
Citation: Gong, E.J.; Bang, C.S.; Jung,

K.; Kim, S.J.; Kim, J.W.; Seo, S.I.; Lee,

U.; Maeng, Y.B.; Lee, Y.J.; Lee, J.I.;

et al. Deep-Learning for the

Diagnosis of Esophageal Cancers and

Precursor Lesions in Endoscopic

Images: A Model Establishment and

Nationwide Multicenter Performance

Verification Study. J. Pers. Med. 2022,

12, 1052. https://doi.org/10.3390/

jpm12071052

Academic Editor: Sabina Tangaro

Received: 17 May 2022

Accepted: 22 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

Deep-Learning for the Diagnosis of Esophageal Cancers and
Precursor Lesions in Endoscopic Images: A Model
Establishment and Nationwide Multicenter Performance
Verification Study
Eun Jeong Gong 1 , Chang Seok Bang 2,3,4,5,* , Kyoungwon Jung 6 , Su Jin Kim 7, Jong Wook Kim 8,
Seung In Seo 2,3 , Uhmyung Lee 9, You Bin Maeng 9, Ye Ji Lee 10, Jae Ick Lee 11, Gwang Ho Baik 2,3

and Jae Jun Lee 4,5,12

1 Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine,
Gangneung 25440, Korea; gong-eun@hanmail.net

2 Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea;
doctorssi@kdh.or.kr (S.I.S.); baikgh2@hanmail.net (G.H.B.)

3 Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
4 Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;

iloveu59@hallym.or.kr
5 Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College

of Medicine, Chuncheon 24253, Korea
6 Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, Korea;

forjkw@gmail.com
7 Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research

Institute, Pusan National University Yangsan Hospital, Yangsan 50615, Korea; pmcac@hanmail.net
8 Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang 10380, Korea;

jongman12@gmail.com
9 Department of Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea;

dldjaud@gmail.com (U.L.); ybmaeng@gmail.com (Y.B.M.)
10 Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea; j_wise@naver.com
11 Department of Life Science, Hallym University, Chuncheon 24252, Korea; woehf96@naver.com
12 Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine,

Chuncheon 24253, Korea
* Correspondence: csbang@hallym.ac.kr; Tel.: +82-33-240-5821; Fax: +82-33-241-8064

Abstract: Background: Suspicion of lesions and prediction of the histology of esophageal cancers
or premalignant lesions in endoscopic images are not yet accurate. The local feature selection and
optimization functions of the model enabled an accurate analysis of images in deep learning. Ob-
jectives: To establish a deep-learning model to diagnose esophageal cancers, precursor lesions, and
non-neoplasms using endoscopic images. Additionally, a nationwide prospective multicenter per-
formance verification was conducted to confirm the possibility of real-clinic application. Methods:
A total of 5162 white-light endoscopic images were used for the training and internal test of the
model classifying esophageal cancers, dysplasias, and non-neoplasms. A no-code deep-learning tool
was used for the establishment of the deep-learning model. Prospective multicenter external tests
using 836 novel images from five hospitals were conducted. The primary performance metric was
the external-test accuracy. An attention map was generated and analyzed to gain the explainability.
Results: The established model reached 95.6% (95% confidence interval: 94.2–97.0%) internal-test
accuracy (precision: 78.0%, recall: 93.9%, F1 score: 85.2%). Regarding the external tests, the accuracy
ranged from 90.0% to 95.8% (overall accuracy: 93.9%). There was no statistical difference in the
number of correctly identified the region of interest for the external tests between the expert endo-
scopist and the established model using attention map analysis (P = 0.11). In terms of the dysplasia
subgroup, the number of correctly identified regions of interest was higher in the deep-learning
model than in the endoscopist group, although statistically insignificant (P = 0.48). Conclusions: We
established a deep-learning model that accurately classifies esophageal cancers, precursor lesions,
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and non-neoplasms. This model confirmed the potential for generalizability through multicenter
external tests and explainability through the attention map analysis.

Keywords: convolutional neural network; deep learning; endoscopy; esophageal cancers

1. Introduction

Esophageal cancer is the seventh most commonly occurring cancer and the sixth lead-
ing cause of cancer-related death worldwide [1]. The management of esophageal cancers
has been challenging because most cancers were detected incidentally at locally advanced
stages, and even superficial esophageal cancers have the potential for lymph node metas-
tasis due to an abundant lymphatic-capillary plexus in the mucosa or submucosa of the
esophagus [2,3]. The standard treatment for esophageal cancer has been radical resection.
However, surgery itself carries significant morbidity and mortality, and endoscopic resec-
tion is considered an alternative treatment for the subset of superficial esophageal cancers
or precursor lesions due to its non-invasiveness, fast recovery, and high post-procedural
quality of life [3,4]. Therefore, the early detection and diagnosis of esophageal cancers or
precursor lesions are important [5].

However, there has been no standardized screening method for the early diagnosis
of esophageal cancers [6]. Incidental detection of esophageal cancers or precursor lesions
during upper gastrointestinal endoscopic examination has been the main diagnostic path-
way [2]. However, suspicion of the lesion and prediction of the histologic diagnosis of
esophageal cancers or premalignant lesions in endoscopic images are not perfect, and
early cancers with only subtle mucosal changes pose a diagnostic challenge with white-
light imaging alone. Although image-enhanced endoscopy or chromoendoscopy using
Lugol’s solution might enhance the diagnostic performance of esophageal cancers, these
modalities are not always possible, and inspection with white-light imaging has been the
main screening method for routine diagnostic endoscopic procedures [2,7]. Moreover,
image-enhanced endoscopy inevitably incurs inter-observer or intra-observer variability
and requires substantial time for learning. The esophagus is a physiologically narrow
space, and meticulous observation of the mucosa is difficult because of normal peristaltic
movements and remnant saliva or mucus. A patient’s heartbeat or breathing also makes it
difficult to securely inspect or detect the lesions [2].

The local feature selection and optimization functions of the model enabled an accu-
rate analysis of images in deep learning. The authors previously performed a diagnostic
test accuracy meta-analysis for the computer-aided diagnosis of esophageal cancers or
neoplasms [2]. The main metric for this study was the pooled sensitivity or specificity.
Computer-aided diagnosis models showed high sensitivity or specificity for the diagnosis
of esophageal cancers or neoplasms, and the lesion classifying accuracy was also reported
in the included studies. However, all the studies classified lesions into only two classes with
the adoption of different class standards (i.e., early cancer vs. normal mucosa/Barrett’s
neoplasias vs. non-dysplastic Barrett’s esophagus/superficial cancer vs. non-cancer, etc.),
which limits the real-clinic application [2]. The purpose of this study was to establish a
deep-learning model to classify esophageal cancers, precursor lesions, and non-neoplasms
using white-light endoscopic images. Additionally, a nationwide prospective multicenter
performance verification was conducted to confirm the possibility of real-clinic applica-
tion (input data preparation→deep-learning model training and establishment→external
performance validation) (Figure 1).
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2. Methods
2.1. Collection and Construction of the Training and Internal-Test Datasets

The authors collected histologically confirmed images from consecutive patients with
any type of esophageal cancer or precursor lesions found during upper gastrointestinal
endoscopy between 2010 and 2021 in the Chuncheon Sacred Heart hospital to reflect
the real-clinic setting. Endoscopic stillcut images were collected from the in-hospital
database in JPEG format, with a minimum resolution of 640 × 480 pixels. Only white-light
imaging data were collected, and images out of focus or low resolution disabling their
proper classification were excluded, as previously described [8–10]. All the data collection
process was handled by expert endoscopists (E.J.G., C.S.B., and G.H.B.). Finally, a total of
5162 endoscopic images were collected for the training and internal testing. The training
and internal-testing datasets were randomly divided into a ratio of 8.5:1.5 (Table 1).

Table 1. Distribution of the collected images according to the training and internal-test datasets.

Training Dataset
(Number of Images)

Internal-Test Dataset
(Number of Images)

Total
(Number of Images)

Overall 4387 775 5162

Esophageal cancer 746 132 878 (17.0%)
Dysplasia 56 10 66 (1.3%)

Nonneoplasm 3585 633 4218 (81.7%)

2.2. Deep-Learning Tool Used for the Model Establishment

No-code deep-learning tool “Neuro-T” version 2.3.2 (Neurocle Inc., Seoul, South Korea)
was used in this study. This can establish deep-learning models for image recognition
and classification using a software algorithm that analyses the features of the dataset and
self-discovers optimal hyperparameters, thus making it easy for non-experts to build the
best performance models [8]. The entire building process of the deep-learning models was
approached by simply clicking the menus based on user-friendly graphical user interfaces
in on-premise software.

2.3. Preprocessing of Collected Training or Internal-Testing Images and Training Parameters

Individual identifiers in the collected images were de-identified before training. The
no-code deep-learning tool provides an image resizing transformation function for input
images. Users can select multiple modes for the resize transformation of input data, such
as “nearest”, “linear”, “cubic”, or “area”. In this study, all images were resized with a
resolution of 512 × 480 pixels before training. This no-code deep-learning tool has its own
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data augmentation functions; however, it does not provide user-selectable options for the
classification task.

2.4. Training of the Deep-Learning Model

The 5162 endoscopic images were uploaded into the no-code platform tool. Images
were then randomly divided into training and internal-test sets at a ratio of 8.5:1.5. After
the selection of the data preprocessing options, including “image resize transformation”, as
described above, the deep-learning model was trained with specific setting configurations
for self-learning. This also offers options for selecting the level of training time based on
the available graphic processing units (with four categories: fast, level 1, 2, or 3) and a
range of inference speeds based on batch size (three categories: level 1, 2, or 3). Multiple
experiments were conducted to identify the best performance deep-learning model based
on various hyperparameters in the no-code deep-learning tool. The hardware system used
for training the deep-learning models included four RTX 2080 Ti graphics processing units,
dual Xeon central processing units, and 256 GB RAM.

2.5. Datasets for Nationwide Multicenter Prospective External-Tests

To guarantee the generalizability of performance for the newly established deep-
learning model, nationwide multicenter prospective performance verification tests were
conducted. These external-test sets, including 836 images, were collected from consecutive
patients who underwent upper gastrointestinal endoscopy at the five different University
Hospitals (Pusan National University Yangsan Hospital, Inje University Ilsan Paik Hospital,
Hallym University Kangdong Sacred Heart hospital, Ulsan University Gangneung Asan hos-
pital, and Kosin University hospital) (Supplementary Figure S1) from 2018 to 2021 (Table 2).
All the images were mutually exclusive from those of the training or internal-test dataset.

Table 2. Distribution of the collected images for the external-test datasets.

Number of
Images (%) Overall

External-Test
Dataset 1 (Pusan

National
University

Yangsan Hospital)

External-Test
Dataset 2 (Inje

University Ilsan
Paik Hospital)

External-Test
Dataset 3 (Hallym

University
Kangdong Sacred

Heart Hospital)

External-Test
Dataset 4 (Ulsan

University
Gangneung

Asan Hospital)

External-Test
Dataset 5 (Kosin

University
Hospital)

Overall 836 119 126 78 363 150

Esophageal cancer 520 (62.2%) 48 (40.3%) 69 (54.8%) 26 (33.3%) 292 (80.4%) 85 (56.7%)
Dysplasia 42 (5.0%) 8 (6.7%) 3 (2.4%) 3 (3.8%) 17 (4.7%) 11 (7.3%)

Nonneoplasm 274 (32.8%) 63 (52.9%) 54 (42.9%) 49 (62.8%) 54 (14.9%) 54 (36.0%)

2.6. Primary Performance Metric and Statistics

The primary performance metric was the external-test accuracy. Additional perfor-
mance metrics were as follows: precision or positive predictive value (defined as (true
positive/true positive + false positive)), recall or sensitivity (defined as (true positive/true
positive + false negative)), and F1 score (2 × precision × recall/precision + recall). The
receiver operating characteristic (ROC) curve was generated and area under the curve
(AUC) was also calculated. The number of correctly identified regions of interest for the
external-test images between an expert endoscopist and the established model using an
attention map was compared through Fisher’s exact test. A P < 0.05 (two-tailed) was
defined as statistically significant. Fisher’s exact test was performed using SPSS version
24.0. (IBM Corp., Armonk, NY, USA). This study was conducted in accordance with the
Declaration of Helsinki and approved by the Institutional Review Board of Chuncheon
Sacred Heart Hospital (2021-09-008).

2.7. Attention Map for Explainability

A gradient-weighted class activation map (Grad-CAM) was basically implemented
into the layer of a neural network to localize the discriminative regions used by the no-code
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deep-learning tool to determine the specific class in the given images. Grad-CAM was
generated for all the external-test images and analyzed to gain the explainability. The
ground truth of the lesion in the given images was manually labeled using a square box by
expert endoscopists (E.J.G., G.H.B.). The number of correctly identified regions of interest
for the external-test images between an expert endoscopist (C.S.B.) and the established
model was statistically compared. This was not a detailed segmentation learning analysis;
however, it aimed to determine whether or not the established model classified the given
lesions based on the correct region of interest in the given images.

3. Results
3.1. Characteristics of the Datasets

Among the training and internal-test datasets, 17% (878/5162) of the images were
esophageal cancers, whereas only 1.3% (66/5162) were dysplastic lesions (Table 1). For
the external-tests, 62.2% (520/836) and 5.0% (42/836) of the images were determined to be
esophageal cancers and dysplastic lesions, respectively. Various class distributions were
observed for each external-test site, with esophageal cancers accounting for 33.3% to 80.4%
and dysplasias from 2.4% to 7.3%, respectively (Table 2).

3.2. Classification Performance of the Established Deep-Learning Model

The established model reached 95.6% (95% confidence interval: 94.2–97.0%) internal-
test accuracy, 78.0% (75.1–80.9%) average precision, 93.9% (92.2–95.6%) average recall, and
85.2% (82.7–87.7%) F1 score in the internal-test. The total training time was 629 min. The
confusion matrix for the established model in the internal test is illustrated in Figure 2.
The ROC curve with per-class AUCs for the internal test is illustrated in Supplementary
Figure S2 (AUC for esophageal cancer: 0.95 (range: 0.90–0.99), dysplasia: 0.80 (0.63–0.97),
and non-neoplasm: 0.96 (0.93–0.99)). The detailed information of the hyperparameters
in the established model is as follows; batch size: 40, epochs: 62, number of layers: 18,
optimizer: momentum, input height, and width: 480 × 512, all images were resized with
inter-linear interpolation, initial learning rate: 0.00146. The detailed performance metrics of
the internal test are shown in Table 3.
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Table 3. Summary of the internal- and external-test performance metrics for the established deep-
learning model.

(Values with 95% Confidence Interval) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Internal-test performance (n = 775) 95.6 (94.2–97.0) 78.0 (75.1–80.9) 93.9 (92.2–95.6) 85.2 (82.7–87.7)

Overall external-test performance (n = 836) 93.9 (92.3–95.5) 77.7 (74.9–80.5) 72.5 (69.5–75.5) 75.0 (72.1–77.9)

External-test performance 1 (n = 119) 95.8 (92.2–99.4) 90.7 (85.5–95.9) 82.6 (75.8–89.4) 86.5 (80.4–92.6)

External-test performance 2 (n = 126) 95.2 (91.5–98.9) 64.0 (55.6–72.4) 65.2 (56.9–73.5) 64.6 (56.3–72.9)

External-test performance 3 (n = 78) 94.9 (90.0–99.8) 94.3 (89.2–99.4) 65.4 (54.8–76.0) 77.2 (67.9–86.5)

External-test performance 4 (n = 363) 94.8 (92.5–97.1) 78.6 (74.4–82.8) 73.8 (69.3–78.3) 76.1 (71.7–80.5)

External-test performance 5 (n = 150) 90.0 (85.2–94.8) 68.5 (61.1–75.9) 67.7 (60.2–75.2) 68.1 (60.6–75.6)

3.3. Nationwide Prospective Multicenter Performance Verification

For the 836 images in the nationwide prospective multicenter performance external-test,
the established model showed 93.9% (95% confidence interval: 92.3–95.5%) accuracy, 77.7%
(74.9–80.5%) average precision, 72.5% (69.5–75.5%) average recall, and 75.0% (72.1–77.9%)
F1 score. The primary performance metric in this study, which is external accuracy, showed
robust values irrespective of the various class distributions in each external-test site, ranging
from 90.0% to 95.8%. The confusion matrix for the established model in the external test is
illustrated in Figure 3. The ROC curve with per-class AUCs for the external-test is illustrated
in Supplementary Figure S3 (AUC for esophageal cancer: 0.97 (range: 0.94–0.99), dysplasia:
0.71 (0.58–0.84), non-neoplasm: 0.97 (0.95–0.99)). The detailed performance metrics of the
external test are shown in Table 3.
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3.4. Attention Map for the Explainability

Figure 4 shows the correctly and incorrectly determined samples in the external test by
the established deep-learning model. Although an incorrectly identified region of interest
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exists in the deep-learning model (judged by focusing on only a part of the lesion), the
characteristic area of the lesion was noted by an established model in most cases.
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learning model.

The number of correctly identified regions of interest for the external-test images
between the expert endoscopist and the established model was statistically compared, and
there was no statistical difference in the number of correctly identified regions of interest
for the external-test images between the expert endoscopist and the established model
using Grad-CAM analysis (P = 0.11). In terms of the dysplasia subgroup, the number of
correctly identified regions of interest was higher for the deep-learning model than for
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endoscopists; however, the difference was not statistically significant (92.9% vs. 85.7%,
P = 0.48) (Supplementary Table S1).

4. Discussion

The established deep-learning model in this study accurately classifies esophageal
cancers, precursor lesions, and non-neoplasms in endoscopic images with an overall
accuracy of 93.9% (the accuracy ranged from 90.0% to 95.8%) in the external verification
tests. This model confirmed the potential for generalizability through the multicenter
external tests and explainability through the attention map analysis. However, some cases
for incorrectly determined regions of interest in the given images by the deep-learning
model were detected, and there was no statistically significant difference in the proportion
of correctly identified regions of interest between expert endoscopists and the established
model. To the best of our knowledge, this model is the first deep-learning model that
considers all lesions at the developmental stage of esophageal cancers (non-neoplasms,
precursor lesions, and esophageal cancers).

Previous studies classified given lesions into only two classes by adopting different
class standards, such as early cancer vs. normal mucosa/Barrett’s neoplasias vs. non-
dysplastic Barrett’s esophagus/superficial cancer vs. non-cancer, etc., which limit the real
practice application [2]. In East Asia, the majority of esophageal cancers are histologically
squamous cell carcinomas. Considering that esophageal squamous dysplasia is the only
histopathology that predicts the development of esophageal squamous cell carcinoma,
model establishment distinguishing three classes is clinically useful and reasonable [11].

In the context of the amount of training data, the amount of data needed to rea-
sonably approximate the unknown underlying mapping function in deep learning is
unknown [12,13]. In general, too little training data would result in a poor approximation.
In terms of the complexity of the model, an over-constrained model would underfit the
small training dataset, whereas an under-constrained model would overfit the training
data; however, both can lead to poor performance [13,14]. A large amount of data is not
necessarily good for training. A data-volume-dependent performance plateau occurs,
which is related to whether the data have sufficient features and the complexity of the
background model [15]. Regardless of the relationship between the volume of data and the
complexity of the model, the quality and class distribution of the data is also important,
and it is certain that an established model based on training data that cannot reflect a
real-clinic setting would mislead the users [12,13,16]. Therefore, the authors collected the
histologically confirmed images from consecutive patients with any type of esophageal
cancer or precursor lesions found during upper gastrointestinal endoscopy to reflect a real
situation. Various prevalence values of squamous dysplasia ranging from 3% to 38% have
been reported in the literature [17,18]., However, a small distribution (1.3%) of esophageal
dysplasia was noted in the training dataset in our study. Considering the decreasing trend
of esophageal squamous cell carcinomas in Korea, we think this value might reasonably
reflect the current situation of endoscopic screening for esophageal cancers or precursor
lesions in Korea [11,19].

Making an artificial intelligence model (modeling) is similar to problem-solving and
making statistical functions designed to predict the outcomes of certain problems. After
producing a hypothetical statistical model, the method of confirmation of the clinical use-
fulness is external validation. However, no single study has performed external validation
in the relevant studies according to the previous meta-analysis [2]. Only recently published
studies presented the external-test performance; however, this model showed slightly lower
accuracy compared to ours and premalignant lesions were not considered [20]. Too little
external-test data would result in an optimistic and high variance estimation of model
performance. However, we enrolled 836 images with various features from five different
institutions in our study and showed consistently high performances irrespective of the
external-test sites.
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Another interesting point in this study would be that a no-code deep-learning tool was
used in establishing the model. The traditional method of creating an artificial intelligence
model is to connect to a computing platform and create a program file through coding
using a programming language. However, clinicians often lack this professional expertise
to directly connect clinical data to the model establishment [8]. The no-code deep-learning
tool makes it possible for clinicians to create high-quality deep-learning models. These
tools are easy to use and help in producing deep-learning models in efficient ways. After
self-learning and finding optimal parameters and neural architectures, this tool provides
models ready for direct deployment in real clinics [8]. Considerably less time was needed
for model establishment compared to the traditional method, and only 629 min were
required for the total training in this study.

The current study established a high-performance deep-learning model with confir-
mation of the potential for generalizability and explainability. However, several inevitable
limitations were detected. First, the majority of the training images included squamous
cell carcinoma, except for only two adenocarcinomas, which is limited to the screening of
Barrett’s neoplasias. Considering that squamous cell carcinoma is still the major histologic
type of esophageal cancer in East Asia, the clinical utility of this model is expected to be
valid. Second, the diagnostic performance of the established model for squamous dysplasia
was relatively lower than that of other classes. Figure 3 shows that misclassified dysplasias
were diagnosed as cancer by the deep-learning model. This means misclassified dysplasia
were not determined by nonneoplasm and clinical upstaging by the deep-learning model.
This is a role of alarming the clinician about the possibility of cancer for dysplasias, which
is a role of upstaging rather than clinical down-staging. Given that only a small amount
of data were included in the training for dysplasias, further enrollment of this subclass
and changing the distribution of all the included images would enhance the per-class
performances. In the future, it may be possible to improve the model’s performance by
obtaining a dataset with a higher proportion of adenocarcinoma and dysplasia in order to
generalize the model’s performance.

5. Conclusions

In conclusion, an established deep-learning model accurately classifies esophageal
cancers, precursor lesions, and non-neoplasms. This model confirmed the potential for
generalizability through multicenter external tests and explainability through the attention
map analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12071052/s1, Figure S1: The geographic location of the
primary site for the model establishment and multicenter sites for the external-tests; Figure S2: The
receiver operating characteristic curve with per-class area under the curve for the internal-test. AUC,
area under the curve. The maximal values are described in the right panel; Figure S3: The receiver
operating characteristic curve with per-class area under the curve for the external-test. The maximal
values are described in the right panel. AUC, area under the curve. The maximal values are described
in the right panel; Table S1: The number of correctly identified regions of interest for the external-test
images between expert endoscopist and the established model.
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