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Abstract: The early prediction of epileptic seizures is important to provide appropriate treatment
because it can notify clinicians in advance. Various EEG-based machine learning techniques have
been used for automatic seizure classification based on subject-specific paradigms. However, because
subject-specific models tend to perform poorly on new patient data, a generalized model with a
cross-patient paradigm is necessary for building a robust seizure diagnosis system. In this study, we
proposed a generalized model that combines one-dimensional convolutional layers (1D CNN), gated
recurrent unit (GRU) layers, and attention mechanisms to classify preictal and interictal phases. When
we trained this model with ten minutes of preictal data, the average accuracy over eight patients
was 82.86%, with 80% sensitivity and 85.5% precision, outperforming other state-of-the-art models.
In addition, we proposed a novel application of attention mechanisms for channel selection. The
personalized model using three channels with the highest attention score from the generalized model
performed better than when using the smallest attention score. Based on these results, we proposed a
model for generalized seizure predictors and a seizure-monitoring system with a minimized number
of EEG channels.

Keywords: epilepsy; seizure; seizure prediction; ACGRU; channel-wise attention mechanism; 1D
convolutional neural network; gated recurrent unit

1. Introduction

Epilepsy is a neurological disorder in which transient dysfunction of the brain occurs
chronically and repeatedly and can lead to seizures, loss of consciousness, numbness, and
behavioral changes depending on the type of brain lesion. Epileptic seizures are char-
acterized by excessive neuronal synchronization and these hypersynchronous electrical
potentials can be recorded with scalp electroencephalography (EEG). Due to the sponta-
neous nature of epileptic seizures, continuous and long-term EEG recordings of patients
are often needed for their accurate diagnosis and precise treatment [1,2]. However, the
visual inspection of EEG signals is laborious, time-consuming, and subject to rater-biases
even by expert neurologists. Therefore, there are numerous studies on automatic seizure
detection to aid neurologists in the diagnosis of epilepsy and investigate the characteristics
of epileptic signals.

Most studies on automatic seizure recognition have employed machine learning
techniques to distinguish ictal EEGs from interictal or normal EEGs. Generally, EEG
signals in epilepsy patients can be subdivided into the following four states: ictal, preictal,
postictal, and interictal [3]. Ictal EEG activity can be observed during seizure onset. The

J. Pers. Med. 2022, 12, 763. https://doi.org/10.3390/jpm12050763 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12050763
https://doi.org/10.3390/jpm12050763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-8081-6522
https://doi.org/10.3390/jpm12050763
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12050763?type=check_update&version=1


J. Pers. Med. 2022, 12, 763 2 of 22

preictal and postictal phases indicate periods immediately before and after a seizure,
respectively. Interictal phases are non-seizure intervals between ictal phases. Most studies
on seizure detection have focused on the classification of EEG from seizures from that
of non-seizures. Various machine learning techniques that learn the epileptic patterns of
temporal, spectral, and nonlinear features extracted from EEG signals, have been widely
used for seizure detection. Machine learning classifiers including support vector machines,
random forest, k-nearest neighbors, and artificial neural networks have resulted in a high
classification accuracy of over 95% in seizure detection [4–7]. Although feature-based
machine learning techniques have provided remarkable accuracy in seizure detection and
the interpretability of epileptic signal properties, their performance could deteriorate owing
to subject variability and noise from motion artifacts or the detachment of sensors.

Recently, deep learning techniques that learn epileptic characteristics from raw EEG
signals without any feature extraction processing have shown great advances in seizure
detection. Recurrent neural networks (RNN) and their variants such as long short-term
memory (LSTM) and gated recurrent units (GRU) are frequently used for the analysis of
time-series data, including EEG signals, because of their feedback loops. Many studies have
proposed RNN-based structures for seizure detection by adopting multiple RNN, LSTM,
or GRU layers [8–14]. Several studies have utilized CNN, which has been widely used in
image recognition and seizure detection, and have successfully classified ictal and other
states by converting EEG data into multi-dimensional tensors containing temporal, spatial,
or spectral features [15,16]. A hybrid model that combines both CNN and RNN layers
has also been proposed in several studies [17,18]. Despite the high performance in seizure
detection, most studies have adopted within-patient protocols in which training and test
datasets were collected from the same patient. Other studies evaluated model performance
using record-wise cross-validation, whereby EEG signals from all subjects were randomly
split into training and test sets. In other words, training and test sets can share data from
the same subject. However, subject-specific or record-wise cross-validated models often
result in the overfitting of data, which lowers the generalizability of the models. Since
epileptic EEG signals can vary between patients due to different seizure types (focal vs.
generalized) [19], age [20], sex [21], and brain lesions [22], the performance of automatic
seizure detection models can worsen when applied to a new set of patients. Thus, subject-
wise cross-validation where subjects in the training and test sets are independent must be
performed to consider the between-subject variability in automatic seizure detection for
clinical use.

To correct between-subject variability, some studies have adopted attention mecha-
nisms in deep neural network models. The attention model, which captures the relevance
between the encoder and decoder, was first introduced for machine translation [23]. At-
tention mechanisms that selectively focus on certain parts by learning and calculating the
attention weights of all feature vectors have been applied in many tasks including text clas-
sification, machine translation, text summarization, syntax, and computer vision [24–28].
Channel-wise attention mechanisms have been adopted in EEG analyses because spatial
information in EEG signals collected from multiple channels plays an important role in
predicting brain status, such as emotion [29,30]. In seizure detection, because ictal signals
are observed predominantly in channels near the focal area, the channel-wise attention
mechanisms not only result in a high classification performance but also provide informa-
tion on the contribution of each channel [31–33]. Furthermore, attention mechanisms have
proved to be efficient in patient-independent seizure detection by exploring the significance
of each channel in the classification of different patients [34,35].

Another challenge in the EEG-based diagnosis of epilepsy is the classification of seizures
in the preictal stage. Several studies have reported high performance in the classification of
ictal and interictal phases and also for ictal and preictal phases. Despite advances in anti-
seizure medication and surgical intervention, 30% of patients with epilepsy are refractory to
conventional intervention. The most devastating aspect of epilepsy is its “unpredictability”
and the quality of life in these patients can be dramatically improved with accurate seizure
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forecasting in a pre-ictal state. Unfortunately, it is difficult to identify preictal patterns using
long-term EEG signals because their EEG characteristics are not easily distinguishable from
those in the interictal period [36]. In addition, although many studies have reported clinical
findings of the preictal period, the exact timing of the preictal period has not been defined.
Therefore, deep learning methods that autonomously capture characteristic patterns have
been adopted to predict seizures from preictal EEG signals [8–23].

Most of the studies on the classification of epilepsy with EEG have aimed to distinguish
seizure-related activity (EEGs from the ictal period) from non-seizure activity (EEGs from
the interictal period or non-seizure patients) [8,14–17,33–35]. Although other studies
have successfully predicted epilepsy using preictal EEGs, these models were built on
the within-patient paradigm, implying that they are likely to perform poorly for a new
set of data [37–43]. To utilize automatic seizure prediction in an actual clinical situation,
a generalized model for cross-patient seizure prediction is required. To the best of our
knowledge, there has been no study on generalized seizure prediction algorithms that
can classify preictal from other phases via a between-patient approach. In this study, we
aimed to classify seizures using preictal EEGs based on a hybrid model that combines a one-
dimensional convolutional neural network (1D CNN) and a gated recurrent unit (GRU). We
also blended an attention mechanism with the CNN-GRU model to overcome cross-patient
variability problems. Furthermore, channel reduction through attention mechanisms would
simplify the model for future applications in wearable patient monitoring systems.

Thus, the main contributions of this study, which aims to predict seizures using an
attention-based 1D CNN coupled with GRU (ACGRU), are as follows:

1. We propose a hybrid model that combines CNN and GRU layers to extract intrinsic
temporal EEG patterns for differentiating preictal and interictal periods.

2. We suggest that the attention mechanism in the encoder can successfully correct
subject variability and that the self-attention mechanism in the decoder can capture
informative temporal features.

3. We propose the use of attention mechanisms as a novel means of channel selection for
practical seizure prediction systems.

The remainder of this paper is organized as follows. In Section 2, an investigation of
related studies on seizure detection and prediction using various approaches including
conventional machine learning, deep learning, and attention mechanisms is presented. In
Section 3, data collection methods and patient information are explained, and the detailed
structure of the proposed ACGRU model is described in the remainder of the section.
In Section 4, the classification results of the ACGRU and a model analysis are provided.
Furthermore, in the last part of Section 4, an evaluation of the CGRU model with reduced
channels using the attention mechanism is provided. Finally, in Section 5, we summarize
and describe the main findings of our study.

2. Related Works

In this section, we examined the studies on the classification of seizure events. We
divided the seizure studies into those that classified the ictal or preictal period from
other periods. In Section 2.1, studies on seizure classification based on a deep learning
approach are reviewed. In Section 2.2, studies on the attention mechanism, which has
shown good performance in the interpatient model, are investigated. In Section 2.3, studies
on seizure prediction, which distinguish EEGs of preictal states from those in other phases,
are analyzed. In Table 1, we summarize the related studies on seizure detection with intra-
or inter-patient paradigms and those on seizure prediction with intra-patient paradigms.
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Table 1. Summary of related studies.

Reference Accu. (%) Epoch (s) Feature Extraction Model Class

Seizure Detection (Intra-Patient)

Vidyaratne [9] 100 1 Raw EEG RNN ictal vs. interictal

Hu [11] 93.61 4 Local Mean
Decomposition BiLSTM ictal vs. interictal

Talathi [13] 98 23.6 Raw EEG GRU ictal vs. interictal vs. normal
Zhou [16] 97.5 1 Spectral Features CNN ictal vs. interictal
Yuan [31] 96.61 - Spectral Features Attention ictal vs. interictal

Seizure Detection (Inter-Patient)

Yao [8] 87 23 Raw EEG RNN ictal vs. interictal
Wei [14] 92.38 10 Raw EEG 3D CNN ictal vs. preictal vs. normal

Acharya [15] 88.67 23.6 Raw EEG CNN ictal vs. interictal

Abdelhamed [17] 98.89 23.6 Raw EEG CNN
+ BiLSTM ictal vs. interictal vs. normal

Zhang [33] 82 1 Differential Entropy VGGNets
+ Attention ictal vs. interictal

Zhang [34] 80.5 1 Raw EEG CNN
+ Attention ictal vs. interictal

Yao [35] 83.72 23 Raw EEG BiLSTM
+ Attention ictal vs. interictal

Seizure Prediction (Intra-Patient)

Zhang [37] 90 5 Common Spatial Pattern CNN preictal vs. interictal
Liu [38] 85.5 30 Spectral Features Multi-view CNN preictal vs. interictal

Khan [39] 87.8 1 WT CNN preictal vs. interictal

Tsiouris [40] 99.28 5 Correlation, Temporal &
Spectral features LSTM preictal vs. interictal

Daoud [41] 99.6 5 Raw EEG
CNN +

Autoencoder +
BiLSTM

preictal vs. interictal

Usman [42] 93 29 EMD, STFT CNN+LSTM preictal vs. interictal

Seizure Prediction (Inter-Patient)

No study was reported.

2.1. Studies on Deep Learning Based Seizure Detection

The most common type of deep neural network used for seizure detection is the RNN
and its variants, which utilize their internal state as “memory” to process time-variant data.
Yao et al. proposed an independent RNN (IndRNN) that uses 15-RNN layers to extract
time-dependent features in a 23 s input sequence to classify seizures from non-seizures [8].
The model achieved 87% accuracy using cross-validation, outperforming convolutional
neural networks (CNN) and LSTM. Vidyaratne et al. proposed a deep recurrent neural
network (DRNN) that combines bidirectional RNN and cellular neural networks, which
demonstrated 100% sensitivity with 7 s delays in a patient-specific experiment [9]. LSTM,
which resolves the long-term dependency problem in conventional RNN by adopting
the memory cells and gate mechanism, has successfully provided results with relatively
lower computational costs than conventional RNN in many tasks dealing with time-series
data [10]. Hu et al. proposed a deep bidirectional LSTM (bi-LSTM) network for automatic
seizure detection [11]. To decrease the computational cost, statistical features extracted from
the outputs of local mean decomposition were used as inputs for the bi-LSTM. As a result, a
mean accuracy of 92.66% was achieved in the subject-specific experiment when using a 4 s
window. Recently, gated recurrent units (GRU) have resulted in a similar performance to
LSTM while simplifying the model structures and parameters [12]. Talathi designed a deep
RNN with a GRU for the classification of healthy, interictal, and ictal EEG signals using a
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single channel [13]. A 98% accuracy in detecting seizure events was reported within 5 s
using a 23.6 s window.

CNN, which is another popular deep learning method, was also used for seizure
detection in several studies. Wei et al. presented a three-dimensional CNN (3D CNN) that
converts EEG signals into 3D images to integrate multichannel information [14]. The 3D
CNN successfully classified ictal signals with 93.83% accuracy and preictal signals with
92.57% accuracy in a 10-fold cross-validation test. Acharya et al. employed a 13-layer deep
CNN and reported an accuracy of more than 90% for the differentiation between normal,
preictal, and seizure periods using a 10-fold cross-validation strategy [15]. Zhou et al. re-
ported that frequency-domain signals obtained from a fast Fourier transform were more
suitable as inputs for CNN classifiers than as time-domain signals for seizure detection [16].
Moreover, a hybrid model that combines CNN and bi-LSTM layers was proposed for auto-
matic epileptic seizure detection. The model resulted in 100% accuracy in the classification
between normal and ictal cases using 10-fold cross-validation and a 23.6 s window [17].
Roy et al. proposed ChronoNet by stacking multiple 1D convolutional layers followed by
GRU layers to classify normal and abnormal EEG data [18].

2.2. Studies on Attention Mechanism

In this section, studies that used the attention mechanism to classify EEG signals of
various brain states, including seizures, are investigated. Yuan et al. adopted channel-
aware attention mechanisms to identify the attentional representations of multichannel
spectrograms. Their proposed method resulted in an average accuracy of 96.61% accuracy,
outperforming other conventional machine learning methods for each patient. In addition,
the attention scores were uniformly distributed within each patient [31]. Isaev et al. reported
that attention mechanisms not only resulted in a 94.3% classification accuracy but also
provided the importance level of each channel for seizure detection in neonatal patients [32].
Zhang et al. utilized attention models with a shallow VGGNet, which is a CNN-based
model [33]. The proposed model used differential entropy as a feature, yielding an average
accuracy of 82% in non-patient-specific k-fold cross-validation. Zhang et al. suggested that
attention mechanisms combined with CNNs could provide an effective patient-independent
diagnosis of seizures [34]. They demonstrated an average of 80.5% in the leave-one-out
strategy, and the attention mechanisms showed the importance of each brain region in
epileptic seizures based on its contribution to the classification. Yao et al. also proposed
a deep learning approach that integrates the attention mechanism in capturing spatial
features and BiLSTM to extract temporal features for the classification of seizures and
non-seizures [35]. They reported that attention BiLSTM resulted in 87.8% accuracy with
cross-validation and 83.89% accuracy with the cross-patient paradigm. Furthermore, they
found that attention weights successfully spotlighted the target channels that reflected
relatively larger ictal activities.

The attention mechanism combined with RNN has also been adopted in other more
challenging EEG classifications, such as emotion recognition. Tao et al. proposed attention-
based convolutional recurrent neural networks (ACRNN) to discriminate between arousal,
valence, and dominance [29]. They demonstrated that the integration of channel-wise atten-
tion, convolutional, and recurrent layers led to higher performance in emotion recognition
than when each layer was used alone. Chen et al. also utilized an attention mechanism
with a hierarchical bidirectional GRU (H-ATT-BGRU) for emotion classification [30]. The
proposed H-ATT-BGRU resulted in 67.9% accuracy in valence classification and 66.5%
accuracy in arousal classification, outperforming other comparative models without the
attention mechanism.

2.3. Studies on Seizure Prediction

Zhang et al. proposed CNN-based seizure prediction using a common spatial pat-
tern [37]. They obtained 90% accuracy for the discrimination of the preictal and interictal
states in leave-one-event-out cross-validation performed within each subject. Liu et al.



J. Pers. Med. 2022, 12, 763 6 of 22

utilized a multiview CNN to predict the occurrence of seizures using temporal and fre-
quency features extracted with a deep canonical correlation analysis [38]. Khan et al. also
adopted a CNN model to successfully extract preictal features from the 10 min period
before seizure onset, suggesting that the interval could be referred to as the preictal pe-
riod [39]. Tsiouris et al. employed an LSTM model using statistical features, spectral
features, and connectivity measures for a seizure-prediction model [40]. In 10-fold cross-
validation, by changing the window size from 15 min to 2 h, high performances with over
99% sensitivity were achieved in both patient-specific and global models. Daoud et al.
combined semi-supervised learning based on a deep convolutional autoencoder (DCAE)
with Bi-LSTM networks for patient-specific epileptic seizure prediction [41]. They were
able to predict seizures one hour before onset with 99.6% accuracy in leave-one-event-out
cross-validation. Usman et al. classified the preictal and interictal states using a three-layer
CNN and LSTM [42]. They found that using generative adversarial networks (GAN) to
resolve the data imbalance between preictal and interictal data by generating data samples
of the minority class resulted in 93% sensitivity and 92.5% specificity with an average time
of 32 min in k-fold cross-validation.

3. Materials and Methods
3.1. Patients and EEG Data

The EEG data of eight patients (three women and five men) among forty-one patients
who had undergone epilepsy surgery at Asan Medical Center Children’s Hospital from
July 2011 to July 2016 were chosen based on the following inclusion criteria. Surgical
resection was guided by clinical factors, semiology, the visual assessment of long-term
scalp video-EEG, Wada test, magnetic resonance imaging (MRI), single-photon emission
computerized tomography (SPECT), and positron emission tomography (PET) results.
Among those who had long-term video EEG and following surgical resection, patients
who experienced two or more seizures during the monitoring period and those who were
seizure-free for two years after surgery were included in this study. The data in this study
were retrospectively analyzed; thus, the results of this study did not affect real-time surgical
decision making. The average age of patients when EEG signals were recorded for this
study was 18.25 ± 5.74 years old (min: 11, max: 26). The demographic and clinical data are
provided in Table 2.

Table 2. Information on patients with epileptic seizure.

Patient Age Sex # of Seizure Length of
Interictal EEG Epilepsy Type/Epileptogenic Lesion Related Channels

1 12 M 7 2 h DNET1 + FCD2/Right temporal Fp2, F8, T8, P8, F4,
C4, P4

2 13 M 7 3 h FCD/Right frontotemporal F8, T8, F4, C4
3 19 M 10 5 h Subpial Gliosis + HS3/Right temporal F8, T8, P8
4 16 M 10 3 h Subpial Gliosis + HS/Right temporal T8
5 25 F 8 4 h FCD + HS/Right temporal T8
6 26 F 13 3 h HS/Right temporal T8, P8
7 11 F 8 3 h DNET/Right frontotemporal F8, T8, F4, C4

8 24 M 4 4 h HS + Cavernous hemangioma/left
temporooccipital T7, P7, O1

DNET: Dysembryoplastic Neuroepithelial Tumor, FCD: Focal Cortical Dysplasia, HS: Hippocampal Sclerosis.

Scalp video-EEGs were recorded for three to five days with the TWin EEG system
(Grass Technologies, West Warwick, RI, USA) using 32 channels according to the inter-
national 10–20 system. The sampling rate was 200 Hz and a 0.1 Hz high-pass filter was
applied to the recording. Two epileptologists (M.K. and M.Y.) identified seizure onset based
on the onset of clinical events and electrical changes by visual inspection. The onset of
electrical seizures is characterized by sustained rhythmic discharges or repetitive spike-
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wave discharges that lead to habitual seizure semiology. Preictal data were defined as those
data collected during the 10 min period immediately prior to the seizure onset without an
overlap of previous ictal events. Interictal EEG data were collected from periods at least
12 h before or after the seizure. To minimize the influence of artifacts, inter-ictal EEGs were
selected from the periods when patients were in resting states by visual inspection. The
periods of eye movement, heart rate, and muscle artifacts were excluded. Pre-ictal EEGs
were selected regardless of artifacts. In total, 670 min of preictal data from 67 seizure events
and 27 h of interictal data were collected. The Institutional Review Board of the University
of Ulsan College of Medicine, Seoul, Korea, reviewed and approved the study protocol (no.
2017-0074). Informed consent was waived due to the retrospective nature of the study.

In the analysis, we only used 18 common channels (Fp1, F3, C3, P3, F7, T7, P7, O1, Fp2,
F4, C4, P4, F8, T8, P8, O2, Fz, and Cz) because of the different montages for each patient.
EEG signals were spatially filtered using a common average reference to minimize bias
regarding the distance from the referential electrodes. The irrelevant artifact was reduced
using a 0.5 Hz high-pass filter and a 98 Hz low-pass filter. In addition, a 60 Hz notch filter
was used to reduce AC power-line noise. EEG signals were segmented into 4 s epochs
(800 data points) with a one-second sliding window. To reduce inter-trial variability, each
epoch signal was normalized using a standard score.

3.2. Model Architecture

The proposed ACGRU model for predicting seizures in preictal EEGs includes the
following five modules (Figure 1): (1) channel-wise attention module (Section 3.2.1),
(2) convolutional module (Section 3.2.2), (3) GRU module (Section 3.2.3), and (4) self-
attention module (Section 3.2.4). First, an attention mechanism was used to highlight
channels containing relevant information for classification. Subsequently, three 1D CNN
layers and four GRU layers were adopted to capture temporal features. Next, a self-
attention mechanism encoded the temporal dependency within patterns extracted from the
1D CNN and GRU layers. Finally, in the classification layer, fully connected layers with a
softmax function were used to distinguish the spatial and temporal preictal patterns from
interictal patterns.

3.2.1. Channel-Wise Attention Mechanism

As described in Section 2.1, EEGs were collected from 18 channels. Because EEG signals
reflect the activity of brain regions beneath each channel, it is necessary to consider the
contribution of each channel in the prediction of seizure occurrences as they vary based on
patients, type of lesions, and phases. A channel-wise attention mechanism was employed
to extract relevant features by assigning different weights to each channel to determine
their significance. First, average pooling was performed throughout all time steps using
preprocessed EEG signals that had undergone noise reduction and standardization. The
attention matrix was then obtained via the FC layer and a nonlinear activation function
using the channel-wise vector representing a mean value over time, which is as follows:

Yatt = so f tmax(W0 · (
1
n ∑n

1 X)T + b0) (1)

In the above equation, the average pooling of EEG epochs X ∈ Rn×c is used as an
input and the attention matrix Yatt ∈ R1×c is the final output in the attention mechanism, in
which n is the number of time steps (i.e., 800 data points for 4 s epochs) and c is the number
of channels (i.e., 18 channels). The weight matrix W0 ∈ Rc×c and bias matrix b0 ∈ R1×c in
the FC layers are updated during the training session. The softmax function is used for the
activation function, which can be represented as follows:

so f tmax(vi) =
exp(vi)

∑C
j=1 exp

(
vj
) (2)
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where v = [v1, v2, . . . , vc] is the output of the FC layer. Finally, the output signal
Xatt ∈ Rn×c extracted from the channel-wise attention mechanism is obtained by mul-
tiplying the original EEG signal X and attention matrix Yatt as follows:

Xatt = X ⊗Yatt (3)

The symbol ⊗ indicates element-wise multiplication (or the Hadamard product),
which operates using the product of corresponding elements of two matrices when two
matrices have the same dimension.
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includes three one-dimensional convolutional layers (Conv1D) and four gated recurrent units (GRUs)
combined with channel-wise attention mechanisms to capture temporal and spatial information
of a four-second input epoch (800 data points × 18 channels). Captured patterns were used for
the classification between the preictal and interictal periods using self-attention mechanisms and
fully connected layers (FC) with softmax function. ⊗: element-wise multiplication, BN: Batch
normalization, ELU: exponential linear unit.

3.2.2. Convolutional Neural Network Module

In general, 2D CNNs are often used in the field of computer vision because of their
ability in adaptive learning of spatial features. In tasks using one-dimensional signals
such as time series and text data, 1D CNNs can be applied to extract sequential contextual
information. In this study, three 1D CNNs were utilized to extract temporal features from re-
calibrated EEG signals whose informative channels were highlighted using a channel-wise
attention mechanism. The first convolutional layer performed the convolution operation
on the recalibrated EEG signals Xatt ∈ Rn×c, which is the output signal of the attention
mechanism outlined in Section 3.2.1, in the direction of time step n. When performing con-
volutions with a kernel size of k, the number of output filters of f , and stride length of s by
using the “same” padding (p) to maintain the input size, the output Yconv ∈ R(n+2p−k)/s× f

can be calculated as follows:

Yconv = ∪ f
i=1ELU(BN(Wi ∗ Xatt + bi) (4)

where Wi ∈ Rk×c and bi ∈ R(n+2p−k)/s×1 refer to the convolutional kernel of i-th filter and
the bias, respectively. The symbol * denotes the convolution operation along the temporal
dimension and the BN function, which denotes batch normalization, was used for stable
training. The batch normalization function BN can be described by the following equation:

BN(z) = zBN = γ
z− µB√
σB2 + ε

+ β (5)

where µB and σB are the mean and standard deviation of each batch, respectively, and
γ and β are hyperparameters. The ELU function, which indicates an exponential linear
unit, was used as the activation function. Finally, the output Yconv is obtained through
concatenation, which is represented by the symbol

⋃
, of the results from all f filters.

The remaining two convolutional layers successively performed the same operation
based on Equations (4) and (5) with the same parameters as the first convolutional layers.

3.2.3. Gated Recurrent Unit Module

GRU, which is known as an advanced model of RNN for solving long-term depen-
dency problems by adopting a gating mechanism, was used to further extract temporal
features from the output sequences of the convolutional module. Because the GRU utilizes
an update and reset gate to yield a single hidden state, it is much simpler and faster than the
LSTM model which uses an input, output, and forget gate to obtain a hidden and cell state
(Figure 2). The update gate ut ∈ R1×nh, which merges the functions of the forget and input
gates in the LSTM model, determines the update ratio of past and present information, as
described in the following equation:

ut = sigmoid
(
ht−1Wuh + ytWuy + bu

)
(6)

where ht−1 ∈ R1×nh is the previous hidden state and yt ∈ R1× f is the current input vector.
The weight matrices Wuy ∈ R f×nh and Wuh ∈ Rnh×nh and the bias bu ∈ R1×nh of the update
gate are set with the number of hidden units nh. In the first GRU layer, the input vector yt
is the current output of the convolutional layer Yconv. Therefore, f is the number of output
filters in the CNN. These values were consistent across all four GRU layers. The reset gate
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rt ∈ R1×nh, which determines how much past information to retain or discard, can be
obtained as follows:

rt = sigmoid
(
ht−1Wrh + ytWry + br

)
(7)

where Wry ∈ R f×nh and Wrh ∈ Rnh×nh are the weight matrices and br ∈ R1×nh is the bias.
The sigmoid function was used for the activation functions in both the update and reset
gates.
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Then, the candidate hidden state ĥt at time t can be obtained by performing element-
wise multiplication (the symbol ⊗) between the previous hidden states and reset gate
as follows:

ĥt = tanh
(

ht−1Whh ⊗ rt + ytWyh

)
(8)

where Whh ∈ Rnh×nh and Wyh ∈ R f×nh refer to the weight matrices and tanh denotes the
hyperbolic tangent function. Therefore, the previous hidden state is completely forgotten if
rt = 0.

Finally, the new hidden state ht can be calculated with the update gate ut where
element-wise multiplication of the previous hidden state ht−1 and current candidate state
ĥt is performed. The following equation shows the calculation for the new hidden states:

ht = (1− ut)⊗ ht−1 + ut ⊗ ĥt (9)

In this study, four GRU layers were used to explore the temporal patterns in a sequence
of CNN features. Because each GRU layer consisted of the same input and output sizes, all
four GRU layers shared the same parameter sets.

3.2.4. Self-Attention Mechanism and Classification

Because the temporal features extracted from the CNN and GRU are time-varying, the
self-attention mechanism can help distinguish the contribution of each feature in seizure
prediction. The self-attention mechanism was first suggested in machine translation to
improve long-range dependencies [24]. In this study, we adopted multiplicative atten-
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tion, which is known as Luong attention, to calculate the alignment function at using the
following equation:

at =
exp
(
ht

Ths
)

∑t exp(htThs)
(10)

where ht and hs refer to query and key, respectively. In this study, both query and key were
set as the output state of the last GRU layer. Then, the new feature set Ya considering the
context of the feature sequence ht can be represented using the attentive alignment score at
as follows:

Ya = ∑
t

atht (11)

Finally, classification between the preictal and interictal periods was performed using
an FC with a softmax function. The probability of the classifier P can be calculated as follows:

P = so f tmax(WYa + b) (12)

where W and b are the weight and the bias, respectively. The model is trained by minimizing
the cross-entropy loss between the predicted probability and the ground-truth label. The
binary cross-entropy loss function is expressed as follows:

Loss = −∑t(Ytlog(Pt) + (1−Yt)log(1−Yt)) (13)

where Yt and Pt represent the target label and predicted probability at time t, respectively.

3.3. Channel Minimization Using Attention Mechanism

To build an efficient seizure prediction system for patients with epilepsy, it is necessary
to minimize the number of electrodes. Because the attention mechanisms in the first module
indicate the importance of channels in seizure prediction, we hypothesized that attention
weight computed in the ACGRU model can be used for channel selection. The attention
layer resulted in different attention weights for each patient because of subject variability
and owing to different seizure types or lesions. Therefore, the attention weight for each
patient can be used to reduce the number of channels.

The proposed ACGRU model consists of a channel-wise attention layer, three CNN
layers, four GRU layers, and a classification layer with a self-attention mechanism. While
the channel-wise attention layer was used to extract spatial information that varied for each
patient, the remaining layers were used to extract the temporal features within the EEG
signals. Therefore, based on the collected attention score for each channel, CGRU classifiers
were retrained using three channels with either the largest or smallest attention score. The
performances of these retrained classifiers were compared to explore the potential use of
the attention mechanism in channel selection. Because three channels with either the largest
or smallest attention scores were selected, the channel-wise attention layer was removed in
the CGRU model. Thus, the CGRU model, which consists of three CNN layers, four GRU
layers, and a classification layer with the self-attention mechanism, was adopted for this
step. The remaining settings and parameters were the same as those in the ACGRU model.

3.4. Hyperparameter Setting

When building deep CNN and GRU layers, it is important to optimize the hyperpa-
rameters because they determine the network effectiveness. The parameters were set based
on previous studies and were tuned by examining the influence of each parameter on the
validation performance [15,34,41]. As a result, three layers of the 1D CNN consisted of
32 filters with a kernel size of 4. The kernel was regularized with a penalty of 0.0001 to
minimize overfitting. The “same” padding was used to retain the input size. However, to
reduce the computational cost as well as to lessen the long-term dependencies problem that
may occur in the next GRU layers, the number of strides was set to two in all three CNN
layers. Thus, the input shape decreases by half every time it passes through each CNN
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layer. The four GRU layers had 32 hidden states with 50% dropout. The Adam optimizer
was utilized, with an initial learning rate of 0.0001. When the maximum number of epochs
was 30, the learning rate was updated to half of the initial learning rate after 20 epochs.
Finally, the optimal batch size was set as 100.

4. Results
4.1. Subject-Wise Cross-Validation

To evaluate the performance of the proposed ACGRU model for seizure prediction, we
adopted subject-wise cross-validation, where the EEG data of one subject were assigned to
the test set, and those of the remaining subjects were employed to train the ACGRU model
(Figure 3A). In the training session, we used the EEG data obtained up to 10 min before
seizure onset for the preictal interval and employed them as the training set, similarly
to previous studies [39,44,45]. Interictal EEGs with similar lengths to preictal EEGs were
randomly selected. Therefore, 10 × N minutes of preictal and interictal data for seven
patients were adopted when N seizure events were observed in those seven patients. The
epochs were shuffled within the training set and divided into training and validation data
at a ratio of 7:3.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 13 of 23 
 

 

of epochs was 30, the learning rate was updated to half of the initial learning rate after 20 
epochs. Finally, the optimal batch size was set as 100. 

4. Results 
4.1. Subject-Wise Cross-Validation 

To evaluate the performance of the proposed ACGRU model for seizure prediction, 
we adopted subject-wise cross-validation, where the EEG data of one subject were as-
signed to the test set, and those of the remaining subjects were employed to train the AC-
GRU model (Figure 3A). In the training session, we used the EEG data obtained up to 10 
min before seizure onset for the preictal interval and employed them as the training set, 
similarly to previous studies [39,44,45]. Interictal EEGs with similar lengths to preictal 
EEGs were randomly selected. Therefore, 10 × N minutes of preictal and interictal data for 
seven patients were adopted when N seizure events were observed in those seven pa-
tients. The epochs were shuffled within the training set and divided into training and val-
idation data at a ratio of 7:3. 

 
Figure 3. The method for cross-validation of (A) ACGRU and (B) CGRU models. (A) The ACGRU 
models aimed to classify preictal seizures using a between-subject experiment, which trained with 
seven patients and tested with the remaining one patient. The process was repeated eight times by 
permuting the test data. (B) The CGRU models were retrained with the top or the bottom three (or 
six) channels selected based on the attention score of each individual patient from the pretrained 
ACGRU model. The N−1 preictal data were adopted for training and the remaining one preictal data 
were used as the test data when N seizures were detected in a patient. The process was repeated N 
times by permuting the test data. 

To evaluate the trained ACGRU model, 10 min preictal data and whole interictal data 
from the remaining patient were used as a test set. This process was repeated eight times 
by substituting the patient into the test set. The following three metrics were adopted to 
evaluate classification performance: sensitivity, specificity, and accuracy. Sensitivity is de-
fined as the number of true positives (TP), which is the number correctly classified as the 
preictal period, over the number of actual positive classes (i.e., all preictal periods includ-
ing TP and false negatives (FN)). Thus, it evaluates the performance of the model in de-
tecting preictal EEGs. Specificity is defined as the number of true negatives (TN), which 
is the number of accurately classified interictal periods, over the number of actual negative 
classes (i.e., all interictal periods including TN and false positives (FP)). Accuracy 
measures the model’s overall performance by calculating the ratio between the number of 
correct predictions and the total number of predictions including both preictal and inter-
ictal periods. 

First, we evaluated the model performance using test data including EEGs from up 
to 10 min before seizure onset. The average accuracy of the classification of preictal and 

Figure 3. The method for cross-validation of (A) ACGRU and (B) CGRU models. (A) The ACGRU
models aimed to classify preictal seizures using a between-subject experiment, which trained with
seven patients and tested with the remaining one patient. The process was repeated eight times by
permuting the test data. (B) The CGRU models were retrained with the top or the bottom three (or
six) channels selected based on the attention score of each individual patient from the pretrained
ACGRU model. The N − 1 preictal data were adopted for training and the remaining one preictal
data were used as the test data when N seizures were detected in a patient. The process was repeated
N times by permuting the test data.

To evaluate the trained ACGRU model, 10 min preictal data and whole interictal data
from the remaining patient were used as a test set. This process was repeated eight times
by substituting the patient into the test set. The following three metrics were adopted
to evaluate classification performance: sensitivity, specificity, and accuracy. Sensitivity
is defined as the number of true positives (TP), which is the number correctly classified
as the preictal period, over the number of actual positive classes (i.e., all preictal periods
including TP and false negatives (FN)). Thus, it evaluates the performance of the model
in detecting preictal EEGs. Specificity is defined as the number of true negatives (TN),
which is the number of accurately classified interictal periods, over the number of actual
negative classes (i.e., all interictal periods including TN and false positives (FP)). Accuracy
measures the model’s overall performance by calculating the ratio between the number of
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correct predictions and the total number of predictions including both preictal and interictal
periods.

First, we evaluated the model performance using test data including EEGs from up
to 10 min before seizure onset. The average accuracy of the classification of preictal and
interictal EEGs using the ACGRU model was 82.86% (Table 3). The average sensitivity and
specificity were 80% and 85.72%, respectively.

Table 3. The classification results of the ACGRU model for each subject.

Patient Sensitivity Specificity Accuracy

1 66.67% 94.00% 80.33%
2 91.81% 78.38% 85.10%
3 90.43% 86.43% 88.43%
4 70.90% 91.47% 81.18%
5 81.04% 95.00% 88.02%
6 94.10% 83.18% 88.64%
7 65.38% 86.48% 75.93%
8 79.67% 70.83% 75.25%

Average 80.00% 85.72% 82.86%

The average probabilities of all subjects obtained from the softmax layer, which was
utilized in the classification layer to determine whether it belongs to the preictal phase, are
illustrated in Figure 4. In this figure, probabilities near one and zero are classified as the
preictal and interictal periods. The probabilities are consistently close to 1 throughout all of
the 10 min periods.
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Figure 4. Probabilities resulted from the softmax layer. The bold line is the probability when the
10 min preictal period was used as the training set. The dashed line is the probability when the 5 min
preictal period was used. Furthermore, the probability 5 to 10 min prior to seizure onset was also
shown with the dotted line. The gray line located in the middle of the figure indicates 5 min prior to
seizure onset.

4.2. The Influence of Preictal Period and Epoch Length

We examined how long the preictal period should be set to in order to train the seizure
prediction models. Another ACGRU model was trained using preictal data obtained
five minutes before seizure onset and interictal data with the corresponding data length.
The evaluation was performed using 5 min preictal data and whole interictal data. The
accuracy and probability of the softmax layer were decreased when the five-minute period
before seizure onset was used for training. Using a five-minute preictal period, the sensitiv-
ity, specificity, and accuracy were 75.69%, 81.29%, and 79.75%, respectively. The average
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probability of a 5 min preictal period was 0.76, while that of a ten-minute preictal period
was 0.83 (Figure 4).

In addition, the influence of epoch length on seizure prediction performance was
further examined. To determine an optimal time window for seizure prediction, we tested
the proposed ACGRU model using four different time windows as presented in Table 4. We
determined that the accuracy and specificity were optimal when adopting a 4 s window, but
the sensitivity was relatively lower than the specificity. The best sensitivity was observed
when an 8 s window was utilized, but the difference was not significant. Meanwhile,
the worst performance was observed when a 32 s window was utilized; thus, this result
indicates that a longer epoch window did not guarantee higher classification performance.

Table 4. Accuracy depending on the epoch length.

Length Sensitivity Specificity Accuracy

Epoch Window

4 s 80.00% 82.72% 82.86%
8 s 82.43% 80.58% 81.50%

16 s 79.31% 77.67% 78.49%
32 s 70.88% 76.27% 73.58%

4.3. Model Analysis

To examine the importance of each layer adopted in the proposed method, we com-
pared the model performance by eliminating the attention mechanisms, convolutional
layers, and GRU layers (Table 5). We determined that sensitivity, specificity, and accuracy
largely decreased without attention mechanisms. In the CGRU model, the attention mecha-
nism in the encoder which was utilized for capturing channel importance was removed,
and the accuracy, specificity, and sensitivity decreased to 76.22%, 78.50%, and 73.94%,
respectively. The self-attention mechanism adopted in the decoder, which measures the
importance of extracted temporal features, was speculated to play a significant role in
seizure prediction because the classification performance decreased without this layer. In
addition, the mixture of 1D convolutional layers and GRU layers significantly affected
the classification performance. The accuracy decreased to 55.17% without three 1D con-
volutional layers (AGRU) and decreased to 73.51% without four GRU layers (ACNN). In
cases where a 1D CNN or a 1D GRU were separately adopted for the classification, the
performance declined considerably.

Table 5. The comparison of classification performance between the proposed ACGRU model, ablation
model, and the models employed in other studies. Our dataset was used for each model.

Model Sensitivity Specificity Accuracy

Ablations

CNN only 72.94% 73.71% 73.32%
GRU only 55.98% 79.73% 67.85%

CGRU
(CNN + GRU) 71.54% 71.29% 71.41%

AGRU
(Attention + GRU) 55.85% 54.48% 55.17%

ACNN
(Attention + CNN) 74.05% 72.97% 73.51%

Removal of Channel-wise
Attention 73.94% 78.50% 76.22%

Removal of
Self-attention 74.83% 76.45% 75.64%

Other
Comparative

Models

Attention LSTM [35] 74.39% 72.41% 73.40%
Chorononet (CGRU) [18] 71.21% 76.47% 74.09%

ACRNN [29] 76.47% 82.57% 79.52%

Proposed ACGRU Method 80.00% 82.72% 82.86%
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We also compared the performance of other comparable models that resulted in high
performance by adopting attention mechanisms or hybrid models combining CNN and
RNN in seizure detection or emotion recognition. The AbiLSTM, which performed well
in seizure detection for the cross-patient experiment, comprised the attention layers for
channels followed by biLSTM [35]. Thus, it substituted the 1D-CNN and GRU layers with
LSTM and excluded the self-attention mechanism. Chorononet, which performed well at
representing patterns of time series data including EEG and speech, comprised three 1D
convolutional layers and four GRU layers [18]. Therefore, it excluded both attention
mechanisms. The ACRNN, which provided good performance in EEG-based emotion
classification, comprised a channel-wise attention mechanism, CNN, two-layer LSTM, and
a self-attention mechanism [29]. Its convolutional layer functioned channel-wise, whereas
the 1D convolutional layers of ACGRU functioned to capture temporal patterns. The
proposed ACGRU model outperformed the other three methods. The performance of the
ACRNN model that adopts channel-wise attention and channel-wise convolutional layers
with LSTM and self-attention was the best among those models, except for the ACGRU
model. For a comparison of the classification performance, the same training and test
dataset as the ACGRU model were used for each of these models.

4.4. Attention Mechanism-Based Channel Reduction

The attention mechanism assigns a weight to each channel, and this indicates the
importance of each channel in the seizure prediction. To assess whether the channels with
high attention scores were more informative for seizure prediction, the CGRU models
were trained with a reduced number of channels using the attention score. As presented
in Sections 4.1 and 4.2, the ACGRU model was evaluated using leave-one patient-out
cross-validation that evaluated one patient’s test set separately from the training set of
the remaining patients. Therefore, this approach cannot be applied to the CGRU model,
because it needs to select relevant channel sets with high attentive scores that are different
for each patient. Accordingly, the CGRU model with attention-based channel selection
was evaluated for each subject (Figure 3B). First, when the number of seizure events was
N for each patient, we split the EEG data into the preictal EEG of one test event and
N − 1 training events. Interictal EEG signals were randomly divided into training and test
sets according to the length of the preictal EEG. In addition, the attention score for each
channel in N − 1 training sets was calculated using the attention weight of the ACGRU
model trained with the other subjects. Furthermore, the CGRU model was trained for each
patient by adopting EEG data corresponding to the reduced channels in N − 1 training sets.
Finally, the test EEG dataset, which was not adopted to train the CGRU model, was used to
evaluate the performance of the CGRU model with attention-based channel selection. This
process was repeated N times by permuting the training and testing sets.

The two different CGRU models were trained by selecting the top three or six channels
with the highest attention scores and the bottom three or six channels with the lowest
attention scores. The learning rate was altered from 0.0001 to 0.001, owing to the decreased
number of data because the experiment was performed with a reduced number of chan-
nels within each patient. The classification performance with the top three channels was
significantly higher than that with the bottom three channels. The top three channels
resulted in 80.86% accuracy, 75.03% sensitivity, and 86.69% specificity, whereas the bottom
three channels resulted in 75.35% accuracy, 55.63% recall, and 95.07% specificity (Figure 5).
When the top six channels were selected, the average accuracy was 87.58%, while that with
the bottom six channels was 82.13%. Therefore, these experimental results indicate that the
attention score adopted in ACGRU could offer discriminative spatial information.
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attention score.

When observing channel selection using the attention score, we determined that the
selected channels in all folds were consistent within each subject (Table 6). Compared to
the EEG channels related to the epileptogenic foci, the top three channels did not overlap,
instead, they were observed on the opposite side of the epileptogenic foci.

Table 6. Channels selected for each individual patient based on the attention score. The
symbol * denotes channels contralateral to a region of interest (ROI) related to epileptogenic foci. The
symbol † indicates channels corresponding to ROI.

Patient 1 2 3 4 5 6 7 8

Top3
F7 * Fz F3 * Fz Fz C3 * F3 * F3
O2 P7 * Fz P7 * Fp1 * O1 * O1 * F4 *
P3 * T7 * Fp1 * T7 * T7 * O2 T7 * P4 *

Bottom3
F3 * C3 * Fp2 Cz C3 * F4 C3 * Fp2 *
F8 † Cz O1 * Fp2 F7 * FZ C4 Fp1
P7 * Fp2 O2 Fp1 * P7 * P8 † P3 * P8 *

Top6
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Bottom6
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5. Discussion

In this study, we proposed a deep neural network including 1D CNN and GRU layers
with an attention mechanism for seizure prediction that can distinguish epileptic seizures
from EEG signals during the preictal period. Because it is difficult to determine distinct
epileptic patterns in preictal EEGs compared to ictal EEGs, conventional feature-based
machine learning methods, which exhibit great performance in seizure detection, have
limitations in seizure prediction. The proposed method successfully identified seizures in
preictal EEGs because the 1D CNN and GRU layers can autonomously capture intrinsic
temporal patterns in EEG signals. Moreover, the channel-wise attention mechanism, which
provides higher weight for informative channels, played an important role in calibrating
patient variability that occurs owing to the different types and lesions of each patient. The
proposed ACGRU model resulted in an 82.86% accuracy, which outperformed other deep
learning models that have reported high performance in seizure detection (Table 5). The
sensitivity, which is the ability to correctly classify the preictal period, was 80% on average.
For Patients 1, 4, and 7, the sensitivities, were 66.67%, 70.90%, and 65.38%, respectively,
were much lower than those of the other patients. After classification, additional visual
inspection of raw EEG signals was carried out, which showed that those of Patients 1, 4,
and 7 had a relatively low amplitude with fast activities (Appendix A). The specificity
can be defined as the ability to correctly identify the interictal period; thus it indicates the
ability to prevent false alarms. The average specificity was 85.72% even with long-term
interictal data for a duration of 2 to 5 h for each patient. We did not use precision, which is
defined as the ratio between the number of TP and that of all labels predicted as positives
(TP + FP), to evaluate model performances. Since the total periods of interictal and preictal
data observation were 27 h and 11.17 h (670 min), the number of FP was much larger than
that of TP despite the high specificity.

To evaluate the contribution of each layer to the seizure prediction, we compared the
accuracy when each module was excluded (Table 5). When channel-wise attention was
removed, the accuracy decreased by approximately 6%. There was a larger decline in the
accuracy when both channel-wise attention and self-attention mechanisms were removed.
When adopting either one of the CNN and GRU modules, a large decrease in the accuracy
was observed. In particular, when we excluded 1D convolutional layers, the accuracy
decreased by approximately 27%.

To further examine the influence of the channel-wise attention mechanism on seizure
prediction, we retrained the CGRU model with a reduced number of channels using
the attention score. The performance of the CGRU model trained with the top three
or six channels with the highest attention score was better than when the model was
trained with the bottom three or six channels (Figure 5). In the CGRU model, using the
top three channels resulted in 80.86% accuracy and 75.03% sensitivity while using the
bottom three channels resulted in 75.35% accuracy with 55.63% sensitivity. This result
indicates that the channel-wise attention mechanism successfully captured discriminative
spatial information for seizure prediction. In addition, we suggest that the channel-wise
attention mechanism can be utilized as a channel selection method. We observed that the
top three or six channels selected by the average attention score did not differ between
trials in each patient (Table 6). Thus, we suppose that this mechanism can determine
common spatial patterns of preictal activities in each patient, although individual attention
scores were slightly different between each epoch. We also determined that the channels
selected using channel-wise attention were not always equivalent to the channels related
to the epileptogenic foci identified by the neurologist. Interestingly, the channels with
the largest attention score were more often found in the hemisphere opposite the lesion.
D’Alessandro et al. also reported that the best channel of intracranial EEG (iEEG) for seizure
prediction was contralateral to the focus when using feature selection based on a genetic
algorithm [44,45]. In other EEG studies, preictal desynchronization was determined in the
hemisphere contralateral to the focal area [46]. Therefore, when using on-scalp EEG for the
seizure prediction, the use of channels in both hemispheres rather than those lateralized to
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seizure foci could lead to higher performance. Moreover, contralateral channels could be
considered when the number of EEG channels is reduced for seizure monitoring.

The accuracy of the patient-specific CGRU model was relatively low for Patient 8
compared to other patients (Appendix B). This could be due to the scarcity of preictal data
because this patient experienced only four seizures during EEG monitoring. In addition,
Patient 1 exhibited low performance in seizure prediction due to low sensitivity, which
was consistent with the low performance of the generalized ACGRU model. This could be
because the relevant ROIs are larger or because EEGs were low in voltage for Patient 1 com-
pared to the other patients (Appendix A). Although normalization was executed during the
deep learning process, such a difference could deteriorate the classification performance.

In this study, the preictal period utilized for training was set to 10 min before seizure
onset. In the evaluation of ACGRU models presented in Section 4.1, we demonstrated
that the probabilities of the softmax layer were larger than 0.8 in most epochs (Figure 4).
Although training with the 10 min period was satisfactory for seizure prediction, which
outperformed the result based on the 5 min preictal period, it is important to determine
the optimal time onsets to define the preictal period. Several studies have adopted the
preictal period differently, such as 5/10/30 min before seizure onset [37,39,44,45,47,48].
However, there was no consensus regarding the preictal period because of the limitations of
preictal-related biomarkers. Because the proposed model extracted the intrinsic temporal
patterns related to the preictal period, we expect to increase the model performance and
find the optimal preictal period and related biomarkers by collecting long-term epileptic
EEGs that are much longer than 10 min in the future.

Based on our results, despite the limitations, we suppose that the ACGRU and CGRU
models could be employed for seizure monitoring in the following clinical scenarios. First,
when a new inpatient with epilepsy enrolls, 18 channels of EEG electrodes can be attached
according to the 10–20 international system. Then, seizure events will be detected in
advance using the ACGRU trained with previously acquired EEG data from other patients.
Long-term EEGs can be collected during the patient’s hospital stay, and then the channel
can be reduced using the attention score of the collected EEG. When the patient leaves the
hospital, personalized devices with several electrodes selected from the attention score can
be provided to each patient to monitor seizure occurrences. Additional experiments with
larger datasets covering various cases need to be performed for the clinical employment
of the ACGRU model. For instance, this model can not only be utilized to distinguish
psychogenic nonepileptic seizures (PNES), which lead to epilepsy-like behaviors without
ictal EEG changes, but also to find PNES biomarkers [49]. In conclusion, this study proposes
a novel deep ACGRU model, which can extract intrinsic temporal preictal patterns and
investigate the related ROIs, that can overcome the current limitations in seizure prediction
using the cross-subject paradigm. In addition, the proposed methods can effectively reduce
the number of EEG electrodes required for personalized seizure monitoring.
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Appendix A

The raw EEG signals were visually inspected to examine potential reasons for the
relatively poor sensitivity in the preictal classification. We found that those of Patients
1, 4, and 7 showed relatively low voltages with fast activities five seconds before and
after seizure onset. In Patient 1, who was diagnosed with DNET and FCD, ictal patterns
showed runs of high amplitude theta to delta activities at right fronto-temporo-parietal
areas (Fp2, F8, T8, P8, F4, C4, and P4). In Patient 7, who was also diagnosed with DNET
ictal patterns, EEGs exhibited runs of delta slowings over the right frontal area followed
by spike discharges building up from right frontotemporal areas (F8, T8, F4, and C4). In
Patient 4, who was diagnosed with subpial gliosis and HS, ictal patterns showed rhythmic
runs of sharply contoured alpha activities. Red lines indicate the seizure onset that was
visually identified with either clinical or electrical changes using video-EEG. In Patients
3, 4, 5, 6, and 8, seizure onset originated from the sphenoidal electrodes which were not
included in this analysis.

Appendix B

The CGRU models with a reduced number of channels were trained and evaluated
within each subject. When the top three channels were selected based on the attention score,
the classification performance increased in all patients except Patients 3 and 6 (Table A1).
When the top six channels were chosen, the classification performance was also enhanced in
all patients except Patients 5. Patient 8, who only had four seizure events, performed poorly.
The results for Patient 1, whose EEGs exhibited lower voltage near seizure onsets, revealed
poor sensitivity (Figure A1). Numbers in bold indicate higher classification performance
between channels with the highest and lowest attention scores.

Table A1. Performance of CGRU with channel reduction based on attention score.

Patient Performance (%) Top3 Bottom3 Top6 Bottom6

1
Sensitivity 35.43 24.1 65.33 41.33
Specificity 93.9 98.1 91.52 78.95
Accuracy 64.67 61.1 78.43 60.14

2
Sensitivity 90.95 68.86 92.1 77.52
Specificity 95.33 95.52 98.1 94.19
Accuracy 93.14 82.18 95.1 85.86

3
Sensitivity 67.33 67 81.6 73.2
Specificity 86.6 98.07 92.07 98.27
Accuracy 76.97 82.53 86.83 85.73

4
Sensitivity 66.87 61.2 74.93 69.73
Specificity 92.33 94.87 95.4 94.07
Accuracy 79.6 78.03 85.17 81.9

5
Sensitivity 91 73.58 84.42 94.17
Specificity 95.42 90 98.33 96
Accuracy 93.21 81.79 91.38 95.08

6
Sensitivity 84.15 88 87.95 84.87
Specificity 96.67 96.1 97.54 96.77
Accuracy 90.41 92.05 92.74 90.82
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Table A1. Cont.

Patient Performance (%) Top3 Bottom3 Top6 Bottom6

7
Sensitivity 85.33 60.1 88.67 80.67
Specificity 92.76 92.1 96.48 91.43
Accuracy 89.05 76.1 92.57 86.05

8
Sensitivity 79.17 2.17 88.83 85.5
Specificity 40.5 95.83 68 57.33
Accuracy 59.83 49 78.42 71.42
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