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The prevalence of diabetes has tripled over the past 2 decades, and by 2050, it is
estimated to affect 700 million adults [1]. New drugs and technologies are available for
diabetes treatment; however, it is challenging for patients to achieve glycemic targets; a
potential solution, to improve outcomes in diabetes care and reduce costs, is to shift towards
precision medicine [2].

Recently the American Diabetes Association (ADA) and the European Association
for the Study of Diabetes (EASD) have jointly released an expert opinion-based consensus
report on precision medicine [3]. The report defines precision diabetes medicine as “an
approach to optimize the diagnosis, prediction, prevention, or treatment of diabetes by
integrating multidimensional data, accounting for individual differences” [3], and it is
characterized by six categories; precision diagnosis, precision therapeutics, precision pre-
vention, precision treatment, precision prognosis and precision monitoring [3]. Precision
medicine in diabetes utilizes the individual’s unique genetic makeup, environment or
context data (that can be collected from clinical records, wearable technology, genomics
and other ‘omics data) and allows one to appreciate individual characteristics, differences,
circumstances and preferences [4].

For type 1 diabetes (T1D) patients, around 10% of the diabetic population, precision
diagnosis integrates epidemiological data (age at diagnosis, sex, ancestry), clinical features
and diagnostic test results (type of autoantibodies, genetic risk score T1D-GRS, basal and/or
stimulated c-peptide measurement) to define subcategories [5]. Precision prevention for
T1D considers the individual’s unique T1D risk profile (genetic susceptibility given from
human leukocyte antigen HLA and non-HLA loci) to predict the individual response to the
preventive agents (immune therapy or dietary intervention); however, we need to learn
more about the role of environment in the onset of T1D, considering urban versus rural
setting, the contribution of virus as SARS-COV2, life stressors or traumatic events, and
food [6–8]. Precision treatment is tailored to the individual, identifying the right treatment
for the right person at the right time, decreasing unwanted side effects [4]. In T1D, new
long-acting insulins have improved glucose control, as well as the widespread use of
continuous glucose monitoring (CGM), insulin advisors, insulin pumps and advanced
hybrid closed-loop (AHCL) systems; glucose patterns derived from CGMs offer novel
insights for T1D subclassification, even if we need to go beyond the glucocentric approach
and also consider genetic, environmental and other individual context data.

For type 2 diabetes (T2D) subjects, clinical features, such as age at diagnosis, sex,
ethnicity, BMI, HbA1c and homeostatic model assessment, can be used to subclassify
clusters of individuals with insulin resistance, insulin deficiency, and lower or higher
risk of complications [9]. These clinical features could predict patients who respond well
to sulfonylureas, thiazolidinediones, or dipeptidyl peptidase 4 inhibitors (DPP4i); those
who respond less well and those who have adverse outcomes [10,11]. There are about 12
approved classes of diabetes drugs for T2D and studies have helped to establish clinical
variables that lead to individualized treatment. Instead, genetic data in T2D patients are not
accurate enough to subcategorize; many genetic variants probably have a small or modest
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effect in the prediction of drug outcomes. The candidate gene approach has shown that few
risk variants increase glycemic response to sulfonylureas or to thiazolidinediones, while
others reduce the response [12–15]; genome-wide association studies (GWAS) reported
variants associated with lesser or greater response to metformin [16]. Precision prevention
for T2D does not consider intervening in everyone with prediabetes, because it is not
cost-effective [17], but on a subset of prediabetic patients chosen on the basis of other
relevant risk factors (lifestyle, socioeconomic status, family history of diabetes, ethnicity,
overweight–obesity, signs of insulin resistance, genetics). A “one-size-fits-all” lifestyle
intervention is not efficacious for everyone and it cannot be sustained; diet intervention
and exercise programs have to be tailored, as well as risk factor exposure minimized [3].

Neonatal diabetes and maturity-onset diabetes of the young (MODY) cover 2–3% of the
entire diabetic population, and precision medicine for these patients is considered as a stan-
dard of care [3]. Probabilistic algorithms or calculators that consider family history, clinical
and biochemical features, have been developed to identify patients who would be candi-
dates to be tested for monogenic diabetes by next-generation sequencing [18,19]. Precision
diagnostics and treatment have an impact on the management of different forms of MODY:
MODY 1 (HNF4A-MODY), MODY 3 (HNF1A-MODY) and MODY 12 (ABCC8-MODY) are
sensitive to sulfonylureas, and precision treatment results in cessation of insulin treatment.
MODY2 (GCK-MODY) patients do not require oral medication. Genetic diagnosis also
predicts disease-related outcomes and complications; as for MODY5 (HNF1B-MODY) and
Wolfram syndrome (WFS1), they should be monitored for associated disease at the kidney,
liver or anything neurological, etc. Unfortunately most cases of monogenic diabetes remain
misdiagnosed, mainly due to the cost of performing genetic testing [3]; other limits in imple-
menting precision medicine in diabetes include epidemiological differences among varied
populations (ethnic and racial barriers) and that some ethnic groups are underrepresented
in clinical trials [20].

In conclusion, the application of precision medicine in diagnosis and in treatment of
monogenic diabetes is a standard of care [3]. The same approach is nowadays not applicable
to other types of diabetes: genetic and clinical data are not sufficient to predict who is more
or less likely to benefit from treatment, but there is excellent potential to subcategorize
the other forms of diabetes if the precision medicine approach is applied. We need to
develop tools to collect and analyze patient data, and create collaborative partnerships
with stakeholders (patients associations, product companies, private and public supporters
of research, clinicians, educators and policy makers) that could support these projects [3].
Starting from big data, diagnostic algorithms for defining diabetes subtypes has to be
developed and implemented into clinical practice, in order to offer to our patients the best
therapeutic approach and follow up.
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