement points, Figure 2, with respect to the contact
pressure, one can track the evolution of the parameter over a whole gait cycle. The
generated line plots for all patients comparing medial/lateral and KA/MA are provided in
Figure 3. The solid lines represent KA configurations, while the dashed one indicates MA
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configurations. To distinguish between the medial and lateral position of the investigated
point blue and orange color is used, respectively.
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The contact pressures were either very similar or were increased for MA knees through-
out the gait cycle and have higher maximum values. In general, very volatile characteristics
shown by the valgus knees of P2, P6, and P7 are even amplified by MA configurations,
except briefly at the end of the cycle for P7. Coinciding with the force and torque plots
of the boundary conditions, all configurations show maximum values at around 2.5 s. A
maximum is reached in the case of P2–MA, a lateral point with a value of 28.2 MPa. Further,
a trend of shifting the higher contact pressure to the lateral side can be observed.

With respect to the contact area between the tibial tray and the femoral component, KA
either increased or had a comparable contact area, compared to MA, respectively, Figure 4.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 4. Contact area evolution in mm² of the tibia inserts over one gait cycle. 

There were some notable differences in von Mises stresses, Figure 5. In a few cases, 
especially valgus phenotype, P2, P6, and P7, both MA and KA breached the maximum 
stress of 30.5 MPa the UHMWPE can theoretically withstand, which is indicated by the 
dashed red line. A slight trend for higher stress concentrations in KA configurations is 
visible. Nevertheless, the finite element analyses of TKA in valgus knees, predict much 
higher stress concentrations compared to varus knees. In the right part of Figure 5, a typ-
ical example of such a stress concentration is shown. All maximum von Mises stress was 
located in the same region for all investigated configurations. 

Figure 4. Contact area evolution in mm2 of the tibia inserts over one gait cycle.

There were some notable differences in von Mises stresses, Figure 5. In a few cases,
especially valgus phenotype, P2, P6, and P7, both MA and KA breached the maximum
stress of 30.5 MPa the UHMWPE can theoretically withstand, which is indicated by the
dashed red line. A slight trend for higher stress concentrations in KA configurations is
visible. Nevertheless, the finite element analyses of TKA in valgus knees, predict much
higher stress concentrations compared to varus knees. In the right part of Figure 5, a
typical example of such a stress concentration is shown. All maximum von Mises stress
was located in the same region for all investigated configurations.
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4. Discussion

This study demonstrates that KA reduces or has comparable contact pressures on the
PE bearing surface at the beginning of the loading by increasing or maintaining the contact
pressure throughout one gait cycle in a finite element analysis model. The maximum von
Mises stress on the PE-tibial component interface was comparable between KA and MA,
except for the valgus knee. However, the overall stress field in the PE shows in general a
different distribution for KA and MA.

The best alignment of TKA is still a matter of debate. Until the emergence of KA,
MA was regarded as the gold standard [1], and, according to some authors, still is [5].
The coronal malposition in MA has been shown to be a reason for failure [3]. This has
been corroborated by finite element analyses. Stan et al. used a single FE model and
implanted the tibia in 0◦, 3◦, and 8◦ varus. The authors find that imbalanced knees, those
with increasing varus, increase the load on the medial tibia for a varus knee [21]. Balance
is very difficult to assess using FE, even using conventional instruments, without digital
tools [22]. Nowadays, coronal varus and valgus are not regarded as a malposition, one can
only mention component position mismatch, creating, for instance, medial tightness, such
as observed in Stan et al. Innocenti et al. [23] demonstrated that varus/valgus deviation
all cause increased contact pressure and contact area when compared to balanced, or,
neutral alignment. The implant used in the study was not commercially available. More
importantly, the authors arbitrarily chose 2◦,4◦, and 6◦ of varus and valgus, which does
not directly correspond to KA, which orients itself on the anatomy of the patient. Knee
phenotyping [14] has demonstrated that the population has a much wider variety of
alignments. Innocenti et al. also used only one knee model. These findings were recently
corroborated by Tang et al. [24] using neutral alignment, 3◦, 5◦, and 7◦ of both varus and
valgus of both components in all combinations.

Dong Song et al. [25] recently compared MA and KA strategies in a finite element
analysis of a medial pivoting knee design. Although KA achieved closer-to-normal knee
biomechanics by allowing more posterior translation of the lateral tibial plateau, the authors
did find higher contact stresses in KA than in MA [25]. Compared to the present study,
contact pressures breached 20 MPa in valgus knees and MA only. In KA knees, the
pressures were also higher for valgus knees but never reached 20 MPa. The loads in valgus
knees remain higher due to the altered joint line and load distribution. Restoration of the
mechanical axis to 0◦ does not seem to reduce the pressure, however, compared to KA,
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increases it. Valgus knees require difficult balancing with excessive soft tissue releases,
which is why some authors propose a more restricted approach to KA, especially valgus
knees [26]. The number of soft tissue releases needed to reduce the pressure is difficult to
quantify in an FE analysis, but the lower pressure observed in the present study needs to
be noted.

Earlier studies contradict our findings. Nakamura et al. [8] found the opposite effect
for varus knees. In a severe varus case, the load medially in KA was increased between
32.2 and 53.7%. Since a soft-tissue release is difficult to perform in an FE analysis, these
results contradict our findings. Ishikawa et al. [9] observed better kinematics but higher
pressures, but the KA implantation was not model specific, but rather determined based on
previous studies at 3◦ valgus for the femur and 3◦ varus for the tibia, which is anatomical
alignment, not KA, since KA solely depends on the patient anatomy.

Recent studies corroborate our findings, which might be due to better models, but also
due to a better understanding of KA philosophy by respecting the patient-specific anatomy.
Kang et al. [10] investigated a cruciate retaining implant in a single patient and found
improved kinematics of KA over MA, with reduced pressure due to the increased area,
as observed in the present study. Von Mises stresses observed in the present study might
indicate the reason for loosening in some valgus knees, since the stresses are increased
on the polytheylene metal interface. This might occur as a consequence of an increased
correction needed for valgus knees, which was, interestingly, observed in both alignment
philosophies. A potential solution for excessive corrections might be a lateral pivoting knee
since a dual-pivot phenomenon has been recently observed [27]. Another viable option to
mitigate any issues is higher constraint [28].

Some limitations and assumptions need to be noted. The bone models were assumed
to be rigid, rather than linear elastic. However, the polyethylene and metal have been
programmed to behave based on validated and real-time tested data. Although a variety of
phenotypes have been used in the study, the definitive pressures also depend on soft tissue
releases, which are difficult to quantify in a FE analysis. The collateral ligaments observe
significant strains in the native knee, which then change further during OA, with marked
differences for each collateral ligament, depending on the varus/valgus phenotype [29,30].
Biomechanical validation of the findings, although interesting, is impossible since a single
knee cannot be implanted with an MA and a KA philosophy. Two same phenotypes might
have different implant sizes or previous ligament strains, which again, limits the viability
of biomechanical testing.

5. Conclusions

By maintaining the joint line orientation, depending on the knee phenotype, KA
reduces or has comparable contact pressures on the PE bearing surface by increasing or
maintaining the contact area throughout one gait cycle in a validated finite element analysis
model in 10 different knee phenotypes. The von Mises stress on the PE-tibial component
interface was comparable, except for the valgus knees, where the load to failure was
achieved in both alignment strategies and slightly higher stresses were observed for KA.
Further studies for different knee phenotypes are needed to better understand the pressure
changes depending on the alignment strategy applied.
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