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Abstract: We develop a patient-specific dynamical system model from the time series data of the
cancer patient’s metabolic panel taken during the period of cancer treatment and recovery. The model
consists of a pair of stacked long short-term memory (LSTM) recurrent neural networks and a fully
connected neural network in each unit. It is intended to be used by physicians to trace back and
look forward at the patient’s metabolic indices, to identify potential adverse events, and to make
short-term predictions. When the model is used in making short-term predictions, the relative error
in every index is less than 10% in the L∞ norm and less than 6.3% in the L1 norm in the validation
process. Once a master model is built, the patient-specific model can be calibrated through transfer
learning. As an example, we obtain patient-specific models for four more cancer patients through
transfer learning, which all exhibit reduced training time and a comparable level of accuracy. This
study demonstrates that this modeling approach is reliable and can deliver clinically acceptable
physiological models for tracking and forecasting patients’ metabolic indices.

Keywords: deep learning; dynamical systems; LSTM; metabolic panel; prediction; time series

1. Introduction

With advancements in medical research and practices, more and more cancer patients
can live a long time after their cancer treatments, making the quality of life and toxicity
management during and post-treatment the primary focus of healthcare providers and
cancer patients. How to detect early health anomalies and predict potential adverse effects
from some measurable biomarkers or signals for an individual cancer patient is of great
importance in cancer patient care [1,2]. The latest Cancer Moonshot 2.0 initiative announced
by President Biden aims at reducing the death rate of cancer by 50% in 25 years, which
once again put a spotlight on the early detection, diagnosis, and management of cancer [3].
Developing the ability to track a patient’s health status and to monitor the evolution of the
specific disease intelligently would provide an enormous benefit to both the patient and the
healthcare provider, enabling faster responses to deal with adverse effects and more precise
and effective treatments and interventions. With the longitudinally collected time-series
data of the patient (e.g., metabolic panel, blood panel test, X-ray and CT scans, etc.) at
multiple time points before, during, and after cancer treatments, it is becoming increasingly
plausible to have an intelligent tool or device for continuous monitoring, tracking, and
forecasting of cancer patients’ health status based on statistical, causal, and mechanistic
modeling of patient phenotypes and various biomarkers in the time series data [1,2,4–7].

The concept of digital twins in healthcare is emerging as a promising platform to
develop such a model/tool and gaining a great deal of traction in cancer research and,
more broadly, the healthcare community lately [8,9]. The theme in digital twins is to
develop a replicate of the targeted health state of the individual patient with an underlying
disease based on the patient medical history (medical record, diagnosis, treatments, etc.),
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the evolutionary trajectory of the disease, and the current health status of the patient. The
digital twin model will not only replicate the targeted patient’s state of health relevant to
the underlying disease at any given historical time point, but also be able to make a future
inference or prediction for the patient’s state of health. Retroceding the patient health state
back in time is a distinctive feature that a digital twin has while any live human being does
not. With the digital twin’s monitoring, tracking, and predictive capability, physicians can
examine the past treatments virtually and explore various treatment pathways/strategies
in the future by conducting virtual experiments to come up with an optimal treatment
plan/strategy for any specific patient. With this, the digital twin can become a de facto
intelligent aide to assist physicians in making decisions in their diagnostic processes and
the design of future treatment plans, pathways, or recovery therapies. As a fundamental
component in the digital twin model, a physiological module capable of time-reversal
monitoring, tracking, and forward prediction of the metabolic panel or the blood panel is
indispensable [10].

Recent advances in deep learning applications in healthcare have received a great
deal of attention and achieved stunning results in many areas, especially in imaging
processing. There have been numerous efforts on deep-learning-based diagnoses using
imaging classification [11–13]. From an evolutionary perspective, any human body is a
dynamical system sustained essentially by food and water intake, as well as air inhalation,
while being bombarded incessantly by various external disturbances. Any portion of the
human body such as the blood, metabolism, or an individual organ forms its own living
subsystem, which perhaps is unavoidably coupled to the entire body’s dynamical system.
By ignoring the coupling between the subsystem and the whole body, we assume there
exists a self-sustained dynamical system such as the metabolic system in any human body.
Any metabolic panel taken from a patient at a given time point would provide a glimpse of
the state of the subsystem at that time. With sufficiently collected time series longitudinal
data, one would be able to establish a fairly reasonable dynamical system model to describe
the underlying dynamics within the subsystem. Such a dynamical system model would
possess desired time reversibility in that one can use it to track the previous states in the
past and to predict future events as well.

In this study, we aim to develop an AI-enabled deep learning model to monitor, track,
and predict a cancer patient’s health status reflected through the metabolic panel from the
patient medical records. It is expected to be used by physicians to predict the patient’s
treatment outcome trajectory, to reduce the treatment-related adverse effects in the short
term, and to improve the quality of life of the cancer patient in the long term. This dynamic
model will be patient-specific and updated whenever new health data of the patient become
available. A long-short-term memory (LSTM) recurrent neural network (RNN) with a new
coupled cell architecture is devised and trained by machine learning based on the time
series data in the metabolic panel of cancer patients treated at the Yale-New Haven Health
System. We demonstrate how to develop the data-driven, patient-specific model from a set
of selected indices from the metabolic panel taken from a cancer patient [14–19].

To demonstrate the model’s generalizability to other cancer patients, we recalibrated
the model parameters against the metabolic data of the new patient using transfer learning.
We believe this modeling approach provides a reliable technical framework for building
the physiological module in any digital twin models in healthcare [20].

2. Materials and Methods

We first describe the patient data and data preprocessing used in machine learning
and then detail the various LSTM models we developed in this study.

2.1. Data Acquisition and Preprocessing

With the institutional review board’s approval (Yale HIC#1604017609), five cancer
patients aged 8 to 17 years old, who have received radiation treatments at Yale-New
Haven Hospital between 2013 and 2021, were identified and their metabolic panel results
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were extracted from the EPIC electronic medical record (EMR) system per the HIPPA
regulations. Nineteen metabolic indices were measured during each metabolic procedure
for all the cancer patients: Glucose, BUN, Creatinine, BUN/Creatinine Ratio, Anion Gap,
CO2, Chloride, Sodium, Potassium, Calcium, Total Protein, Albumin, Globulin, A/G Ratio,
Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), AST/ALT Ratio,
Alkaline Phosphatase, and Total Bilirubin. A series of metabolic panel assessments was
performed on each patient at multiple time points (ranging from 20 to 50 times) before,
during, and after their cancer radiotherapy.

We selected 9 biomarkers/indices in the patients’ metabolic panel data with the
minimal missing data rate as the time series dataset to establish the time-dependent discrete
dynamical system. These indices include Glucose, BUN, Creatinine, Anion Gap, CO2,
Chloride, Sodium, Potassium, and Calcium. The chosen data for the first patient, whom we
name the original patient, was acquired on 42 consecutive days spanning the period from
10 May 2013 to 14 May 2014. We filled the few missing entries in the dataset by using the
mean of the two nearest neighbors, i.e., if index xi is missing, we “assign it” the value of
xi−1+xi+1

2 . The missing data involve the Creatinine index on 26 June 2013 and the Calcium
index on 2 January 2014, 3 January 2014, and 4 January 2014, respectively. After making up
the missing data points, we computed the mean µ and standard deviation σ of the entire
42 data points for every index. If an index value was larger than µ + 2σ or less than µ− 2σ,
we replaced it by µ + 2σ or µ− 2σ, respectively, in the dataset to rule out the so-called
outlier effect.

Since the clinical data were acquired at non-uniform time intervals, to derive an
approximate discrete dynamical system to describe the time series using recurrent neural
networks, we needed to generate more data with equal time intervals that included the
initial 42 9-dimension/index clinical dataset. We used the first-order linear interpolation to
to obtain 739 9-dimensional data vectors, in which adjacent data points are separated from
each other by 0.5 days. The correlation coefficients of the 9 indices at the 739 data points are
tabulated in Table 1. It shows that no pair of indices in the dataset was highly correlated
with a correlation coefficient ≥ 80%. Hence, we will built the discrete dynamical system
using all indices as the input variables of the dynamical system. We chose the LSTM RNN
as the framework to build the discrete dynamical system from the preprocessed dataset.

Table 1. Correlation coefficients of the 9 metabolic indices over the interpolated data points.

Glucose BUN Creatine Anion Gap CO2 Chloride Sodium Potassium Calcium

Glucose 1

BUN −0.566336 1

Creatine −0.283779 0.548764 1

Anion Gap −0.0871597 0.435452 0.282975 1

CO2 −0.744225 0.757975 0.351549 0.0799233 1

Chloride 0.602712 −0.784478 −0.382908 −0.368508 −0.792248 1

Sodium −0.0771287 0.0227023 −0.0117806 0.138286 0.0923114 0.373784 1

Potassium 0.0807286 −0.543226 −0.012367 −0.422068 −0.47736 0.52685 −0.0705765 1

Calcium −0.754321 0.575592 0.301983 0.118504 0.613964 −0.506214 0.0840671 −0.0404592 1

2.2. One-Step Predictive LSTM Model

An LSTM model provides a versatile recurrent neural network architecture with a great
deal of flexibility to overcome the gradient vanishing and explosion problems inherent in
the conventional recurrent neural networks, while capturing transient dynamics underlying
the time series data [19,21,22]. When designing its architecture for our applications, we
paid close attention to the input and output data structure to make sure they could describe
the underlying time-dependent dynamics since the input and output of an LSTM model
do not need to be in the same data format or structure as those in the original metabolic
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dataset. The general structure of an LSTM cell is shown in Figure 1, where xt is the input to
the recurrent neural network cell, ct is the state in the LSTM to enhance the memory effect,
and ht is the output of the cell.

Figure 1. Schematics of an LSTM cell.

A generic LSTM cell is given by the following mathematical formula, where
⊙

indi-
cates the Hadamard product.

ft = σ
(

W f · [ht−1, xt] + b f

)
,

it = σ(Wi · [ht−1, xt] + bi),

c̃t = tanh(Wc · [ht−1, xt] + bc),

ct = ft
⊙

ct−1 + it ∗ c̃t,

ot = σ(Wo[ht−1, xt] + bo),

ht = ot
⊙

tanh(ct),

yt = σ(W ′ht).

(1)

In the LSTM cell, ft is called the forget gate and it the input gate. We multiply the
cell state ct−1 by the forget gate ft to control the propagation of the previous information.
Then, we add it

⊙
c̃t to update the current cell state ct. In this process, we combine the

previous information with the new information to obtain the final current cell state. Then,
we calculate ht and output yt from ct and the previous hidden state ht−1.

In our design of the model, we used a stacked LSTM architecture coupled with a fully
connected neural network for each cell. Figure 2 is a schematic portrait of the stacked LSTM
architecture that we adopted in our LSTM model.
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Figure 2. Schematics of an RNN cell consisting of a pair of stacked LSTM cells and a fully connected
neural network at the output layer. The part in the rectangular box bounded by the dashed lines
is optional.

The pair of LSTM cells stacked in series and connected to a fully connected output
neural network was aimed to achieve a better memory effect. In fact, we can stack more
LSTM cells intercalated with fully connected neural networks to form a more complex
composite LSTM cell, in which the final output layer taking output ht as the input is a fully
connected neural network.

For time series data [x1, x2, · · · , xn], where xi represents the i-th 9-dimensional data
vector from the original dataset, and a given time step T > 0, we concatenate the input
9-dimensional metabolic index data points into a large vector z(i) = [xi, xi+1, · · · , xi+T−1]
to define our input to the stacked LSTM cell and define the output of the LSTM cell as
y(i) = x̂i+T . The data structure is depicted in Figure 3. The number of total new input–output
data pairs (z(i), y(i)) in the new data structure is N = n− T, given as follows

z(1) = [x1, x2, · · · , xT ], y(1) = x̂T+1,
z(2) = [x2, x3, · · · , xT+1], y(2) = x̂T+2,
· · ·
z(N) = [xN , xN+1, · · · , xT+N−1], y(N) = x̂T+N .

(2)

Figure 3. Schematics of the input and output data format/structure.

We designed the LSTM with time step T, input vector z(i) and output y(i), i = 1, · · · , N.
By applying the LSTM model through the concatenated dataset (z(i), y(i)), i = 1, · · · , N as
an RNN, we predict the next output using the previous T input vectors from the original
dataset. We thus name this the one-step predictive LSTM model.

The loss function in the model is defined by

Loss =
1
M

M

∑
i=1

||x̂T+i − xT+i||22
9

, (3)

where M is the number of output data vectors in the batch of data.
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For the 739 9-dimensional data points in the original time series, we first divided them
into the training set and test set in a 9:1 ratio sequentially. With this division, the number of
data points in the training set and test set was 665 and 74, respectively. For the data sets,
we carried out the zero-mean standardization in each index. Namely, for the j-th index, we
computed the mean µj and unbiased standard deviation σj of the 665 data points in the
training set. Then, we standardized the training data and test data as follows:

x̃j
i =

xj
i − µj

σj , (4)

where i represents the i-th data point and j represents the vector’s j-th entry. Then, we used
the standardized training data for the model. The number of input and output pairs of
the LSTM model is N = 739− T, and the data pairs are given by (z(i), y(i)), i = 1, · · · , N.
The number of training data pairs is 665− T given by (z(1), y(1)) to (z(665−T), y(665−T)).
The number of the data pairs used for the test is 74 ranging from (z(666−T), y(666−T)) to
(z(739−T), y(739−T)).

First, we set a loss tolerance ε in the training of the neural network. If the training
loss was lower than ε, we saved the current model parameters and applied the model to
the test data. After a prescribed number of epochs, we chose the model that gave the best
outcome over the test data as our chosen model. Through an extensive experimentation,
we adopted the following hyperparameters for the LSTM model as tabulated in Table 2.

Table 2. Hyperparameters of the LSTM model.

Train–Test Proportion Batch Size Learning Rate Optimizer Error Tolerance ε LSTM Direction Time Steps

initial patient one-step prediction 9:1 16 0.001 Adam 0.01 unidirectional 1–10

initial patient input-stacked LSTM 9:1 16 0.001 Adam 0.05 unidirectional 1–5

initial patient multistep prediction 9:1 16 0.001 Adam 1 unidirectional 1–5

new patients’ one-step prediction 9:1 16 0.001 Adam 0.01 unidirectional 2

new patients’ multistep prediction 9:1 16 0.001 Adam 1 unidirectional 2

The time step is one of the key hyperparameters in the LSTM model. We trained the
model with respect to time step T = 1, · · · , 10. The final value of the step is determined
by the one that gives the best performance. To evaluate the performance of the model, we
define the following metrics:

RMSE =
√

1
n ∑n

i=1(yi − ŷi)2,

NSE = 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−µ)2 , µ = 1

n ∑n
i=1 yi,

MAPE = relative L1 error = 1
n ∑n

i=1
|yi−ŷi |

yi
,

relative L∞ error = max1≤i≤n
|yi−ŷi |
|yi |

.

(5)

Note that the LSTM is a versatile recurrent neural network (RNN); there is a great deal
of flexibility in its design, especially in its input and output data structures. We showcase
some other LSTM designs here and compare their performance with the previous one.

2.3. Input-Stacked LSTM Model

Given the versatility of an LSTM design, we can stack the input and output vectors
to form larger input and output vectors. For example, when stack number S = 3, we first
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stack data vectors as follows: Xi = [xi, xi+1, xi+2]
T , where xi is the i-th 9-dimensional data

vector. Then, the input and output data pairs are defined in the following forms:

z(1) = [X1, X2, · · · , XT ], y(1) = [x̂1+S, x̂2+S, · · · , x̂T+S],
z(2) = [X2, X3, · · · , XT+1], y(2) = [x̂2+S, x̂3+S, · · · , x̂T+1+S],
· · ·
z(N) = [XN , XN+1, · · · , XT+N−1], y(N) = [x̂N+S, x̂N+1+S, · · · , x̂T+N−1+S].

(6)

The loss for a batch of output data is defined by:

Loss =
1
N

N

∑
t=1

T

∑
p=1

||x̂p+t−1+S − xp+t−1+S||22
9 · T . (7)

2.4. Multistep Predictive Model

In the models discussed above, prediction step L = 1. Next, we examine how well
the model performs if we extend the one-step predictive model to multiple steps L > 1 by
revising the design. Here, the input–output data pairs are defined as follows:

z(1) = [x1, x2, · · · , xT ], y(1) = [x̂T+1, x̂T+2, · · · , x̂T+L],

z(2) = [x2, x3, · · · , xT+1], y(2) = [x̂T+2, x̂T+3, · · · , x̂T+L+1],

· · ·

z(N) = [xN , xN+1, · · · , xT+N−1], y(N) = [x̂T+N , x̂T+N+1, · · · , x̂T+N+L−1].

(8)

The hyperparameters used are again the ones in Table 2.

3. Results

We present the results obtained using the LSTM models for the original patient alluded
to in the previous section firstly. Then, we showcase the results of the patient-specific model
for each of the other four patients obtained from transfer learning.

3.1. One-Step Prediction

We considered both the relative L1 error and the relative L∞ error of the nine indices
when choosing the best time step T for the LSTM RNN. The errors of the LSTM model
with T = 1, · · · , 10, when applied to the test set, are listed in Table 3. It follows from
Table 3 that the LSTM with time step T = 2 gives the best one-step prediction. We note
that the dimensional results are converted from the standardized, dimensionless quantities
as follows:

ŷj
i = ȳj

i · σ
j + µj, (9)

where ȳ is the dimensionless quantity used in the neural network model.
The results of the one-step predictive model with T = 2 are depicted in Figure 4,

where the maximum relative error is about 9% and the average relative error is about 1.5%.
These results are clinically acceptable. Table 4 lists the relative errors of each index for the
LSTM model with T = 2. Except for the largest relative error at about 9%, all others are
significantly less than 9%, showing that the one-step predictive model is fairly accurate.
When we varied the time step T, we noticed that the LSTM model in fact gave the smallest
average error at time step T = 1; however, its absolute error was larger than the model
with T = 2. As T increased, the average error increased as well, and so did the absolute
error. There was an exception at T = 6 though, where the absolute error was much smaller
than the model at T = 5 and T = 7. As a result, we chose T = 2 as the hyperparameter of
the LSTM model in making one-step predictions.
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(a) Glucose, T = 2 (b) BUN, T = 2 (c) Creatinine, T = 2

(d) Anion Gap, T = 2 (e) CO2, T = 2 (f) Chloride, T = 2

(g) Sodium, T = 2 (h) Potassium, T = 2 (i) Calcium, T = 2

Figure 4. Output {ŷi, i = 1, · · · , } of the LSTM with time step T = 2. The values used in training are
plotted on the left of the vertical line, while the predicted ones are on the right. The largest L1 error is
about 1.5%, and the largest L∞ error is about 9%.
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Table 3. The Relative L1 Error and Relative L∞ Error of the LSTM model at different time steps T.

Time Step T Relative L1 Error Relative L∞ Error

T = 1 0.01380 0.1141

T = 2 0.01509 0.08914

T = 3 0.01509 0.1052

T = 4 0.01811 0.1264

T = 5 0.02027 0.1249

T = 6 0.02072 0.09490

T = 7 0.02074 0.1327

T = 8 0.02159 0.1360

T = 9 0.02245 0.1395

T = 10 0.02189 0.1388

Table 4. Relative errors for all 9 indices of the metabolic panel in the LSTM model with T = 2.

Index Relative L1 Error Relative L∞ Error

Glucose 0.02088 0.06424

BUN 0.06344 0.08914

Creatinine 0.006806 0.01754

Anion Gap 0.01575 0.03049

CO2 0.01034 0.03068

Chloride 0.002267 0.007395

Sodium 0.001465 0.003298

Potassium 0.01273 0.02356

Calcium 0.002098 0.005678

3.2. Input-Stacked LSTM Model

For time step T = 1, · · · , 5, respectively, we varied stack number S from one to four
to examine the effect of the stack number on the outcome of the LSTM model. The other
hyperparameters of the input-stacked LSTM are given in Table 2. We show the minimum
training loss after 300 epochs in Table 5 with respect to different stack numbers. The results
in Table 5 show that the fitting capacity of the stacked LSTM improved as the number of
stacks increased. This is because, when the number of stacks increases, more historical
information from the input is added to improve the training loss. For the generalization
error of the trained model over the stacked test dataset, we computed the average relative
L1 error of the nine indices for a set of selected stack numbers. The results are shown in
Table 5 as well. Notice that the generalization error of the model increased as the stack
number increased, indicating increased overfitting in the training of the LSTM model as S
increases since the input of the training set and testing set can be quite different after all.
This study indicated that using the input-stacked LSTM may not gain any advantages in
improving generalization errors over the non-stacked one alluded to earlier, at least for the
dataset we used.
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Table 5. The minimum training loss and average relative L1 error at different stack numbers S.

Minimum Training Loss Stack 1 Stack 2 Stack 3 Stack 4

T = 1 0.03369 0.02792 0.02101 0.01742

T = 2 0.02616 0.02240 0.01712 0.01454

T = 3 0.02282 0.01954 0.01548 0.01297

T = 4 0.02092 0.01770 0.01437 0.01178

T = 5 0.01956 0.01636 0.01334 0.01091

relative L1 error Stack 1 Stack 2 Stack 3 Stack 4

T = 1 0.02154 0.02312 0.02484 0.02427

T = 2 0.01939 0.02326 0.02068 0.02108

T = 3 0.01652 0.02211 0.02225 0.02312

T = 4 0.01708 0.02277 0.02408 0.02556

T = 5 0.01664 0.02310 0.02575 0.02792

3.3. Multistep Prediction

We tabulate the results in the largest L1 relative error and the largest relative L∞ error
for L = 1, 2, 3, 4 with respect to T = 1, 2, 3, 4, 5 in Table 6, respectively. From the results
in the table, we concluded that time step T = 1 performed the best in this LSTM model,
in which the average error was in general not amplified much; however, the relative L∞
norm grew significantly as L increased, especially for large L. The results of the LSTM with
T = 1 and different prediction step L = 1, 3 are depicted in Figures 5 and 6, respectively, as
two examples.

Table 6. The relative L1 error and the relative L∞ error in multistep predictions.

L1 Error L = 1 L = 2 L = 3 L = 4

T = 1 0.01380 0.01790 0.02288 0.02905

T = 2 0.01431 0.02465 0.02930 0.03480

T = 3 0.01345 0.02896 0.03721 0.04095

T = 4 0.01251 0.03118 0.04020 0.04209

T = 5 0.01217 0.03127 0.04137 0.04174

relative L∞ error L = 1 L = 2 L = 3 L = 4

T = 1 0.1141 0.09797 0.1077 0.1464

T = 2 0.0976 0.2665 0.2750 0.2685

T = 3 0.1039 0.3177 0.3478 0.3584

T = 4 0.1048 0.3893 0.3520 0.3313

T = 5 0.09047 0.4020 0.3737 0.2987
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(a) Glucose (b) BUN (c) Creatinine

(d) Anion Gap (e) CO2 (f) Chloride

(g) Sodium (h) Potassium (i) Calcium

Figure 5. Output {x̂T+L+i−1, i = 1, · · · , } at T = 1, L = 1. The ones used in training are plotted on
the left of the vertical line and the predicted ones on the right.
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(a) Glucose (b) BUN (c) Creatinine

(d) Anion Gap (e) CO2 (f) Chloride

(g) Sodium (h) Potassium (i) Calcium

Figure 6. Output {x̂T+L+i−1, i = 1, · · · , } at T = 1, L = 3. The ones used in training are plotted on
the left of the vertical line and the predicted ones on the right.

In principle, we can use the LSTM model with L > 1 for multistep predictions.
However, the predictive power deteriorates rapidly while L increases. For instance, the
largest relative L∞ error was about 10.8 % at L = 3, and it increased to 14.7% at L = 4. The
average errors in the L1 norm were much smaller than those in the L∞ norm. The largest
L1 error at L = 4 was less than 4.2% in the study.

3.4. Model Comparison

In one-step predictions, we found that the input-stacked LSTM model improved the
model’s fitting capacity at the expense of decreased computational efficiency, although
the fitting capacity of the one-step predicative LSTM model was sufficient for the current
problem without using stacked input data. However, while fitting capacity improved, the
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generalization error in the input-stacked LSTM model may deteriorate as the number of
the predicative steps increases. Therefore, our assessment of the two LSTM models is that
the one-step predicative LSTM model without stacked input data is simpler and perhaps
the better model to use for the given dataset.

In multistep predictions, we directly added multiple output steps. After an extensive
search for the hyperparameters, we can extend the prediction steps to L = 3 under the
restriction that the largest relative L∞ loss among all indices is around 10%. We saw relative
errors larger than 10% for steps beyond L = 3 and, therefore, would advise against using
the model beyond L = 3 for the given dataset.

3.5. Transfer Learning of LSTM Models to Fit Other Patients

Given the patient-specific LSTM models presented above, we next discuss how to
apply the models to other patients through transfer learning. In transfer learning, the
hyperparameters of the deep neural network model are kept so that the training of the
deep neural network is much more efficient in terms of epochs. The patient-specific models
for the four other patients through transfer learning showed similar accuracy in short-term
predictions, demonstrating the effectiveness and reliability of this approach. Specifically,
we employed transfer learning to retrain the model parameters (weight and biases) to
fit the same set of indices from the metabolic panel of the other four cancer patients,
coded respectively as ESK, MS, PH, and SCC, while retaining the hyperparameters of the
LSTM model.

3.5.1. One-Step Prediction

For the four additional patients, we fixed the hyperparameters of the LSTM model
given in Table 2 and then retrained the weight and biases of the LSTM using the parameters
in the already trained model as the initial guess. The patient-specific model for each patient
was trained in a much-reduced number of epochs. The corresponding relative L1 and L∞
errors for all four patient-specific LSTM models are tabulated in Table 7. The models for
patients ESK and SCC trained especially well with relative errors better than the ones from
the model for the original patient. The “worse” and the “worst” case were given by the
models for patient PH and MS, respectively. If we examine the model for PH closely, we
notice that the L1 error in the model was consistently less than 8.6% for all indices, while
the L∞ error of BUN was about 17.5%, Anion Gap was about 11.22%, and others were all
less than 9.4%; the NSE value corresponding to BUN and Anion Gap was 0.612 and 0.045,
respectively, indicating the fitting was performed reasonably well, although they were not
accurately reflected by the relative errors. Analogously, we noticed that the L1 error for
BUN in the model for patient MS was 32%, while the L∞ was over 100%. This is because the
relative error metric used in this case involves a small number in the denominator, where
an absolute error metric is perhaps more accurate than the relative error metric. The actual
NSE value for BUN in this model was 71.42%. Therefore, the fitting result is not that bad.

The input and output data and the one-step prediction for patients ESK, PH, SM, and
SCC are plotted in Figures 7 and A1–A3, respectively. The specific models for patients ESK
and SCC made better predictions than the original one. If we examine the absolute error,
the model for patient MS was no worse than the one for patient ESK. We depict Figure 7 in
the text here and put Figures A1–A3 in the Appendix A.
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(a) Glucose, T = 2 (b) BUN, T = 2 (c) Creatinine, T = 2

(d) Anion Gap, T = 2 (e) CO2, T = 2 (f) Chloride, T = 2

(g) Sodium, T = 2 (h) Potassium, T = 2 (i) Calcium, T = 2

Figure 7. The outputs of the one-step predictive LSTM model for patient ESK with time step T = 2.
The values on the right of the vertical line are predicted.
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Table 7. Relative L1 and L∞ errors for all 9 indices of the patients.

Index ESK L1 MS L1 PH L1 SCC L1 ESK L∞ MS L∞ PH L∞ SCC L∞

Glucose 0.04450 0.04435 0.03049 0.003183 0.08778 0.1067 0.08891 0.003952

BUN 0.04611 0.3267 0.08600 0.008891 0.06270 2.777 0.1750 0.01438

Creatinine 0.02308 0.05583 0.04714 0.01645 0.03092 0.2203 0.09399 0.02750

Anion Gap 0.01515 0.04435 0.05260 0.002854 0.05069 0.1528 0.1122 0.0065

CO2 0.004182 0.02860 0.02141 0.001285 0.01014 0.09882 0.05195 0.002946

Chloride 0.0008751 0.009741 0.006651 0.0002089 0.002677 0.03172 0.05195 0.0007556

Sodium 0.0003999 0.00654 0.002817 3.474×
10−5 0.001599 0.01926 0.008932 0.0001211

Potassium 0.005959 0.06521 0.02623 0.0004617 0.01528 0.1765 0.04095 0.001250

Calcium 0.002123 0.01572 0.008822 0.0009209 0.005822 0.05646 0.01663 0.001075

3.5.2. Multistep Prediction

Then, we checked the performance of the models in making multistep predictions,
where the hyperparameters of the LSTM models are given in Table 2 and the prediction step
L = 3. We plot model outputs for time step L = 3 in Figures 8, 9, A4, and A5, respectively.
The corresponding relative errors are tabulated in Table 8. The results are comparable to
those in the one-step prediction if we take the relative error as the evaluation criterion: we
can achieve good multistep predictions on patients ESK, PH, and SCC, while we cannot
predict as well on patient MS. However, the prediction made by the model for patient
MS performed reasonably well in BUN, as shown in Figure 9, if other assessment metrics
besides the relative errors are taken into account. We show Figures 8 and 9 here and put
Figures A4 and A5 in the Appendix A.

Table 8. Relative L1 and L∞ errors for all 9 indices of the patients at L = 3.

Index ESK L1 MS L1 PH L1 SCC L1 ESK L∞ MS L∞ PH L∞ SCC L∞

Glucose 0.07665 0.07436 0.06979 0.003486 0.1691 0.1259 0.2092 0.008344

BUN 0.09813 0.6243 0.1272 0.02795 0.1337 4.712 0.2211 0.03364

Creatinine 0.04492 0.07119 0.04659 0.04829 0.05324 0.2566 0.09157 0.07156

Anion Gap 0.01222 0.07039 0.05790 0.04089 0.04159 0.2514 0.1319 0.06099

CO2 0.006038 0.03937 0.03960 0.01040 0.02352 0.1511 0.1280 0.01529

Chloride 0.002357 0.01906 0.01050 0.0001742 0.005595 0.04345 0.02913 0.0002961

Sodium 0.001221 0.008014 0.005817 0.0004871 0.002988 0.02370 0.01990 0.0009125

Potassium 0.02160 0.08046 0.02436 0.0009167 0.04192 0.2703 0.07769 0.002582

Calcium 0.002662 0.02636 0.01359 0.002278 0.007707 0.07977 0.03365 0.003785
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(a) Glucose (b) BUN (c) Creatinine

(d) Anion Gap (e) CO2 (f) Chloride

(g) Sodium (h) Potassium (i) Calcium

Figure 8. Multi-step predictions of the LSTM model for patient ESK at T = 1, L = 3. The values on
the right of the vertical line are predicted.
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(a) Glucose (b) BUN (c) Creatinine

(d) Anion Gap (e) CO2 (f) Chloride

(g) Sodium (h) Potassium (i) Calcium

Figure 9. Multistep predictions of the LSTM model for patient MS at T = 1, L = 3.

4. Discussion

A human being is a complex dynamical system. Hence, the indices in the patient’s
metabolic panel follow an intrinsic evolutionary path in time, which is undoubtedly influ-
enced by many health factors within the human body. As a first step toward establishing
the digital twin model for the patient, it would be reasonable to assume that the indices
in the metabolic panel form a self-consistent dynamical system. Under this assumption,
we embarked on a journey to build a discrete dynamical system model to approximate
the underlying dynamics of the patient based on an LSTM RNN. The model leverages
the historical data acquired in time series to infer the future behavior of the indices in the
metabolic panel in time. The rationale for adopting the LSTM architecture to build the
discrete dynamical system model is because of its versatility in the structure and functional
design to mimic a discrete dynamical system using deep neural networks. We note that we
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have had some successful experience with continuous dynamical system modeling of time
series data in the past for albumin dynamics coupled with several other biomarkers using
neural ordinary differential equations [7]. We tried the previous approach for the given
datasets. Unfortunately, that approach did not produce a desirable result for the time series
data in the metabolic panel that we studied.

In this study, we were limited by the availability of accurate raw data in all indices.
Therefore, we only applied the modeling framework to a subset of the indices in the
metabolic panel to showcase the effectiveness of the modeling approach and the usefulness
of the resulting models. We believe we can readily extend this to all indices in the metabolic
panel should a complete dataset be available. In the model developed for the first cancer
patient, the one-step prediction amounted to about 12 h or 1/2 day. In both the absolute
value metric (L∞ norm) and the average L1 norm, the relative error was less than 10%.
These error ranges are in general acceptable clinically. When the five models were applied
to make one-step predictions, the trend was generally predicted correctly and the errors
were in acceptable ranges. The model is expected to give physicians a reasonable short-term
prediction with a correct trend and a reasonably close value to assist their decision-making
in treatment planning, medical history tracking, and monitoring.

From all the numerical experiments conducted, we noticed that the multistep predic-
tions of the models were in general less accurate than those in the one-step predictions.
This is because the model we used relies heavily on adequate and accurate data, but there
is inevitably noise in the data collected from the patients over time and the amount of data
from each patient is relatively small, limited by the current medical practices and regula-
tions. For the medical data, how to reduce the data noise and improve the robustness of
the data-driven modeling is still a challenging problem to be solved. We noticed that there
were some existing predictive models for other medical issues in the literature that could
obtain a smaller relative L1 error (e.g., lower than 1%) [23,24]. The temporal fluctuations
in the metabolic panel data we acquired were more significant. We should not expect the
same level of error in the outcome of the predictive model. In addition, we added the
feasibility study of transfer learning of the deep learning model to other patients of the
same disease and established the corresponding clinically acceptable results. If we want to
apply the patient-specific model in the real-world scenario, the model must have the ability
to be transferred to new patients.

Moving forward, we plan to apply the developed LSTM RNN framework to predict
the risks of stroke and heart disease for individuals based on their time series metabolic
biomarkers. This future work is clinically important, as heart diseases and strokes are the
#1 and #5 causes of death in the United States, respectively [25]. That our LSTM model
can accurately predict the personal metabolic variations some period ahead is a critically
important feature of this model as the early warning and prevention procedures could
largely reduce the risk of heart attack and stroke, hence saving lives and improving the
quality of life for millions of people worldwide. We will report the results of this new
development in our future work.

In addition, we will explore the possibility of developing separate dynamical models
based on an individual’s other blood test results, a procedure often performed in the
clinic to evaluate one’s overall health status and detect a wide range of disorders such as
anemia, infection, and leukemia. Similar to the comprehensive metabolic panel (CMP),
there is a series of complete blood count (CBC) results registered for individual patients in
the electronic medical record (EMR) system. However, the biomarkers are different with
different correlations between them; hence, different machine learning algorithms may be
needed to better describe the dynamics of health status using these time series CBC data.
Furthermore, we will test if the higher dimensions of patient data by combining CMP and
CBC biomarkers could lead to better prediction over a 12 h’ early warning time. All these
efforts will eventually lead to the ultimate physiological digital twin module we would
like to develop for a patient, not only to replicate the patient physiological state from the
past to now, but also to make reasonable inferences for the near future.
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Limited by sparsity in the time points when the longitudinal data were collected,
continued assessment of the model on a larger cohort of cancer patients and assessment
of model robustness on augmented longitudinal data collected at refined time points are
necessary. The lack of statistical details in the data collection points in the training dataset
may also limit the inference capability of the model. All these are challenging issues that
need further refined analyses.

5. Conclusions

We developed a discrete dynamical system model describing the time-dependent dy-
namics of the metabolic panel of a cancer patient using the LSTM recurrent neural network
architecture. The patient-specific model can be used to make short-term predictions in
one step with relative errors consistently less than 10% in the absolute value metric and
much less than 10% in an average sense. It can be applied to make multistep predictions
with a slightly elevated error level (i.e., relative error less than 11% in three steps and 15%
in four steps). Using four additional cancer patients’ metabolic panels, we show that the
patient-specific LSTM model can be retrained through transfer learning. This modeling
platform has great potential for identifying potential dynamical features in the metabolic
panel of cancer patients and patients of other prominent diseases, and thereby serves as an
important module in the more general digital twin for the cancer patient.
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Appendix A

Appendix A.1. Other Plots of the Transfer Learning

The corresponding output plots of the other patients are shown below.
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(a) Glucose, T = 2 (b) BUN, T = 2 (c) Creatinine, T = 2

(d) Anion Gap, T = 2 (e) CO2, T = 2 (f) Chloride, T = 2

(g) Sodium, T = 2 (h) Potassium, T = 2 (i) Calcium, T = 2

Figure A1. The one-step prediction of the LSTM model for patient MS with time step T = 2.
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(a) Glucose, T = 2 (b) BUN, T = 2 (c) Creatinine, T = 2

(d) Anion Gap, T = 2 (e) CO2, T = 2 (f) Chloride, T = 2

(g) Sodium, T = 2 (h) Potassium, T = 2 (i) Calcium, T = 2

Figure A2. The one-step prediction of the LSTM model for patient PH with time step T = 2.
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(a) Glucose, T = 2 (b) BUN, T = 2 (c) Creatinine, T = 2

(d) Anion Gap, T = 2 (e) CO2, T = 2 (f) Chloride, T = 2

(g) Sodium, T = 2 (h) Potassium, T = 2 (i) Calcium, T = 2

Figure A3. The one-step prediction of the LSTM model for patient SCC with time step T = 2.
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(a) Glucose (b) BUN (c) Creatinine

(d) Anion Gap (e) CO2 (f) Chloride

(g) Sodium (h) Potassium (i) Calcium

Figure A4. The multistep prediction of the LSTM model for patient PH with T = 1, L = 3.
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(a) Glucose (b) BUN (c) Creatinine

(d) Anion Gap (e) CO2 (f) Chloride

(g) Sodium (h) Potassium (i) Calcium

Figure A5. The multistep prediction of the model for patient SCC with T = 1, L = 3.

Appendix A.2. Statistical Difference

The mean and standard deviation of the raw data from the five patients, including
training and testing data, are tabulated in Tables A1 and A2, respectively. The mean values
of the patient data were relatively close, but the variances were different, indicating data
fluctuations among different patients.
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Table A1. Mean values of the indices of in the patients’ data.

Index Initial ESK MS PH SCC

Glucose 101.375 99.5275 98.604 94.1602 98.7027

BUN 13.473 6.46195 10.3432 11.5713 10.827

Creatinine 0.481732 0.477585 0.451914 0.423641 0.366111

Anion Gap 11.6233 9.29698 11.9656 11.1393 11.3348

CO2 23.9059 24.8989 23.5392 23.8356 24.8449

Chloride 102.826 105.838 104.09 101.897 103.923

Sodium 138.207 140.124 139.6 136.927 140.11

Potassium 3.77487 3.72149 3.94011 4.14017 4.06711

Calcium 9.60211 9.05112 9.40042 9.63124 9.79586

Table A2. Standard deviations in the data of the five patients’.

Index Initial ESK MS PH SCC

Glucose 12.2582 19.0009 13.4126 10.3282 13.3031

BUN 3.62326 1.42737 4.13605 3.0001 2.40213

Creatinine 0.0565706 0.0468106 0.0914002 0.072239 0.0360429

Anion Gap 1.14982 1.64735 2.19155 1.64426 1.78242

CO2 1.80619 1.57407 2.39049 2.0276 1.16956

Chloride 2.34336 1.75886 2.93231 3.07383 1.23467

Sodium 1.23496 1.35068 2.02357 1.98712 1.26889

Potassium 0.268589 0.184193 0.480437 0.337178 0.189848

Calcium 0.324299 0.300906 0.34867 0.370416 0.15704

Appendix A.3. Performance Measures of All One-Step LSTM Models

We define the absolute mean error as

MAE =
1
n

n

∑
i=1
|yi − ŷi|. (A1)

The detailed error estimates of the patient-specific, one-step prediction LSTM models
are tabulated in the following five tables with time step T = 2. From the tables, we find the
model works well with the MAPE evaluation criterion. Because of the intrinsic problem
in the formula of the NSE, the results of the NSE can be bad when the data are close to a
constant. Hence, we focus on the results given by the MAPE.
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Table A3. Errors in other metrics of the one-step prediction of the original patient.

Index RMSE MAE MAPE NSE

Glucose 2.515 1.946 0.02088 −0.2631

BUN 0.9432 0.8726 0.06344 −0.9996

Creatinine 0.004453 0.003744 0.006806 0.9747

Anion Gap 0.1792 0.1617 0.01575 0.9555

CO2 0.3339 0.2619 0.01034 0.5067

Chloride 0.3051 0.2359 0.002267 0.8091

Sodium 0.2374 0.2038 0.001465 0.9576

Potassium 0.05616 0.04940 0.01273 0.02123

Calcium 0.02376 0.02049 0.002098 0.7503

Table A4. Errors in other metrics of the one-step prediction of patient ESK.

Index RMSE MAE MAPE NSE

Glucose 5.022 4.422 0.04450 0.3181

BUN 0.2929 0.2707 0.04611 0.9428

Creatinine 0.01230 0.01212 0.02308 0.3026

Anion Gap 0.1951 0.1459 0.01515 0.5312

CO2 0.1237 0.1074 0.004182 0.9798

Chloride 0.1171 0.09219 0.0008751 0.8365

Sodium 0.08001 0.05614 0.0003999 0.9317

Potassium 0.02549 0.02263 0.005959 0.9867

Calcium 0.02429 0.01916 0.002123 0.5892

Table A5. Errors in other metrics of the one-step prediction of patient MS.

Index RMSE MAE MAPE NSE

Glucose 4.791 4.129 0.04435 0.3112

BUN 1.842 1.296 0.3267 0.7141

Creatinine 0.04124 0.02867 0.05583 0.3251

Anion Gap 0.9817 0.6057 0.04435 0.6150

CO2 0.8399 0.6080 0.02860 0.2224

Chloride 1.411 1.022 0.009741 0.8205

Sodium 1.207 0.9144 0.006542 0.6265

Potassium 0.2668 0.2183 0.06521 0.5498

Calcium 0.1938 0.1392 0.01572 0.6879
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Table A6. Errors in other metrics of the one-step prediction of patient PH.

Index RMSE MAE MAPE NSE

Glucose 3.475 2.651 0.03049 0.8609

BUN 1.485 1.262 0.08600 0.6123

Creatinine 0.02752 0.02417 0.04714 −0.2638

Anion Gap 0.8056 0.6734 0.05260 0.04500

CO2 0.5665 0.4698 0.02141 0.7005

Chloride 0.8055 0.6843 0.006651 0.6286

Sodium 0.4940 0.3872 0.002817 0.8139

Potassium 0.1200 0.1133 0.02623 0.5025

Calcium 0.09582 0.08412 0.008822 0.5527

Table A7. Errors in other metrics of the one-step prediction of patient SCC.

Index RMSE MAE MAPE NSE

Glucose 0.3143 0.3038 0.003183 0.9106

BUN 0.1327 0.1277 0.008891 0.9840

Creatinine 0.007148 0.006713 0.01645 0.3344

Anion Gap 0.03527 0.03060 0.002854 0.9594

CO2 0.03899 0.03266 0.001285 0.9876

Chloride 0.02992 0.02187 0.0002089 0.9927

Sodium 0.007090 0.004883 3.47× 10−5 0.9983

Potassium 0.002221 0.001847 0.0004617 −2.36× 1026

Calcium 0.009061 0.008960 0.0009209 0.7326
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A.I.; Gruionu, L.G.; et al. Intelligent Diagnosis of Thyroid Ultrasound Imaging Using an Ensemble of Deep Learning Methods.
Medicina 2021, 57, 395. [CrossRef] [PubMed]

http://doi.org/10.1016/j.molonc.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22356776
http://dx.doi.org/10.1093/clinchem/47.10.1901
http://www.ncbi.nlm.nih.gov/pubmed/11568117
http://dx.doi.org/10.1039/C4CS00370E
http://www.ncbi.nlm.nih.gov/pubmed/25739971
http://dx.doi.org/10.1214/09-SS057
http://dx.doi.org/10.1198/016214504000001880
http://dx.doi.org/10.1016/j.cmpb.2020.105555
http://www.ncbi.nlm.nih.gov/pubmed/32544776
http://dx.doi.org/10.3389/fgene.2018.00031
http://www.ncbi.nlm.nih.gov/pubmed/29487613
http://dx.doi.org/10.1007/s00420-021-01828-2
http://dx.doi.org/10.1038/srep26286
http://www.ncbi.nlm.nih.gov/pubmed/27212078
http://dx.doi.org/10.3390/medicina57040395
http://www.ncbi.nlm.nih.gov/pubmed/33921597


J. Pers. Med. 2022, 12, 742 28 of 28

13. De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.;
Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350.
[CrossRef] [PubMed]

14. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.
[CrossRef] [PubMed]

15. Gers, F.A.; Eck, D.; Schmidhuber, J. Applying LSTM to time series predictable through time-window approaches. In Neural Nets
WIRN Vietri-01; Springer: Berlin/Heidelberg, Germany, 2002; pp. 193–200.

16. Gers, F.A.; Schraudolph, N.N.; Schmidhuber, J. Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 2002,
3, 115–143.

17. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the
2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1394–1401.

18. Karevan, Z.; Suykens, J.A. Transductive LSTM for time series prediction: An application to weather forecasting. Neural Netw.
2020, 125, 1–9. [CrossRef] [PubMed]

19. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
20. Hernandez-Boussard, T.; Macklin, P.; Greenspan, E.; Gryshuk, A.; Stahlberg, E.; Syeda-Mahmood, T.; Shmulevich, I. Digital twins

for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 2021, 27, 2065–2066. [CrossRef] [PubMed]
21. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: London, UK,

2017.
22. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
23. Shang, C.; Gao, J.; Liu, H.; Liu, F. Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and

CNN-LSTM Model. IEEE Access 2021, 9, 50344–50357. [CrossRef]
24. El-Sappagh, S.; Abuhmed, T.; Islam, S.R.; Kwak, K.S. Multimodal multitask deep learning model for Alzheimer’s disease

progression detection based on time series data. Neurocomputing 2020, 412, 197–215. [CrossRef]
25. Kochanek, K.; Xu, J.; Arias, E. Mortality in the United States, 2019. NCHS Data Brief 2020, 395, 1735–1780.

http://dx.doi.org/10.1038/s41591-018-0107-6
http://www.ncbi.nlm.nih.gov/pubmed/30104768
http://dx.doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
http://dx.doi.org/10.1016/j.neunet.2019.12.030
http://www.ncbi.nlm.nih.gov/pubmed/32062409
http://dx.doi.org/10.1038/s41591-021-01558-5
http://www.ncbi.nlm.nih.gov/pubmed/34824458
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/ACCESS.2021.3067043
http://dx.doi.org/10.1016/j.neucom.2020.05.087

	Introduction
	Materials and Methods
	Data Acquisition and Preprocessing
	One-Step Predictive LSTM Model
	Input-Stacked LSTM Model
	Multistep Predictive Model

	Results
	One-Step Prediction
	Input-Stacked LSTM Model
	Multistep Prediction
	Model Comparison
	Transfer Learning of LSTM Models to Fit Other Patients
	One-Step Prediction
	Multistep Prediction


	Discussion
	Conclusions
	
	Other Plots of the Transfer Learning
	Statistical Difference
	Performance Measures of All One-Step LSTM Models

	References

