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Abstract: Endometriosis is a gynecological pathology that affects between 6 and 15% of women
of childbearing age. One of the manifestations is intestinal deep infiltrating endometriosis. This
condition may force patients to resort to surgical treatment, often ending in resection. The level
of blood perfusion at the anastomosis is crucial for its outcome, for this reason, indocyanine green
(ICG), a fluorochrome that green stains the structures where it is present, is injected during surgery.
This study proposes a novel method based on deep learning algorithms for quantifying the level
of blood perfusion in anastomosis. Firstly, with a deep learning algorithm based on the U-Net,
models capable of automatically segmenting the intestine from the surgical videos were generated.
Secondly, blood perfusion level, from the already segmented video frames, was quantified. The
frames were characterized using textures, precisely nine first- and second-order statistics, and then
two experiments were carried out. In the first experiment, the differences in the perfusion between
the two-anastomosis parts were determined, and in the second, it was verified that the ICG variation
could be captured through the textures. The best model when segmenting has an accuracy of 0.92
and a dice coefficient of 0.96. It is concluded that segmentation of the bowel using the U-Net was
successful, and the textures are appropriate descriptors for characterization of the blood perfusion in
the images where ICG is present. This might help to predict whether postoperative complications
will occur during surgery, enabling clinicians to act on this information.

Keywords: deep endometriosis; deep learning; video protocol; automatic segmentation; bowel
resection; laparoscopy

1. Introduction

Endometriosis is a chronic benign gynecological disease that involves the implantation
and growth of endometrial tissue outside the endometrium, including extrauterine loca-
tions [1]. It is estimated that 6–15% of childbearing age women suffer endometriosis [1,2].
Among those women, the prevalence oscillates between 30 and 50%, if they present chronic
pelvic pain or infertility [2]. The intestinal deep endometriosis (DE), the most severe cate-
gory of endometriosis [3], affects up to 37% of women with endometriosis [4–6]. Currently,
surgery is the only solution when medical treatment is insufficient to manage pain and
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disease progression [7]. In addition, it is the therapy that yields the superior cost–benefit
and produces an impact on quality of life [7,8]. The surgery to remove DE infiltrating
nodules of the bowel is highly recommended when the lesions affect the intestinal, urinary,
sexual, and reproductive functions [6]. Procedures employed for nodules removal in DE
bowel surgery include shaving, discoid excision, and segmental resection [3,6,9]. The main
postoperative difference between the three techniques lies in the rate of complications and
recurrence of nodules [3,9,10].

When removing the nodules, some of the surrounding tissue is also eliminated, leading
to the adjacent microvasculature [6]. In most cases, the removed arteries were exclusively
supplying the damaged portion of the bowel; nevertheless, perfusion of the healthy bowel
can be likewise compromised [11]. Therefore, the decrease in blood supply to the healthy
bowel might evolve into a postoperative complication [10,12,13]. Thus, the need arises to
strike a balance between removing as much extrauterine endometrial tissue as possible and
reducing the number of complications [6].

Within conservative surgery, the procedures used for nodules removal are laparotomy
and laparoscopy, the latter being the gold standard [1]. Laparoscopy allows for complete
lesions excision, less fertility impairment, and better long-term outcomes [1,7,8,14]. The
use of laparoscopy in bowel resection surgery, together with fluorescence-guided surgery
(FGS) and indocyanine green (ICG), has demonstrated a relationship between the level of
perfusion and postoperative complications, decreasing oxygenation effects on the bowel
tissue [15]. FGS, which allows the real-time visualization of anatomical structures, could
help surgeons to evaluate reperfusion of bowel anastomosis [16]. Moreover, FGS has been
proven to enhance surgical outcomes since the election of bowel shaving, discoid excision
or segmentary resection can be discussed during the surgery [12,17]. There are systems that
accomplish satisfactory results when monitoring the level of perfusion quantitatively [18].
The two most widespread models are fluorescence-based enhanced reality (FLER) [19]
and quantification of fluorescence angiography (Q-ICG) [20]. Both fall into the category of
software-based quantification algorithms [18] and analyze the level of ICG by processing
the fluorescent signal to produce a fluorescence–time curve (FTC) [19,20]. After recording
for a fixed period, based on the FTC’s final slope, the quantitative perfusion assessment
is performed [18–20]. Even if these systems are used, they cannot be considered a fully
reliable technique to monitor the level of perfusion quantitatively [17] due to the qualitative
approach based on visual judgment being the current gold standard [21,22].

However, to obtain valid quantitatively and comparable measurements of the ICG,
it would be necessary to design an imaging protocol to standardize video recordings in
gynecological surgeries with bowel resection. Nevertheless, it should be considered that
to improve the user experience for surgeons when viewing ICG-colored structures, the
laparoscopy towers are equipped with digital filters that attenuate or intensify the green
level depending on the distance between the lens and the colored structure [23]. In addition,
camera gain can be manually modified by adjusting contrast and brightness. These factors
affect how the green is viewed and recorded; requiring the design of a protocol to ensure
that the images captured in all surgeries are as similar as possible. Furthermore, there
is another existing problem that can make measurements unreliable. As shown by Son
et al. [17], once the ICG reaches and completely stains the intestine, the level of intensity
captured by the camera increases until it hits a maximum and, from that point, it begins to
decrease until it stabilizes.

For all the above-mentioned, the aims of this article were: (1) to find descriptors that
quantitatively measure the ICG intensity in videos from the FGSs involving bowel resection,
(2) to implement a segmentation algorithm, based on deep learning (DL), that allows automatic
division of the bowel, and (3) to generate a standardized and reproducible protocol for video
recording of deep bowel endometriosis FGSs with ICG. Additionally, we consider processing
a database with the frames extracted from videos of deep endometriosis surgeries.
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2. Materials and Methods
2.1. Pilot Protocol for Video Recording

The proposed protocol followed in this study combines the former manner of capturing
the videos with guidelines to ensure the correct standardization of image acquisition. The
protocol has three stages and was designed to be used in surgeries involving segmental
resection and/or discoid excision:

1. Optics placement: The camera needs to be optimally placed before injecting the
ICG and just after performing the resection. For this, the lens is directed to the area
of the anastomosis and positioned forming a 90◦ with the anatomical plane (the
intestinal serosa). Then, it is positioned in such a way that 2/3 of the proximal part
and 1/3 of the distal part are shown. The distance at which the optic should be placed
is approximately 8 cm. This distance would correspond to two open fenestrated
grasping forceps.

2. Video recording: After correctly positioning the optics, 5 mL of ICG is injected (i.v.
2.5 mg/mL). The surgeon should record the same shot for at least 140 s to ensure that
the ICG has reached the bowel and is correctly stabilized [17].

3. Completion: After successfully recording both areas of the bowel the surgery can
be resumed.

The Supplemental Material is shown an example of what video was considered as
appropriate recorded (Video S1) for the proposed acquisition of frames in this study.

2.2. Data Collection and Processing

A database composed of 7 videos of gynecological surgeries recorded in the gynecol-
ogy surgery rooms from the Hospital Universitario La Paz (HULP, Madrid, Spain) between
2018 and 2020 was assembled for attaining the objectives of this project. All recordings
were collected with a Stryker® (Stryker Iberia S.L., Madrid, Spain) or Olympus® (Olympus
Iberia S.A.U., Barcelona, Spain) laparoscopy tower during nodule removal interventions.
Discoid excision or segmental resection was applied to remove deep infiltrating nodules
from the bowel. Given that the videos cover the totality of the surgery (containing scenes
that are not of interest to this study), certain extracts were selected. From these, frames were
retrieved for posterior analysis. The resolution of the videos was full HD, with each frame
having dimensions of 1920 × 1080 × 3. The frames were divided into three categories:

• Type I (Figure 1A): the intestinal tract, primarily the colon, in healthy conditions or
with deep infiltrating nodules.

• Type II (Figure 1B): the bowel after segmental resection or discoid excision. These
scenes were captured with or without ICG, the first ones being used to analyze
blood perfusion.

• Type III (Figure 1C): the proximal part of the bowel outside the peritoneal cavity after
a segmental resection. They appear to a lesser extent than the previous ones.

Figure 1. Exemplification of frame categories used to create the database. The intestinal tract in
healthy conditions—in this case—or with deep infiltrating nodules (A). The bowel after segmental
resection—in this case—or discoid excision with ICG (B). The proximal part of the bowel outside the
peritoneal cavity after a segmental resection (C).
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To achieve the goal of automatic segmentation, 651 frames were subtracted from 5
of the videos: 153 were type I, 385 were type II and 113 were type III, reserving 592 for
the training process and 59 for testing. Once the frames were selected, binary masks of
four different regions of interest (ROI) were produced as follows. The four possible ROIs
were the bowel, the proximal and distal part of the bowel with respect to the anastomosis,
and the rest of the anatomical plane. For the preparation of these binary masks, firstly the
ROIs were manually segmented (directly from the RGB frames) by a trained member of
the research team, using the open-source editing tool GIMP (ver. 2.10.30 2021, GPLv3+,
Microsoft Windows). Subsequently, the RGB ROIs were converted to greyscale, and, by
thresholding and the use of morphological operators [24], specifically two consecutive
closings [25] using a 7 × 5 ellipse as structuring element, the binary masks were finally
obtained. The image processing tools from the Python library OpenCV (ver. 4.5.5.64) were
used. In type I and III categories, the ROI to be segmented was the intestine. In contrast,
type II contained 3 ROIs: the intestine and the proximal and distal part of the anastomosis.

Once the binary masks were created, the multiclass masks, with which the deep
learning algorithm was trained and evaluated, were generated. Depending on the scene
to which the frame corresponded, two different strategies were designed to arrange the
multiclass masks. For type II frames, a total of four differentiated areas were established:
the background, the proximal part, the distal part, and the intestine. For the type I and III
frames, creating the multiclass mask consisted merely of assigning the class background
and intestine (Figure 2).

Figure 2. Colored multiclass masks of frames from Figure 1. Type I (A); type II (B); type III (C). To
better distinguish, the proximal part is colored in red, the distal part is colored in yellow, and the
total part is colored in blue.

2.3. Automatic Segmentation

To adequately assess the level of blood perfusion after surgery, it is necessary to isolate
the intestine from the rest of the anatomical plane and, when there is an anastomosis,
to distinguish the proximal and distal parts. This helps the surgeons since it ensures
that only the ICG present in the bowel is considered when quantifying the level of per-
fusion. To this end, an automatic segmentation algorithm was employed. The automatic
semantic segmentation was based on the U-Net [26], a Convolutional Neuronal Network
(CNN) architecture [27,28]. The U-Net was chosen due to its potential for biomedical
image segmentation [29]. The Supplemental Video S2 shows an example of appropriate
segmented recorded.

To train the CNN, the training and validation set were generated from the 592 frames
and masks reserved for this purpose. Out of these, 444 frames and their masks (85%) were
used to compose the training set, and 148 frames and their masks (25%) the validation
set. The remaining 59 frames and masks were used to create the test set and evaluate
performance. Before being fed to the U-Net, frames and masks’ height and width were
resized to 512× 512 pixels, the images were normalized through min–max scaling, and one-
hot encoding was applied to the multi-class masks. The open-source library TensorFlow
(ver. 2.0.0 2019, Apache 2.0, Google Brain Team) was used to build and train the neural
networks for automatic learning.
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In the training process, two separate strategies were followed to deal with possible
overfitting scenarios: data augmentation (DA) and training optimization [30]. A scheme
of the training workflow can be visualized in Figure 3. DA is a technique that artificially
expands the dataset by providing greater variability to the machine learning (ML) sys-
tem [31,32]. Among the different DA modalities, given that medical images were employed,
only the called data warping was used [33]. With this technique, new images are created
transforming the data space by applying translation, rotation, and/or distortions, among
others [31,34]. Upon the dataset with which the U-Net was trained, three variations of DA
were used in attempt to preserve as much of the integrity of the images as possible. The
image alterations include color space transformations just to the images—random changes
in brightness, contrast, saturation, hue, and sharpness; geometric transformations both to
the images and masks; vertical and/or horizontal axis inversion, rotations, and perspective
changes, and finally, blurring through a Gaussian filter with varying kernel sizes [31].

Figure 3. Scheme of the U-Net training and evaluation workflow considering a 5-fold cross-validation,
image resampling, and a data augmentation strategy.

Regarding the strategies for training optimization, in addition to the max-pooling [35]
offered by the original model [29], the used methods were: dropout with a disconnection
probability of 0.5, a value that is proven to provide the most optimal results [32,33,36]; learning
rate decay (LRD), setting 0.1 as initial learning rate and 10−5 as minimum; early stopping,
halting the training process, if the validation rate did not improve after eight epochs, and
finally, batch normalization to regularize the data (mean = 0 and standard deviation = 1).

Up to five different configurations of the U-Net architecture were used in the training
process, these can be observed in more detail in Table 1. The model which yielded the best
results was when using Adam as optimizer, categorical cross-entropy loss (LCCE) combined
with dice loss (LDLS) as loss function, and 24 filters in the first convolutional block.

Table 1. Main differences between the trained models for the automatic segmentation task.

Model Data Augmentation Number of Filters Loss Function

A No 16 LCCE
B Yes 16 LCCE
C Yes 16 LCCE + LDLS
D Yes 24 LCCE
E Yes 24 LCCE + LDLS

Categorical cross-entropy loss (LCCE); dice loss (LDLS).

The following equation was used to calculate the categorical cross-entropy loss (LCCE),
as described in [37]:

LCCE = − 1
T

C

∑
c=1

T

∑
t=1

yc
t × log(ŷc

t ) (1)

where T is the number of samples (or pixels in this specific case), C the number of classes,
yc

t is the target, and ŷc
t the model’s output.
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The dice loss (LDLs) was calculated following [38] as:

LDLs = 1− 2|P ∩ G|
|P|+ |G| (2)

where P stands for the predicted image (the output of the model) and G for ground truth
or mask.

The combined loss function Ltotal was calculated by means of a weighted average as:

Ltotal = (0.6× LCCE) + (0.4× LDLs) (3)

All the 5 trained models used the U-Net as their framework. However, the differences
between models lie in the use of DA, number of filters, and the different loss functions.

2.4. Feature Representation through Textures of Image

The next step was to develop a system that would allow to quantitatively determine
the level of blood perfusion through the ICG intensity level in the videos. It must be
considered that the reading of this fluorochrome does not yield a direct measurement,
meaning that no formula directly relates ICG to the exact value of blood flow. Given that
textures allow capturing the characteristics of the object’s surface in the images [39], they
would enable quantifying the variations in perfusion as a function of the intensity from the
ICG present in the bowel’s outermost layer. Therefore, it was decided that texture analysis
of the segmented images would be the best option for the quantitative perfusion analysis.

The approach for the analysis of the textures used a combination of first- and second-
order statistics. First-order statistics study individually the properties of each pixel in
the image [25,39]. These descriptors are given by the mean and standard deviation of
the image pixels’ intensity [39,40]. Second-order statistics study the texture through the
spatial relationship between pairs of pixels [25,39,40]. To obtain these values, the spatial
co-occurrence between pixel pairs is gathered through the gray-level co-occurrence matrix
(GLCM) [41]. From the GLCM, up to fourteen parameters can be calculated to measure
texture [25,40]. However, only seven provide essential information [39]. Hence, the used
second-order statistics were: entropy, contrast, homogeneity, dissimilarity, angular second
moment (ASM), energy, and correlation [25,41].

Since, from the segmented images, it was necessary to use exclusively the bowel,
including the distal and proximal part, two premises were assumed for feature extraction.
When determining first-order statistics, the pixels that were assigned a value of 0 (the
segmentation background) were not considered. Moreover, to calculate the rest of the
textures, namely the second-order statistics, all elements in the first row and column of
each GLCM were eliminated. In addition, for extracting the second-order statistics, when
computing the GLCM, the distance was set to 1—to calculate only the relationship between
pairs of contiguous pixels—and the orientation to 0.

After successfully training the U-Net, two new videos of a segmental resection
surgery—one from the Olympus® and one from the Stryker®—were recorded, follow-
ing the protocol guidelines, and selected for the quantitative analysis of blood perfusion.
The videos depict the moment when, after injecting the ICG, the surgeons direct the optics
of the laparoscopy tower to the area of the anastomosis, capturing the respective proximal
and distal parts of the bowel (Figure 4). The videos display the area around the anastomosis
and no other bowel section because, when a discoid excision or segmental resection is
performed (leaving an anastomosis after removal of the affected tissue [1,9]), it is important
to assess blood perfusion at that exact location [12,13]. The reason is that an adequate
blood flow between the two segments of the anastomosis is crucial for the surgery to be
considered successful [22].
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Figure 4. Example of the automatic segmentation, produced with the best model, of the intestine’s
proximal and distal areas using the Olympus® and the Stryker® towers.

To confirm that textures proved a reliable and useful measure for quantifying the level
of blood perfusion using ICG, two experiments were conducted using the videos from
each of the towers. For this purpose, 4200 frames (140 s of videos with a frame rate of
30 frames per second) of the Stryker® and 3500 frames (140 s of videos with a frame rate
of 25 frames per second) of the Olympus® were utilized. Each of the experiments was
affected separately for the two videos since, due to the NIR imaging technology used by
each company, the green hue in the frames is different. However, in one version of the first
experiment, the data from both videos were combined. Prior to the experiments, all frames
were normalized using min–max scaling.

The first experiment was used to prove if the perfusion difference between the prox-
imal and distal parts of each frame could be detected. For this, different supervised
classifiers, specifically logistic regressors and decision trees (DT) [42], were used. The same
preprocessing was followed to prepare videos. First, the proximal and distal parts of the
frame were individually characterized through a 9-dimensional texture vector—the two
first dimensions correspond to the first statistics, whereas the rest are associated with the

second-order statistics—obtaining the vectors proximal (
→
p ) and distal (

→
d ), respectively.

Subsequently,
→
p and

→
d were standardized and labeled according to the section to which

they belonged (0 for distal and 1 for proximal). Finally, using an 80/20 split, the frames
from each video were divided into train and test sets. During the training process, the

9-dimensional texture vectors
→
p and

→
d served as inputs, whereas the part they belonged

to as outputs. Grid search and 5-fold cross-validation were used to find the best hyperpa-
rameters. The classification goal was to predict whether the texture vector belonged to the
distal segment (class = 0) or to the proximal one (class = 1).

The second experiment was conducted to determine whether the variation in ICG
intensity along the video [17] could be captured through the selected first- and second-order
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statistics. As in both videos, the ICG was injected with the anastomosis already present, it
would not have been appropriate to consider the intestine as a continuum. Indeed, this is
because in most cases, arteries in the proximal part of the anastomoses are the more affected
and hence supply less blood [43]. Accordingly, to obtain a quantitative measure, each frame
was characterized via a unique 9-dimensional vector that relates the two anastomosis areas.
The two parts were compared by means of a Euclidean distance between the 9-dimensional

texture of the proximal (
→
p ) and distal (

→
d ) part of the frame. As a result, each frame was

characterized by a single vector
→
t :

I =
∣∣∣∣∣∣∣∣→p −→d ∣∣∣∣∣∣∣∣= →t where

→
t = (t1 . . . t9) (4)

The ability to contrast the ICG intensity between the two sites facilitates knowing
whether one site is being less perfused than the other. Moreover, it ensures that the

texture vector
→
t is a reliable representation of the perfusion in the overall area, as both

bowel segments contribute equally when computing
→
t . Afterward, to observe how the

characterized frames were distributed over the video, the k-means algorithm was used for
unsupervised clustering [44]. Firstly, the data were clustered in the 9-dimensional space

(R9) using the raw texture vector
→
t . Secondly, using the unsupervised dimensionality

reduction algorithms principal component analysis (PCA) [45] and t-distributed stochastic

neighbor embedding (t-SNE) [46], the
→
t vector was reduced to two (R2) and three (R3)

dimensions. For each of the three vector spaces, the frames were clustered using 2, 3, 4, and
5 centroids. No correlation between the textures was detected.

3. Results
3.1. Automatic Segmentation and Performance Evaluation

For evaluating the training data of the five models, four performance metrics were
utilized. Since the images suffer from class imbalance, namely the background and the
predominant class, accuracy alone is not significant [47]. Hence, Matthew’s correlation coef-
ficient (MCC) is also reported. In addition, being faced with a pixel-level classification task,
two measurements designed to work with image segmentation problems (dice coefficient,
DC and Jaccard index, JI) were also employed.

To demonstrate the reliability of the trained models, their performance metrics are
shown in Table 2. These are complemented by four automatic segmentations of images from
the test set, with the intention to provide more context and facilitate the interpretation of the
outcomes. It can be observed that as improvements were included (using DA, increasing
the number of filters, and employing the combined loss function), the models upgraded.

Table 2. Performance metrics of the U-Net when evaluating the images from the test set with the
different trained models used to assess the training results.

Model Accuracy MCC DC JI

A 0.6715 – – –
B 0.7800 0.6877 0.7055 0.6875
C 0.8752 0.8183 0.8345 0.8052
D 0.8259 0.7127 0.7251 0.6903
E 0.9245 0.9478 0.9568 0.9316

Metrics to classification: accuracy and Matthew’s correlation coefficient (MCC). Metrics to segmentation: dice
coefficient (DC) and Jaccard index (JI).

In relation to model A, it is the only one that did not learn how to segment the bowel
since it classified all pixels as 0 (background class). Thus, only the accuracy is reported.
However, once DA started to be implemented, the results improved as the models were
able to segment the bowel. Regarding the rest of the models, adding more filters in the
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convolutional layers helped to improve the overall performance by almost 6%. Though, the
most considerable enhancement was using the combined cost function (models C and E),
as it exploits the benefits of LCCE, in the pixel level classification task, and pays attention to
the morphological characteristics of the segmentations through LDLS The latter improved
the performance by up to 12%. As can be seen in Table 2, the best model was E, which has
an accuracy of 0.92 and a DC of 0.96.

Figure 5 shows the automatic segmentations performed on four images of the test set.
Because the outputs of model A were entirely black images, their results have not been
included. The rest of the segmentations were quite consistent with the expected ground
truths. In the case where the proximal and distal part of the intestine must be detected,
excellent outcomes were produced; those are the segmentations that ultimately do matter
for the analysis of perfusion as has been previously mentioned.

Figure 5. Automatic segmentations produced by models B, C, D, and E. In the top row, RGB images
from the test set scaled to 512 × 512 pixels. In the next row, the ground truths show each of the
4 classes with different grey intensities. In the following rows, the masks segmented by models B, C,
D, and E, respectively.
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3.2. Analysis of the Blood Perfusion Assessment through the Textures

The evaluation of the effectiveness of the textures as possible quantitative descriptors
of blood perfusion, by characterizing the ICG present in the intestine, was performed
separately for each of the experiments.

The first experiment verified that the perfusion difference between the proximal and
distal part of each frame was indeed detected when using the nine-dimensional texture

vectors
→
p and

→
d . The classification metrics used were accuracy, F1-score, and MCC, and for

the DT, the Gini impurity was also employed. Moreover, to reveal which textures were the
most significant when discerning the proximal and distal parts by means of the ICG level,
a study of the importance of the variables was carried out. For this purpose, to estimate the
most representative features of the logistic regression, the absolute value of the weights
from each variable was calculated. In the case of the DTs, the importance of the variables
was obtained using the tree depth and the Gini index.

In relation to the Stryker® video, the most influential features for the classification
were homogeneity, the mean, and standard deviation, taking 56%, 25%, and 13% of the
importance, respectively. Regarding the DTs, since the depth of the resulting tree was 1,
only one feature was enough to predict which class (0 for distal and 1 for proximal) the
feature vector of the frame part belonged to. In the tree, the root node was divided into two
branches according to the level of homogeneity, which in turn is the most decisive texture
for classification by logistic regression. When evaluating the test set, the accuracy, F1-score,
and MCC were always 1, and in the case of the DTs, the Gini index for the distal part of the
leaf was 0, while for the proximal part of the leaf it was 0.012.

Regarding the Olympus® video, the most important features in the texture analysis
highly differ from the previous. A total of 42% of the importance was given to the mean,
while 30% and 22% were assigned to the contrast and dissimilarity, respectively. For the
DTs, as in the previous case, the depth of the tree was 1, indicating that a single texture was
sufficient to classify the two parts. In this case, the texture used was the correlation, an
unexpected result since in the logistic regression only 0.5% of importance was given to it.
The test set evaluation results were the same as in the previous case, with the difference
that the Gini impurity was 0 for the two leaf nodes.

When training the classifiers with the frames from videos, the data are to some extent a
combination of the previous. The most important features were homogeneity, the mean, the
standard deviation, and dissimilarity, with each having 33%, 25%, 18%, and 13% relevance,
respectively. In the DTs, again, the depth is 1; with homogeneity being the texture in charge
of establishing distinction.

By analyzing the clusters, the second experiment verified that the variation in ICG
intensity throughout the video was captured using the first- and second-order statistics.
Only those obtained in R2 space with t-SNE will be specified because the performance was
similar in the three vector domains employed.

Regarding the Stryker® video, when two centroids were used, the two clusters were
divided by frames 1584 and 3960 of 4200. In other words, the frames before 53 s and after
132 s were classified in one group, and the intermediate ones in another. Then, it begins
to stain the walls of the intestine, and after approximately 140 s, the fluorochrome begins
to decay. When using three centroids, the groups became more uneven, with the frames
before around 42 s belonging to one cluster, the ones in between seconds 53 and 127 to
another cluster, and the remaining one in another cluster. As more centroids were used, the
clusters become even more differentiated, with one cluster for frames where the ICG has
not yet reached or is beginning to reach the intestine; another for the frames with very high
values; and another or more clusters, depending on the number of centroids, where the
rest of the frames are grouped together. Following that, in all cases, the results agreed with
those expected [17], and the analysis was discontinued for more than five clusters.

The Olympus® video showed the same pattern. The clusters still reflect the temporal
variations reported. However, there were occasionally small groups of frames that were
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in a cluster to which they should not belong. These mainly corresponded to the parts in
which the ICG was stabilized.

Figure 6 presents the results when using two centroids and working in R2 after having
implemented PCA and t-SNE. Only a total of 255 frames of the Stryker® video have been
included for the comfort of visualization.

Figure 6. Plots obtained by clustering 255 samples from the Stryker® video using k-means after
dimensionality reduction using two centroids. The dimensionality reduction with PCA (A). The
dimensionality reduction with t-SNE, using a learning rate of 200 and perplexities of 10 (B), 30 (C),
and 50 (D). Since two centroids are being used, frames were divided into classes 0 and 1. When using
PCA, the axis corresponds to the two main principal components (pc), whereas in the case of the
t-SNE ones to the two main t-SNE vectors.

4. Discussion

The present study pretended to contribute to the gynecological surgery, for the elimina-
tion of deep intestinal infiltrating nodules, using a machine learning approach. Specifically,
this study has developed a tool to quantitatively measure the level of blood perfusion in an
anastomosis, for which several videos have been analyzed. This study has been divided
into two axial lines.

The first line focused on the automatic segmentation of the intestine. Using a database
of 651 frames and their corresponding multiclass masks, a deep learning model based on
the U-Net architecture was trained to segment the bowel from the rest of the anatomical
plane and to differentiate the proximal and distal parts of the anastomosis. It should be
noted that the best model (model E) adequately isolates the bowel from the rest of the
anatomical plane. Nevertheless, errors occur when there is no anastomosis since, when
segmenting type I and III scenes, the total part tends to be misclassified as the proximal
part. However, even if it must be considered, this issue is not a major problem when using
the segmentations for the perfusion analysis. This could be due to in videos where there
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are anastomoses, the proximal and distal parts are properly segmented, and therefore the
texture vectors are adequately computed. In videos where there was only the total part,
the bowel can be completely reconstructed by joining the different parts segmented by the
model. Therefore, it can be determined that the automatic segmentation of the bowel has
been successful.

The second line centered on determining whether textures could be suitable descriptors
for measuring the blood perfusion of frames based on their level of indocyanine green. To
this end, the already U-Net segmented images were characterized based on the nine textures
described by first- and second-order statistics. First, it was examined if the proximal and
distal could be differentiated by means of the textures. The classification outcome was close
to well-fit. It was later found through the feature analysis that a simple threshold in the
homogeneity was sufficient to classify the different parts of the frame. Therefore, it was
possible to verify that textures reflected the difference in blood perfusion between the parts
of the anastomosis. Results showed how the mean is an important texture when classifying
the two parts, indicating that the level of appreciable ICG present in the outermost layer of
the bowel is a good descriptor of blood perfusion. Nonetheless, since other textures, such
as homogeneity, dissimilarity, and correlation, play an important role in the classification, it
can be reasoned that capturing other visual attributes of the bowel is crucial for a correct
characterization of the pictures. Overall, considering the disparity between the importance
given to textures, it is suggested that all nine statistics should be used when characterizing
the frames.

Second, it was investigated whether the intensity variations within the videos could
be captured when characterizing the frames via a unique texture vector (Equation (4)). The
unsupervised learning algorithms k-means, PCA, and t-SNE were employed. It was found
that frames belonging to the same video could indeed be clustered following the intuitions
presented in [17]. The purpose of using an increasing number of centroids was to be able to
observe whether, depending on the moment of the video, frames with a similar amount
of ICG green staining the intestine at that time would group together. It was determined
that the textures of the frames, and thus the ICG level as shown in the recordings, vary
chronologically over time. Results suggest that the differences in ICG level can be gathered
through the textures, demonstrating that characterizing the images based on these variables
is a successful approach to quantifying the level of blood perfusion.

Comparing the current model with others to quantitatively measure ICG-perfusion,
specifically FLER and Q-ICG, two major improvements should be emphasized. First, be-
cause of bowel segmentation, prior to feature extraction, textures are only computed in the
bowel and not in the rest of the anatomical plane [18–20]. In the FLER and Q-ICG models,
to produce the intensity curve from the qualitative analysis made, the intensity of all pixels
in the image is calculated, thus including those regions that are not the intestine [19,20].
Although they create a single curve that is used for quantitative analysis, this is due to
the FLER model, and the reference areas for ischemia and adequate perfusion must be
specified [19]. In Q-ICG, the investigator must point out the areas of interest [20]. In the
model presented in this article, in addition to working only on an area that is automatically
segmented and differentiable between the proximal and distal part of the anastomosis,
allows feature extraction to be carried out separately. By unifying the textures of both parts,
it is possible to explore if there is a perfusion issue when one area is less perfused than
the other. Another advantage comes from extracting a total of nine textures. In addition
to having clinical relevance, since textures can capture different features of a surface, this
gives the system greater versatility in capturing perfusion abnormalities that cannot be
picked up by intensity itself. The combination of first- and second-degree descriptors
allows ICG variations to be more accurately tracked, and the surface of the intestine to be
deeply described.
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Strengths, Limitations and Future Perspectives

The main limitation of this study was the reduced number of available video record-
ings. As the surgeries were interrupted during the COVID-19 lockdown, there were only
videos of seven surgeries when the project was developed. This has been sufficient to train
an algorithm for automatic segmentation and to postulate that textures can be an adequate
method to quantify blood perfusion in FGSs with bowel resection using ICG. However, it
did not allow us to state certainly that these last findings were definitive. Another limitation
was having to generate the multiclass masks manually, since, as is well known, this is a
time-consuming and costly process. As a final limitation, an implementation challenge
when training the model can be highlighted. During this process, out-of-memory errors
occurred the first time when the batch of tensors was passed through the U-Net or when
updating the weights through backpropagation. To overcome this problem, the batch size
of the training set was reduced to 16 and in the validation to 8.

Accordingly, as future perspectives we propose: (1) to collaborate with different
reference centers to be able to test the effectiveness of the automatic segmentation model, to
reinforce the preliminary results on the quality of the textures as a quantitative descriptor,
and to improve the protocol if this is necessary; (2) to continue recording new videos to train
and improve the segmentation capacity of the model; (3) to expand the system’s application
potential and use it to predict intraoperatively the success of the resection based on the
level of blood perfusion in the anastomosis, and (4) once a system capable of predicting
the possibility of postoperative risk was developed, to conduct a prospective study with
a view to assessing the usefulness of the technique in terms of reducing postoperative
complications associated with bowel resection.

5. Conclusions

Overall, by combining automatic bowel segmentation with texture extraction, it has
been possible to quantitatively assess the level of blood perfusion of the bowel from the ICG.
Critical to this was the success of CNNs, specifically U-Net, in the semantic segmentation
process, and of textures in capturing the level of ICG present in the outermost layer of the
bowel. For the first time, a project where deep learning and feature extraction techniques are
employed is presented in the blood perfusion quantification in FGSs involving intestinal
resection. Additionally, the presented protocol is a simple, reproducible, and feasible
procedure that allows for properly standardizing the recording of surgical videos for
subsequent analysis. Likewise, video recording and frame processing have allowed the
training of deep learning algorithms and clustering analysis to validate the effectiveness of
textures as blood perfusion descriptors.

This novel project on the use of deep learning and feature extraction for perfusion
analysis in bowel resection surgery opens the possibility of predicting postoperative com-
plications based on texture values and properties of sequential data in surgeries involving
bowel resection and using ICG. This could help surgeons to prevent postoperative compli-
cations and act accordingly during the surgical procedure itself and considering that the
final decision is always based on clinical criteria, this technique could optimize the decision.
Moreover, it is feasible to use the present method in other surgeries involving intestinal
anastomoses, such as colon cancer surgeries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12060982/s1, Video S1: Appropriate recorded for the proposed
acquisition of frames; Video S2: Automatic segmentation based on recording and the U-Net.
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