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Abstract: Tumors of the central nervous system are the most common solid malignancies diagnosed
in children. While common, they are also found to have some of the lowest survival rates of all
malignancies. Treatment of childhood brain tumors often consists of operative gross total resection
with adjuvant chemotherapy or radiotherapy. The current body of literature is largely inconclusive
regarding the overall benefit of adjuvant chemo- or radiotherapy. However, it is known that both are
associated with conditions that lower the quality of life in children who undergo those treatments.
Chemotherapy is often associated with nausea, emesis, significant fatigue, immunosuppression,
and alopecia. While radiotherapy can be effective for achieving local control, it is associated with
late effects such as endocrine dysfunction, secondary malignancy, and neurocognitive decline. Ad-
vancements in radiotherapy grant both an increase in lifetime survival and an increased lifetime
for survivors to contend with these late effects. In this review, the authors examined all the pub-
lished literature, analyzing the results of clinical trials, case series, and technical notes on patients
undergoing radiotherapy for the treatment of tumors of the central nervous system with a focus on
neurocognitive decline and survival outcomes.

Keywords: clinical outcomes; glioblastoma; glioma; medulloblastoma; neurocognitive decline;
pediatric; pilocytic astrocytoma; quality of life; radiotherapy; survival; tumors

1. Introduction

Central nervous system tumors are the leading cause of cancer mortality in childhood
and are the second-most-common malignancy diagnosed in this patient population behind
leukemia [1,2]. Intracranial tumors contribute to 20% of all pediatric malignancies with
an incidence of 3.7 cases per 100,000 children [3–5]. Initial maximal safe resection is the
standard of care for most of intracranial tumors, with prognosis dependent upon extent of
resection for medulloblastoma [6], craniopharyngioma [7], ependymoma [8], low-grade
glioma [9], and high-grade glioblastoma [10]. However, invasion into eloquent anatomy
can prohibit maximal resection and, consequently, maximal progression-free survival [9].
Multimodal-treatment strategies potentially encompass early surgical resection, local radi-
ation, complete craniospinal radiation, and chemotherapeutic treatments to achieve the
maximal clinical outcome. Local control potentially improves with adjuvant radiotherapy
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for many pediatric brain tumors and is used in the management of a substantial fraction of
solid malignancies [11].

While advances in multimodal therapy have improved outcomes [12], they may
come at the cost of long-term, late effects [13], such as neurocognitive deficits [14,15],
hearing loss [16], endocrine dysfunction [17], secondary malignancy [18,19], and radiation
necrosis [19,20]. Neurocognitive dysfunction was recognized early on as a late effect of
craniospinal irradiation when, in 1969, HJG Bloom noted a high rate of dementia in a cohort
of 82 patients with medulloblastoma, who received cranial or craniospinal radiotherapy
before the age of 2 [21]. In totality, late effects contribute to reduced direct and indirect
health-related quality of life (HRQoL) [22–27], with neurocognitive dysfunction identified
as the leading cause of reduced quality of life in long-term survivors of pediatric brain
tumors [28].

There is well-established literature on the developmental consequences of these
late effects, with children at increased risk for cognitive, emotional, and behavioral de-
cline [14,29,30], regardless of focal [31–33] or whole-brain irradiation [29,30,34,35]. When
compared to surgery or chemotherapy alone, radiotherapy is consistently associated with
poorer neuropsychological outcomes [29,36]. Indeed, a cross-sectional survey of 342 pa-
tients with brain tumors treated with radiotherapy and 479 sibling controls showed the
former patients were 28.8 times less likely to drive a car and 10.8 times less likely to be
employed compared to their siblings [37]. In addition, these patients are found to have
increased chances of being involved with theft, fraud, or assault [38,39]. The severity of
these morbidities is directly related to dosage of radiation and volume of normal tissue
exposed to radiation, while inversely related to age at time of irradiation [17,37,40–45]. Tu-
mor size, location, baseline intellectual function, and enzyme polymorphisms with genetic
predisposition also influence elements of cognitive function [46,47].

To help mediate against these long-term sequelae, approaches for prevention of and
reduction in neurocognitive dysfunction include avoiding the use of radiotherapy in young
children and reducing the dose and volume of brain that is irradiated [28]. Develop-
ment of intensity-modulated radiotherapy (IMRT), volumetric-arc therapy (VMAT), and
proton-beam radiotherapy (PBRT) over the past decades have sought to maximize the dose
coverage of the tumor, while minimizing coverage to nearby normal tissue when compared
to traditional techniques, such as conformal radiotherapy [48].

Improvements in long-term survival further underscore the impact of these late effects,
as survivors now increasingly have longer lifespans, wherein, they must contend with
these morbidities [48]. With the concomitant rise in prevalence, opportunities emerge to
further understand the nature and consequences of the late effects of radiotherapy deeper
into the patients’ course of disease. In this review, the authors examined all the published
literature analyzing results of clinical trials, case series, and technical notes on patients
undergoing radiotherapy for the treatment of tumors of the central nervous system, with
an emphasis on neurocognitive decline and survival outcomes.

2. Survival Outcomes and Benefit of Radiotherapy
2.1. Medulloblastoma

With approximately 500 children being diagnosed each year in the United States,
medulloblastoma is the most common malignant brain tumor of childhood and is the
most common embryonal tumor [49–51]. As with other tumors, medulloblastoma usually
presents with signs and symptoms of increased intracranial pressure secondary to ob-
structive hydrocephalus [50]. Additionally, 6%–32% of presentations are metastatic [52,53].
Initial work-up includes magnetic resonance imaging (MRI) that will classically reveal a
contrast-enhancing cerebellar-midline mass [54,55]. Radiotherapy is an essential element
in the treatment of pediatric medulloblastoma [51]. In the past two decades, advances in
radiotherapy have included the development of a better-target volume delineation using
imaging and use of adaptive techniques. IMRT, VMAT, image-guided radiotherapy, and
particle-beam therapy [56–58]. Current dose-fractionation protocol includes 23.4 Gy in
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13 fractions of craniospinal irradiation with a posterior fossa boost of 30.6 Gy in 17 fractions
(Table 1) [59–62]. However, a new clinical trial has noted that current protocols lead to
significant post-radiotherapy neurotoxicity. Thus, a reduction in dose or in some cases,
elimination of craniospinal irradiation may be necessary. The clinical trial has proposed a
new protocol for WNT 2-driven medulloblastoma-radiotherapy dosing: 18 Gy in 10 frac-
tions plus a tumor-bed boost of 36 Gy in 20 fractions for a total primary site dose of 54 Gy
in 30 fractions without concurrent chemotherapy followed by the standard six cycles of
adjuvant systemic chemotherapy. By reducing the dosage to the craniospinal axis and
reducing the total tumor-bed dose, the investigators are hoping this new protocol will
decrease the late side effects of craniospinal irradiation and morbidity [63].

Table 1. Description of pediatric-tumor treatments including proposed management and dosages.

Tumor Type Mainstay Treatment Specific Radiation Therapy Reported Survival

Medulloblastoma
Maximal surgical resection with

radiation and multiagent
Chemotherapy [59–62].

Proton-beam-radiation therapy
(23.4 Gy in 13 fractions of

craniospinal irradiation with a
posterior fossa boost of 30.6 Gy in

17 fractions)

86% at 5 years [59], 83% at 61.2 months [60],
78% at 4.8 years [61], 87.6% at 6 years [62]

Low-Grade Glioma
(Pilocytic Astrocytoma)

Maximal surgical resection.
Multimodal therapy for

unresectable tumors and recurrent
tumors [64].

Proton-beam radiation >90% at 10 years [64]

High-Grade Glioma

Maximal surgical resection.
Stereotactic biopsy if unresectable.
Radiotherapy with concomitant
temozolomide for non-surgical

cases [65].

Proton-beam-radiation strength,
dependent on radiosensitivity of

tumor cells
26.5% at 2 years [65]

Brain Stem Glioma Resection when possible and
radiation therapy [9,66–69]. Proton-beam radiation Widely variable: 34% at 5 years [68], 100% at

5 years [66], 33% at 5 years [69]

Ependymoma
Maximal surgical resection. Local
or craniospinal radiation in those
with subtotal resection [70–72].

Proton-beam radiation
(54–59.4 Gy) 76% at 10 years [71], 74.8% at 5 years [72]

Craniopharyngioma Controversial surgical resection
with adjuvant radiotherapy [73]. Proton-beam radiation 88% at 5 years [73]

Prior treatment protocols emphasized higher radiation dosages to achieve higher cure
rates, however contemporary protocols utilize risk-based dosing after accounting for the
late effects of neurotoxicity; higher-risk patients will still receive high dosages [74], while
standard risk indicates a lower dose [14,40,75–78]. Current treatment for medulloblastoma
may involve gross total resection followed by radiotherapy and platinum-based chemother-
apy [78–81]. These patients are classified postoperatively as standard risk or high risk
(>1.5 cm2 residual disease after resection, known metastatic disease, or anaplastic large-cell
histology) [51,82]. Children under 3–5 years are treated with chemotherapy only [83–85].
Prospective studies have shown 5-year event-free survival at 80–82% for average risk [59]
and up to 70% for high-risk patients with current management protocol [86,87].

Risk stratification has classically involved evaluating the extent of the disease and
the age at diagnosis, with younger age conferring a negative prognosis [52]. A study
of 188 children with medulloblastoma found that those with no evidence of metastatic
disease had a significantly higher 5-year progression-free survival (PFS) at 70%, compared
to those with microscopic tumor cells in the CSF (57%) or those with gross nodular seeding
(40%) [88]. This same study found the PFS of children between 18 months and 3 years to be
32% compared to 58% for those older than three. Decreased amounts of radiation therapy
used in children younger than three was thought to play a role in the difference between
the two groups.

The 2021 World Health Organization (WHO) Classification of Tumors of the Central
Nervous System has separated medulloblastomas into two main types: molecularly defined
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and histologically defined [89]. The first main classification, molecularly defined medul-
loblastomas, are divided into four subtypes based on respective markers: WNT-activated,
SHH-activated and TP53-wildtype, SHH-activated and TP53-mutant, and non-WNT/non-
SHH. The second main classification, histologically defined medulloblastoma, is under
its own subtype as “histologically defined” [89]. A 2010 meta-analysis with 270 children
younger than five years assessed the prognostic role of clinical parameters and histology of
early-childhood medulloblastoma and found that the 8-year event-free survival (EFS) and
overall survival (OS) were both significantly higher in those with desmoplastic/nodular
and desmoplastic with extensive nodularity, compared to those with either classic or
anaplastic medulloblastoma [90]. The four molecular subtypes of medulloblastoma may be
divided by genetic mutation for the purposes of risk stratification. The Wingless-related
integration site (Wnt) pathway-activation group has the best prognosis, with an overall sur-
vival rate of 95%, and is mainly found in WNT-activated medulloblastoma. However, the
Wnt-pathway activation is only present in ~10% of cases [91]. The activation pathway for
sonic hedgehog (SHH), present in 30% of cases, is found chiefly in infants and adults. The
overall survival for those with this mutation is ~75% [91]. The worst prognosis belongs to
the non-WNT/non-SHH pathways, where some tumors display a high-level overactivation
of the MYC protooncogene, yielding overall survival of ~50% at five years [92].

Treatment of medulloblastoma typically involves a combination of surgery, radiation,
and multiagent chemotherapy [50,93–96]. The surgeon can achieve a margin-free excision
or a near-total excision in most cases. No investigators have completed prospective, ran-
domized trials evaluating survival in those with total versus near-total excision to date.
A 2018 systematic review of retrospective studies, assessing the impact of the extent of
resection on survival, found 16 articles with 1489 patients that did show a statistically
significant association and 20 articles with 2335 patients that showed no significant associa-
tion between the two groups. The authors concluded that the prognostic importance of
the extent of resection for medulloblastoma is unclear [92]. Another retrospective study
of 787 patients with medulloblastoma separated patients by their molecular subgroup,
and the predictive value of the increased extent of resection decreased when the different
subgroups were considered [97]. Thus, the standard of care for maximal, safe surgical
resection remains. Surgical excision of small, residual portions of medulloblastoma is not
recommended, when the likelihood of neurological morbidity is high. There is insufficient
evidence that total resection imparts a survival benefit compared to subtotal resection [97].

Radiation therapy is started following surgical excision and is limited by its toxic-
ity [94–96,98]. Proton-beam irradiation is a newer technique that is equally effective com-
pared to conventional radiation therapy in treating posterior fossa and craniospinal disease,
while significantly reducing the irradiation dose to the surrounding structures [98–100].
In a study comparing photon and PBRT in children with standard-risk medulloblastoma,
Eaton et al. observed no significant difference between 6-year recurrence-free survival and
overall survival [62]. In addition, patients at average risk are given a radiation boost to the
primary site because 50–70% of recurrences develop in the posterior fossa, usually in the
tumor bed and surrounding leptomeninges [101,102].

A Children’s Oncology Group study was a phase III trial of 379 children who have
undergone total or near-total resection of a medulloblastoma, without evidence of dis-
seminated disease [59,103]. Following resection, patients were treated with 23.4 Gy of
craniospinal radiation, followed by a boost to the posterior fossa of 32.4 Gy. Weekly vin-
cristine was given during radiation therapy, and a combination of vincristine, cisplatin, and
either lomustine or cyclophosphamide was given for eight cycles. No significant differ-
ence in efficacy was found between the two chemotherapy regimens [59,103]. Infections
were slightly higher in the cyclophosphamide group, while electrolyte disturbances were
more common in the lomustine group. Event-free survival was higher in both groups
receiving adjuvant radiation and chemotherapy than past surgery and radiation trials
alone [59,103]. All patients undergoing this treatment developed hematologic toxicity.
Approximately 25% developed ototoxicity. A cumulative cisplatin dose has not shown an
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increased event-free or overall survival, so lower doses are recommended in the treatment
of medulloblastoma [104].

High-risk patients with metastatic or unresectable disease are usually treated with
more aggressive chemotherapy and radiation, although there is no consensus about the
most optimal therapy. Another Children’s Oncology Group study of 161 children ≥3 years
of age with high-risk medulloblastoma were treated with postoperative radiation along
with carboplatin and vincristine, followed by six maintenance cycles of cyclophosphamide,
vincristine, and cisplatin [105]. Maintenance chemotherapy with cisplatin had a five-year
progression-free and overall survival rates of 59% and 68%, respectively [105]. There were
no treatment-related deaths reported. Another new strategy in the treatment of metastatic
disease is hyperfractionated accelerated radiotherapy, which can be used in combination
with high-intensity chemotherapy [106].

Therapies targeting molecular markers of medulloblastoma are currently under inves-
tigation. Vismodegib is an antagonist of the smoothened receptor that causes a disruption
of transcription factors in the sonic-hedgehog pathway. It is currently only FDA-approved
for the treatment of basal-cell carcinoma. Clinical trials are currently underway, and the
phase 1 trials have shown that vismodegib is well-tolerated but is associated with teeth and
bone abnormalities, including osteonecrosis in those taking concurrent steroids [107]. A
phase II trial of 12 patients with sonic-hedgehog mutations had only 4 show a response to
vismodegib, so further studies are needed to identify molecular patterns most susceptible
to smoothened receptor antagonism [108].

2.2. Low-Grade Gliomas

Pilocytic astrocytoma (PA) is the most common primary brain tumor of childhood
and is typically found in the cerebellum, but it may also present in the third ventricle,
spinal cord, optic pathways, and cerebral hemispheres [109]. Maximal surgical resection is
the standard of care; however, multimodal therapy is indicated with unresectable tumors
in central locations, such as the optic pathway [110], and with recurrent tumors [111].
The prognosis for PA is among the best for primary brain tumors with a 5-year survival
rate of 94% [112]. Grouped initially due to their similar gross and radiographic features,
pilomyxoid astrocytoma (PMA) was distinguished from PA in 1999 [113]. They are now
separated based on their histological appearance. PA has a biphasic architecture with
protoplasmic cells, Rosenthal fibers, and eosinophilic granular bodies that are rare or
absent in PMA. PMA has a monophasic architecture with a myxoid background and
an angiocentric pattern [114]. PMA is critical to distinguish from PA as it has a more
unpredictable course and is potentially more aggressive [113]. Maximal surgical resection
is the mainstay of therapy for both PA and PMA, and radiation therapy is reserved for
those who begin to progress after initial tumor resection [64]. The role of chemotherapy in
low-grade astrocytoma is still uncertain. Still, it is generally limited to those with recurrent
disease and young children in whom the risks of radiation therapy outweigh those of
chemotherapy [64].

2.3. High-Grade Gliomas

High-grade gliomas (HGG) are divided into anaplastic glioma and glioblastoma. Both
are aggressive, malignant tumors with poor prognoses. Length of survival in those with
glioblastoma is dependent on tumor location and extent of resection [115]. A small retro-
spective study of 27 pediatric patients with glioblastoma found that those with superficial
tumors amenable to complete resection had a median overall survival of 106 months com-
pared to 11 months for those with incomplete resection [115]. As with other neoplasia
of the central nervous system, maximal surgical resection is preferred at the outset to
confirm the diagnosis, grade the tumor, and begin molecular analysis. When the tumor
is not amenable to surgery, stereotactic biopsy is preferred. Once maximal resection is
complete, the current standard of care in the treatment of glioblastoma is radiotherapy with
concomitant temozolomide, an alkylating agent, followed by adjuvant temozolomide [65].
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Radiotherapy is the most effective nonsurgical treatment for gliomas, however, glioma
recurrence is common as glioma cells are highly radioresistant. It is thought that cancer
stem cells contribute to radioresistance in gliomas through the Notch signaling pathway.
A study by Wang et al. is discussed below in detail and provides insight on how inhibit-
ing the Notch pathway leads to more radiosensitive glioma cells [116]. Furthermore, it
has been shown that glioma stem cells are more radioresistant than the non-stem glioma
cells [117]. Although temozolomide may increase radiotherapy sensitivity of tumor cells,
glioblastomas remain highly resistant to radiation [118]. Due to the highly tumorigenic
activity of these stem cells, enhancing their radiosensitivity has been a target for improving
overall effectiveness of radiotherapy. Chemotherapy with molecular targeting has shown
promise in enhancing radiosensitivity. Bao et al. has shown that inhibitors of two DNA-
damage-checkpoint kinases, Chk1 and Chk2, increased the cell death of glioma stem cells
in response to radiation [119]. However, this target is not exclusively expressed by tumor
cells, limiting the therapeutic index of inhibitor therapy by increased radiosensitivity of
normal cells as well [120]. In more detail, the Notch signaling pathway has emerged as a
target of radioresistance in cancer stem cells. Normal notch signaling promotes self-renewal
and dedifferentiation in many adult stem cells in breast [121,122], intestine [123,124], and
neuronal tissue [125–127]. Dysfunctional Notch activity is seen in many human tumors,
such as breast cancer [128,129], leukemia [130], and glioma [131]. The Notch pathway is de-
pendent upon a final proteolytic step, wherein a gamma-secretase releases the intracellular
domain of the Notch protein (NICD) [132,133]. Notch activation via NICD1 overexpression
promotes tumorgenicity [120], whereas inhibition by gamma-secretase inhibitors (GSI’s),
which are used to block Notch activity in vivo and in vitro, reduces tumorigenicity [134].
In a study that measured the tumor size of CD133+ gliomas both in vitro and in vivo in
response to radiotherapy with Notch inhibition via GSI’s or knockdown expression, Wang
et al. found significant increases in cell death at clinically relevant doses. The degree of
cell death in non-stem cells was unaltered by Notch inhibition as compared to the CD133+
stem cells when irradiated. Additionally, constitutive expression of the active intracellular
domains of Notch1 or Notch2 protects glioma stem cells against radiation. Reduction
in Notch1 or Notch2 levels also leads to radio-sensitive glioma stem cells. Thus, overex-
pression of Notch in cancerous glioma cells may play a critical role in the radioresistance
of glioma stem cells [116]. Lower doses of radiation are required when tumor cells are
molecularly radiosensitive, thus, further research into molecular targeted therapies can
ultimately contribute to reductions in the late effects of neurotoxicity.

While limited randomized trials on the treatment of HGG exist, a 2020 case report
of a 3-year-old girl diagnosed with glioblastoma highlights the importance of molecular
targeted therapy in the future of care [135]. She initially presented with progressive seizure
activity. Neuroimaging revealed a significant, heterogeneously enhancing, mixed cystic and
solid mass in the left frontal-parietal-temporal region. She underwent debulking surgery,
and genomic analysis of the tumor showed a BRCA2 nonsense mutation. Standard adjuvant
radiation and temozolomide were used initially. Nine months after surgery, treatment with
a combination of olaparib, an inhibitor of poly ADP ribose polymerase, and temozolomide
was used for 16 cycles. She remains neurologically intact and “continues to experience
an exceptional and durable response (>2 years)” after her treatment, with no evidence of
tumor recurrence in serial imaging [135]. This case underscores the importance of genomic
sequencing of brain tumors and the role of progressing to more targeted molecular therapies
instead of systemic chemotherapy in the future.

2.4. Brainstem Gliomas

Brainstem gliomas are a subgroup of astrocytoma that range from low-grade le-
sions that may not require any intervention to high-grade malignancies with poor prog-
noses [136–139]. Diffuse Midline Glioma (DMG) is important, since radiation therapy is
the mainstay treatment. A subtype of particular interest, diffuse intrinsic pontine glioma
(DIPG) is a rare, aggressive type that forms in the brainstem of pediatric patients. With
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most survival rates at less than one year, immediate treatment is imperative. The first-line
treatment for DIPG is radiation therapy, as surgical resection is not a viable option [140].
The molecular etiology of DIPG may be attributed to the “H3 K27M-mutant” in ~80%
of cases, as noted in WHO 2016. However, WHO 2021 has adapted a new name, “H3
K27M-altered”, to recognize other mechanisms where the pathogenic pathway may be
altered in these tumors [89,141]. Approximately 500 new cases of brainstem glioma are
diagnosed in the pediatric population each year [142,143]. Neurofibromatosis type I is
one of the only known risk factors for developing a brainstem glioma [144–146]. Patients
may present with cranial-nerve deficits corresponding to the location of the mass [138,139].
Exophytic tumors of the dorsal brainstem may cause obstructive hydrocephalus [147]. The
site of these tumors provides a unique challenge for their treatment [40]. Maximal safe
resection remains the standard of care when possible [9,66]. Radiation therapy may be used
in those patients whose tumor burden is not amenable to surgery or those where gross
total resection is not achieved [67–69]. Radiation therapy for brainstem gliomas has been
used sparingly due to its side effects. One study has shown that children who received
either conventionally fractionated or hyperfractionated radiation for brainstem gliomas
had significantly lower IQs than those who received surgery alone [148]. However, this is
likely confounded by those with more severe tumor burden being the ones who received
radiation. Other side effects of radiation to the brainstem include mild nausea and vomiting,
endocrinopathies from damage to the hypothalamic-pituitary axis, and brainstem necrosis,
which is a rare but devastating outcome [149–151]. Over the past 30 years, multiple trials
have shown that chemotherapy has activity against brainstem gliomas and could be a safe
first-line therapy for those in which the consequences of brainstem radiation is desired to
be avoided [152–155]. Combinations of vincristine and platinum-based chemotherapeutics
have been studied, but no consensus on the optimal regimen has been reached [152–154].

2.5. Ependymoma

Ependymomas are tumors of the lining of the ventricular system that typically arise
in the fourth ventricle in the first two decades of life [109]. Intracranial ependymoma con-
tributes to 10% of all intracranial tumor presentations in children [112]. Five-year survival
approaches 50–80% [70–72,156,157]. The 2021 World Health Organization Classification
separates ependymomas according to a combination of histopathology, molecular markers,
and anatomic sites. The molecular groups are now divided across the following anatomic
sites: supratentorial, posterior fossa, and spinal compartments. WHO 2021 subcategorizes
molecularly defined types of supratentorial ependymoma into two types: ZFTA fusion and
YAP1 fusion. There are also two major molecular subtypes of posterior fossa ependymomas:
group PFA and group PFB. The spinal tumor-molecular subtype is characterized by the
presence of MYCN amplification. Lastly, the histological ependymoma subtypes include
Myxopapillary ependymoma and subependymoma [89].

As with other surgeries in the posterior fossa, complications of ependymoma resection
include cerebellar ataxia, lower cranial nerve damage, and posterior fossa syndrome [158].
Following maximal safe resection, further treatment is guided by the extent of resection and
tumor grade. Local or craniospinal radiation with doses of 54–59.4 Gy is usually given to those
with subtotal resection [70–72]. Extent of resection is the most determinant factor of prog-
nosis [8,156,159–165]. Should recurrence occur, it is most commonly local [8,159,161,163]. A
long-term prospective study evaluated the health-related quality of life (HRQoL) of 40 pa-
tients < 4 who received proton-radiation therapy for a central-nervous-system tumor [166].
Ependymoma was the most common tumor in the cohort (n = 22), followed by medulloblas-
toma (n = 9). The median age at radiotherapy was 2.5, and the median age at follow-up
was 9.1. The authors found that the HRQoL was variable with just over a third of patients
and families achieving levels equivalent to healthy children. In total, 90% of the patients
were able to function in a regular classroom. Patients who developed hydrocephalus or
those that required feeding-tube placement reported significantly lower HRQoL. Scores
among the cohort remained stable from the baseline analysis until the last follow-up [166].
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A similar retrospective study examining patients with posterior fossa brain tumors found
that families with lower socioeconomic status also reported more inadequate measures for
their quality of life [167].

2.6. Craniopharyngioma

Craniopharyngiomas are supratentorial tumors of childhood that arise from the rem-
nants of Rathke’s pouch and may contain a cystic component [168]. Like pituitary adeno-
mas, craniopharyngiomas may present with headaches and bitemporal hemianopia [169].
Disruption of the hypothalamic–pituitary axis may lead to diabetes insipidus or another
endocrine dysfunction [169]. These symptoms may be present for over a year before a
diagnosis is made, as this tumor is slow-growing [169]. Historically, the management of
craniopharyngiomas has been controversial, with some advocating for more aggressive
surgical management to achieve the maximal extent of resection and others advocating for
a more conservative approach in the operating room, followed by radiation therapy [73].
Even when confirmed by imaging, gross total resection can result in recurrence up to
20–27% [7,170]. When treated with a conservative surgical resection with adjuvant ra-
diotherapy, 10-year progression-free survival has been reported up to 84–100% [171–173].
While there is no absolute consensus today, most agree that optimal management in-
cludes removing the greatest tumor burden possible without introducing any iatrogenic
deficits [174]. This is highlighted by the approximately 50% of survivors that have long-term
sequelae that negatively impact their quality of life [175].

3. Neurocognitive Late Effects
3.1. Decline in Neurocognitive Development

Intelligence quotient (IQ) has been used as a metric to measure changes in neurocogni-
tive development after the treatment of pediatric brain tumors with a mean score of 100
and a standard deviation of 15 to 16 [40]. Declines in IQ are likely attributed to failure
to develop neurocognitively at a rate expected for the patients’ age, rather than a loss
of previously established development. Rate of IQ decline is correlated with younger
age at time of treatment, volume of brain irradiated, dose of irradiation, female sex, and
hydrocephalus [29,35,40]. Merchant et al. showed that radiation dosimetry can be used to
predict patient IQ after conformal radiotherapy treatment of localized ependymoma [176].
While the effects of radiotherapy are mainly implicated in explaining neurocognitive de-
cline, additional factors related to diagnosis and treatment course, such as posterior fossa
syndrome and hydrocephalus, are also known to negatively influence neurocognitive
development [177]. Specifically, following surgical resection of medulloblastoma, up to
29% of patients experience posterior fossa syndrome, or cerebellar mutism syndrome,
which is characterized by diminished or absent speech, ataxia, hypotonia, and emotional
lability. These symptoms may be exacerbated by radiotherapy [178]. Declines are associ-
ated with similar declines in measures of basic academic achievement [14,179,180], which
may present as differences in performance, with standardized testing as early as one-year
post-treatment. Declines may continue as late as ten years post-treatment [29,181]. Certain
deficits due to neurocognitive decline may be delayed in presentation, due to normal ability
being expected later during childhood development, such as speech (Table 2) [182].

Table 2. Summary of the late effects due to radiotherapy on neurocognition.

Key Points of Discussion on the Neurocognitive Late Effects from Radiotherapy

• Decline in IQ and academic achievement [29,35,36].
• Decline in processing speed and memory [183].
• Early-Onset dementia [183].
• Destruction of white brain matter, oligodendrocytes, and other neurons [184–186].
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3.2. Mechanism of Neurocognitive Decline

While the pathophysiology of radiation induced long-term CNS damage is not fully
understood, hypotheses generally fall under the primary effects or secondary effects of
radiation [40]. Primary effects may be caused by inciting damage to progenitor cells, vas-
culature, inflammatory cells, and stromal cells [187]. Another mechanism consists of the
radiation-induced destruction of oligodendrocytes, which causes inadequate myelination
and white-matter necrosis. Secondary effects include radiation-induced oxidative stress
in the myelin membrane [184]. This is extremely pertinent in pediatric tumors, as full
myelination of the cerebral cortex is achieved in early adulthood [188]. This mechanism
has been further substantiated over the past few decades by new technologies that quantify
the volumes of brain tissue [189]. For example, in a study that measured post-operative
IQ after treatment of medulloblastoma with age-matched controls, the survivors of medul-
loblastoma had statistically significant lower volumes of white matter and IQ scores. IQ
scores had a statistically significant inverse association with volumes of white matter [179].
Additional longitudinal studies show regions receiving an increased dose of radiation are
associated with greater rates of decline in white-matter volume [185,186]. This mechanism
could have a direct effect on processing speed, memory, and, in severe cases, cause ataxia,
urinary incontinence, and dementia [183].

Certain eloquent areas are also associated with memory creation and cognition. In the
subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal
gyrus, neurons and glial cells are produced that contribute to memory production. These
areas form part of the limbic system [190,191]. Additional structures of the limbic system
include the hippocampus, parahippocampal gyrus, and amygdala, which is located in the
temporal lobe. One study reports worsening neurocognitive dysfunction when targeting
the left temporal lobe with chemotherapy in children <7 years of age [192]. In adults, an
additional study shows neurological sequelae can be spared when avoiding the hippocampi
during radiotherapy; in children this has yet to be studied [193]. Finally, cerebellar neurons
form closed loops with neurons in the prefrontal cortex, temporal lobes, and limbic struc-
tures. Damage to these neurons can lead to posterior fossa syndrome in medulloblastoma
and neurocognitive dysfunction and should be avoided if possible [178].

3.3. Management of Late Effects

There remains a shortage of published studies that investigate interventions for sur-
vivors of pediatric brain tumors suffering from neurocognitive late effects. Of the available
studies, interventions fall under three categories: cognitive remediation, pharmacother-
apy, and environmental modifications [40]. A case study involving the use of a memory
notebook to remediate severe memory impairment in a survivor found that the patient’s
academic achievement, classroom attendance, and completion of assignments increased
slightly, despite a continued, significant memory impairment [194]. Stimulants, such
as methylphenidate, have been shown to be effective medications for attention deficit
hyperactivity disorder (ADHD), through improvements in cognitive function [195]. A ran-
domized, double-blind trial that investigated the effects of methylphenidate on survivors
of both pediatric leukemia and malignant brain tumors with impaired learning found
that the group assigned methylphenidate showed significantly greater improvements in
tests of vigilance, a proxy for attention, compared to the placebo group [196]. However,
another study that exclusively tested survivors of brain tumors who received craniospinal
irradiation 3–12 years earlier found no significant immediate, or delayed, benefit from
methylphenidate therapy [197]. Environmental interventions in children with neurocogni-
tive delay is often underestimated in its efficacy [198]. The family dynamic survivors are
recovering in have been shown to play a role in neurocognitive recovery from traumatic
brain injury, with more dysfunctional environments being associated with slower recovery
when severity of brain injury and other medical factors are controlled for [199]. While the
neurodevelopmental consequences of brain irradiation in pediatric patients are not fully
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elucidated, the interventions indicated for treatment of these effects seem to be just as, if
not more, poorly established.

The risk factors for late effects of neurotoxicity with PBRT are similar to photon-based
therapy: being of a younger age as well as the volume of the brain and spine that were
irradiated [200–202].

4. Future Directions

While advancements in photon-based radiotherapy, such as IMRT and VMAT, re-
duce neurotoxicity to normal brain tissue, PBRT has emerged as a particularly promis-
ing modality for minimizing late toxicity due to reductions in the dose to vital organs
(Table 3) [41,203–205].

Table 3. Comparison of complications (favorable or unfavorable) in the different radiotherapy modalities.

Type of Radiotherapy Proton-Beam Radiotherapy IMRT (Photon) VMAT (Photon)

Comparison of Complications

• Reduction in dose to vital organs
[41,203–205].

• Favorable sparing of normal brain tissue in
pediatric ependymoma [206].

• Reduced incidence of secondary cancer in
medulloblastoma [207].

• No significant decline in IQ [208].
• No significant impairment in

neurocognitive function in [200].
• Reduction in risk of secondary cancer [209].

• Reduction in neurotoxicity
[41,203–205].

• Unfavorable sparing of
normal brain tissue in
pediatric ependymoma [206].

• No significant neurocognitive
impairment in survivors
[200–202,208].

• Increased need for endocrine
replacement [58].

• Significant neurocognitive
impairment [200–202,208].

• 18% lifetime risk of secondary
cancer [209].

• Reduction in neurotoxicity
[41,203–205].

• Significant neurocognitive
impairment [200–202,208].

• Increased need for endocrine
replacement [58].

Both IMRT and VMAT are subtypes of photon-based radiotherapy. IMRT = intensity modulated radiotherapy.
VMAT = volumetric modulated arc therapy.

Macdonald et al. found that initial control of pediatric ependymoma and sparing of nor-
mal tissue was favorable with PBRT compared to IMRT, a form of photon radiotherapy [206].
In addition, Mirabell et al. found a reduced incidence of secondary cancer resulting from
radiotherapy with PBRT in rhabdomyosarcoma and medulloblastoma patients [207]. In-
deed, Zhang et al. calculate a lifetime risk of 0.18 for secondary cancer attributable to
PBRT, much lower than that of photon-based radiotherapy [209]. Eaton et al. found no
significant difference in recurrence free survival or overall survival in standard-risk medul-
loblastoma patients treated with proton versus photon-based radiotherapy, however the
need for endocrine replacement was significantly lower in those receiving PBRT [58]. A
retrospective study of children with medulloblastoma treated with photon versus PBRT
showed no difference in clinical outcome between groups, despite the cochlea receiving a
lower mean dose in the PBRT group. It was hypothesized that the rates of ototoxicity did
not differ between groups due to confounding ototoxicity from cisplatin therapy.

The initial biological effect of PBRT is considered to have the same theoretical relative
biological effect (RBE) of 1.1 as photon-based therapy [210–212]. It is hypothesized that
reduced incidence and/or intensity of late effects can be observed with PBRT due to the
intrinsic physics of its dose deposition [41,213–216]. Proton beams exhibit a sharp peak
in proton deposition called the Bragg peak, which is targeted to cover to tumor volume
(Figure 1). The deposition before the peak is suppressed and the deposition distal to the
peak is near zero, effectively minimizing the radiotherapy dose to normal tissue within
the beam trajectory [41,217–220]. PBRT has been shown to reduce the dose to the brain,
brainstem, optic nerve, and optic chiasm [221–223]. Even the small, critical organs that are
typically susceptible to radiotherapy toxicity, such as the cochlea and hypothalamus, can be
spared with PBRT, which preserves hearing, intelligence, and endocrine function [41,200].
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Figure 1. Graphical depiction of proton-beam dosage per tissue depth. The figure demonstrates that
the dosage of the proton beam is higher in deeper tissues. The more superficial tissues are spared
from increased dosages (blue line). In contrast, photon-beam radiation (green line) has increased
dosage in superficial tissue with decreased dosage in deeper tissues.

Evidence of PBRT’s benefit towards reduced neurocognitive toxicity has grown
over the past two decades [200,215,224–232]. Studies that measured neurocognitive out-
comes post PBRT therapy did not find any significant neurocognitive impairment in sur-
vivors [200–202,208]. Processing speed was identified as the domain of greatest vulnera-
bility [208,228]. A study by Kahelley et al. comparing cognitive outcomes after photon
versus proton radiotherapy showed no significant decline in IQ among survivors receiving
PBRT, while those treated with photon radiotherapy did show a significant decline [208].
The risk factors for late effects of neurotoxicity with PBRT are similar to photon-based
therapy: being of a younger age as well as the volume of the brain and spine that were
irradiated [200–202].

With the advent of these novel radiotherapeutic techniques coupled with develop-
ments in advanced MRI techniques, these novel approaches need to be tested in prospective
studies of children with brain tumors. Primary outcomes should be survival as well as
long-term neurocognitive function. Additionally, these studies should locate the tumor,
gather its proximity to vital eloquent areas and tracks of the brain, and monitor outcomes
as it pertains to location. With data from these prospective studies, optimal therapeutic
strategies can be created for each specific type of brain tumor.

5. Conclusions

The management of pediatric central-nervous-system tumors with radiotherapy allows
for greater lifetime survival but also lengthens the morbidity from late effects, especially
neurocognitive decline. This is largely due to the unintended consequence of radiation-
induced damage to the normal neural tissue caught in the beam trajectory. Advancements
in photon-based radiotherapy confined the volume of the brain that was irradiated to fit
the tumor margins more closely; however, the advent of PBRT further allows for greater
sparing of normal neuronal tissue, by maximizing energy deposition at the tumor location
while minimizing energy deposition both proximal and distal to the tumor target. While
additional advancements in radiotherapy technology are certainly warranted for both
an increase in survival and a decrease in neurocognitive late effects, further research
is needed to develop interventions for those already suffering from these late effects.
Current intervention options are limited and of uninspiring efficacy, mostly limited to
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environmental accommodations and cognitive remediations. Interventions for generalized
developmental delay may attenuate the consequences of these late effects, but there remains
an opportunity to implement specific strategies to intervene with survivors treated with
radiotherapy, especially due to the emergence of consensus deficits in neurocognition, such
as processing speed.
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