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Abstract: Adult infiltrating gliomas are highly aggressive tumors of the central nervous system with 

a dismal prognosis despite intensive multimodal therapy (chemotherapy and/or radiotherapy). In 

this study, we studied the expression, methylation and interacting miRNA profiles of GABA-, glu-

tamate- and calcium-related genes in 661 adult infiltrating gliomas available through the TCGA 

database. Neurotransmitter-based unsupervised clustering identified three established glioma mo-

lecular subgroups that parallel major World Health Organization glioma subclasses (IDH-wildtype 

astrocytomas, IDH-mutant astrocytomas, IDH-mutant oligodendroglioma). In addition, this analy-

sis also defined a novel, neurotransmitter-related glioma subgroup (NT-1), mostly comprised of 

IDH-mutated gliomas and characterized by the overexpression of neurotransmitter-related genes. 

Lower expression of neurotransmission-related genes was correlated with increased aggressivity in 

hypomethylated IDH-wildtype tumors. There were also significant differences in the composition 

of the tumor inflammatory microenvironment between neurotransmission-based tumor categories, 

with lower estimated pools of M2-phenotype macrophages in NT-1 gliomas. This multi-omics anal-

ysis of the neurotransmission expression landscape of TCGA gliomas—which highlights the exist-

ence of neurotransmission-based glioma categories with different expression, epigenetic and in-

flammatory profiles—supports the existence of operational neurotransmitter signaling pathways in 

adult gliomas. These findings could shed new light on potential vulnerabilities to exploit in future 

glioma-targeting drug therapies. 

Keywords: glioma; tumor immune microenvironment; transcriptomics; methylation; amino acid 

neurotransmission; GABA; glutamate; calcium 

 

1. Introduction 

Infiltrating gliomas are the most common malignant tumors of the central nervous 

system in adults. They represent nearly 45–50% of malignant primary brain neoplasms 

[1] and are associated with relatively short survivals [2]. The infiltrative nature, intra-

tumoral heterogeneity [3] and cellular signaling complexities of these aggressive tumors 

make them a major challenge to overcome in terms of therapy and personalized patient 

management [4,5]. Pathological and adaptative interactions with the surrounding 
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microenvironment (non-neoplastic glia, neurons and immune cells) further contribute to 

tumor aggressivity and progression [6]. 

Current World Health Organization diagnostic classification schemes for adult infil-

trating gliomas are based on the presence of molecular alterations such as isocitrate dehy-

drogenase 1/2 mutations (IDH1/2) and 1p/19q codeletion [1]. While IDH-wildtype gliomas 

usually present with high-grade histology and correlate to short survival [7,8], IDH-mu-

tated, 1p/19q-non-codeleted astrocytomas and IDH-mutated 1p/19q-codeleted oligoden-

drogliomas are usually first diagnosed as low-grade gliomas and associated with longer 

survival [7,9]. 

IDH1/2 genes code for isocitrate dehydrogenase cytoplasmic enzymes that play a 

crucial role in cellular energy metabolism7. One of their major functions is the catalysis of 

citrate oxidative decarboxylation to alpha-ketoglutarate (α-KG), which is a well-known 

intermediate of the TCA cycle [10]. Further, α-KG is involved in neurotransmission by 

serving as a precursor of two important human brain neurotransmitters: glutamate and 

gamma-aminobutyric acid (GABA) [11]. In glioma, mutations in IDH1/2 lead neoconver-

sion of α-KG into the oncometabolite D-2-hydroxyglutarate (D-2-HG) [12]. Consequently, 

the IDH status of gliomas impacts not only their energetic metabolism but also their inte-

gration into surrounding neural circuits due to the potential dysregulation in neurotrans-

mitter metabolism, thereby affecting tumor progression [13]. 

Aside from their leading role in neuronal synaptic transmission, GABA and gluta-

mate can regulate many other brain biological processes. Several lines of evidence point 

to an important modulatory role of GABA and glutamate systems on neuroinflammatory 

processes [14] in the mature brain. This connection to signaling mechanisms of immunity 

makes them important therapeutic targets to reverse the detrimental effects of chronic 

neuroinflammation, as it is pivotal to the pathophysiology of numerous diseases of the 

central nervous system. In the developing brain, both molecules modulate neural precur-

sor cell proliferation, differentiation and neuron migration through a reciprocal relation-

ship with neurotransmitter-sensitive immune cells such as microglia [15,16]. Signaling 

mechanisms involved in these processes are thought to be operational in glioma [17]. 

Starting with the postulate that neurotransmission signaling activity is of importance 

to glioma biology, we initially interrogated the transcriptome of 661 gliomas available 

through the TCGA database for GABA-, glutamate- and calcium-related gene expression 

patterns. Four glioma clusters were generated by unsupervised clustering and compared 

to established glioma molecular diagnostic subgroups, as per the World Health Organi-

zation glioma classification. We subsequently used theses analyses as a starting point in 

deciphering ties to epigenetic (DNA methylation and microRNA) and immune mecha-

nisms to find novel vulnerabilities. 

2. Materials and Methods 

2.1. Sample Extraction 

Data from the low-grade glioma [18] (LGG) and glioblastoma multiforme [19] (GBM) 

projects were extracted from the TCGA (The Cancer Genome Atlas, https://portal.gdc.can-

cer.gov/, accessed on 1 September 2020). These datasets include clinical and epidemiolog-

ical data, gene and miRNA expression, methylation quantification, copy number variation 

and simple nucleotide variation. Biomolecular information (TERT promoter, ATRX, 

MGMT promoter status) extracted from the Ceccarelli study [20] was also added to our 

analysis. 

Two RNA-seq datasets were extracted from the Chinese Glioma Genome Atlas [21–

23] (CGGA, http://cgga.org.cn/, accessed on 1 September 2020) and were merged into one 

dataset to simplify the analysis. Clinical data (sex, age or overall survival) associated with 

these samples were also extracted. 

Glioma samples from both databases (TCGA and CGGA) were annotated according 

to the IDH mutation and 1p/19q codeletion status: IDH-mutated with the 1p/19q co-
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deletion gliomas (IDH-MUT codel), IDH-mutated without the 1p/19q codeletion (IDH-

MUT non-codel) and IDH-wildtype (IDH-WT). The TCGA dataset was used for gene ex-

pression, miRNA expression and DNA methylation profiling. CGGA was used for vali-

dation purposes. 

2.2. GABA, Glutamate and Calcium Pathway Gene Extraction 

The KEGG pathway database was the source to identify genes associated with 

GABA, glutamate and calcium metabolic pathways [24] (https://www.ge-

nome.jp/kegg/pathway.html, accessed on 1 September 2020). The following KEGG iden-

tifiers were used for extraction: 04727 (GABAergic synapse pathway); 04724 (glutama-

tergic synapse); 00250 (alanine, aspartate and glutamate metabolism), 04020 (calcium sig-

naling) and 04961 (other factor-regulated calcium reabsorption pathways). 

2.3. Gene Expression Normalization 

Expression normalization was performed to enable comparisons between glioma 

samples. TCGA raw-count expression data were normalized using the Variance Stabiliz-

ing Transformation function available in the DESeq2 [25] v1.26.0 R package. Low-expres-

sion genes whose maximum did not pass 10 counts were excluded. 

2.4. Unsupervised Clustering 

Unsupervised clustering was performed to reveal hidden patterns of neurotransmis-

sion-related gene expression. Entropy values were calculated, varying the cluster number 

in order to select the optimal number of clusters that minimized the heterogeneity of IDH 

mutation and 1p19q codeletion within a cluster. Both unsupervised clustering and 

heatmaps were generated using the Complex Heatmap [26] v2.4.2 R package, based on 

the Ward method and Spearman correlation as distance. 

2.5. Differential Gene Expression Analysis 

The DESeq2 [25] R package v1.26.0 was used to retrieve differentially expressed 

genes between clusters. Bonferroni-corrected p-values below 0.05 were considered signif-

icant. Volcano plots of differential gene expression were generated using the En-

hancedVolcano v1.8.0 R package. 

2.6. miRNAs Interactome Profiling 

MiRNAs interacting with the neurotransmission-related gene set were extracted 

from the RNA Interactome database [27]. Using the TCGA miRNA dataset, differential 

gene expression analysis was performed to filter differentially expressed miRNAs be-

tween identified glioma clusters (DESeq2 Bonferroni-adjusted p < 0.001 and absolute log2 

fold change superior to 1). MiRNAs with an average expression lower than 1 RPKM were 

not included in the analysis. 

2.7. Statistical Analysis 

Statistical analyses were performed using R v4.0.3. Ggplot2 v3.3.5 and UpsetR v1.4.0 

R packages were used for figure generation. We executed survival and Cox regression 

analyses using “survminer” v0.4.8 and “survival” v3.2.7 R packages. 

2.8. Snakemake Pipepeline Creation 

The study pipeline was built using snakemake [28] workflow manager v5.32.0. The 

software and packages used in the pipeline were downloaded from the bioconda channel 

via the package manager conda, and steps with high computational cost were executed 

using Compute Canada structures. This pipeline is available in GitHub at this address: 

https://github.com/hoang31/gaba_glutamatate_TCGA_profiling.git (accessed on 1 Sep-

tember 2020). 
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3. Results 

3.1. Unsupervised Clustering Based on GABA, Glutamate and Calcium Gene Expression 

Distinguishes Four Clusters with Distinct Neurotransmission Profiles 

A total of 421 neurotransmission-related genes were extracted from the KEGG meta-

bolic database, more specifically from four metabolic pathways: GABAergic neuron (kegg 

id: 04727), glutamatergic neuron (kegg id: 04724), glutamate metabolism (kegg id: 00250) 

and calcium signaling and endocrine (kegg ids: 04020 and 04961) pathways. Of these, 351 

minimally expressed genes were kept (supplementary data Table S1), and there was lim-

ited overlap between the different gene sets (supplementary data Figure S1). Unsuper-

vised clustering of 661 TCGA glioma samples was then performed in order to evaluate 

the expression pattern of these genes (Figure 1). IDH and 1p/19q codeletion-based entropy 

analysis showed an optimal number of clusters equal to four (supplementary data Figure 

S2). We thus generated four clusters, which were renamed NT-1 (n = 168), NT-2 (n = 188), 

NT-3 (n = 81) and NT-4 (n = 224) for neurotransmission-related clusters (supplementary 

data Table S2). This clustering analysis identified four main clusters that differ greatly in 

their neurotransmission-related gene expression profiles. 

 

Figure 1. GABA, glutamate and calcium pathway-related gene expression signatures of 661 TCGA 

gliomas samples. Four clusters were generated by hierarchical unsupervised clustering using Pear-

son correlation (glioma samples in column) and Minkowski distance (genes in rows). Ward.D2 clus-

tering method was selected for this clustering. Colors in rows represent different KEGG metabolic 

pathways of the included neurotransmission genes. 

3.2. Neurotransmission-Based Glioma Clustering Recapitulates Current Existing Glioma 

Molecular Subgroups and Identifies a Novel Subgroup with a Distinct Expression Profile 

We evaluated the presence of the most frequent adult glioma molecular alterations 

in neurotransmission-based glioma subgroups in accordance with the latest WHO classi-

fication of tumors of the central nervous system [1]. We also tracked “normal-like” IDH-

wt gliomas that had been identified in our previous study and were associated with a 

longer survival [29] (Figure 2 and supplementary data Table S3). 
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Figure 2. Distribution of frequent glioma molecular alterations within the four subgroups identified 

by GABA, glutamate and calcium gene expression-based unsupervised clustering. The molecular 

information for NT-1-4 gliomas was in accordance with the latest recommendations of the WHO 

classification of tumors of the central nervous system.  

The different histopathological entities (as per the 2007 WHO classification of CNS 

tumors [30], i.e., oligodendroglioma, glioblastoma, astrocytoma and oligoastrocytoma) 

were heterogeneously distributed in the four NT clusters, with NT-2 gliomas being mainly 

comprised of glioblastomas (115/188 samples, 61.2%). NT-2, NT-3 and NT-4 gliomas were 

essentially composed of IDH-wt gliomas (180/188 samples, 95.7%), IDH-mutated gliomas 

with the 1p/19q co-deletion (75/81 samples, 92.6%) and IDH-mutated gliomas without the 

1p/19q co-deletion (176/224 samples, 78.6%), respectively. As for the NT-1 glioma cluster, 

it was composed of a majority of IDH-mutated gliomas: 80/168 samples, 47.6% for IDH-

mutated gliomas with the 1p/19q co-deletion; 67/168 samples, 39.9% for IDH-mutated gli-

omas without the 1p/19q co-deletion; and 21/168 samples, 12.5% for IDH-wt gliomas. The 

percentage of IDH-wt gliomas in NT-1 and NT-4 was similar (12.5% and 16.5%, respec-

tively). The ATRX mutation was principally found in NT-4 (133/224 samples, 59.4%) and 

NT-1 glioma clusters (46/168 samples, 27.4%), as expected. According to available data, 

EGFR amplifications and combined Chr7 gain/Chr10 loss were essentially present in NT-

2 gliomas (89/188 samples, 47.3% and 129/188 samples, 68.6%, respectively). The TERT 

promoter mutation was more prevalent in NT-2 (54/188, 28.7% versus 10/188, 5.3% for 

wildtype) and NT-3 clusters (32/81, 39.5% versus 5/81, 6.2%). NT-2 gliomas were also en-

riched with CDKN2A/B-deleted gliomas (105/188 samples, 55.9% and 103/188 samples, 

54.8%, respectively). Interestingly, all the identified IDH-wt “normal-like” gliomas [29] 

were ascribed to the NT-1 glioma cluster. When specifically examining IDH-wt gliomas 

ascribed to NT-1-4 clusters, we found a higher proportion of IDH-wt gliomas bearing an 

EGFR amplification observed when comparing NT-2 vs. NT-1 gliomas but not NT-4 

(49.44%, 23.81% and 40.54% for NT-1, NT-2 and NT-4, respectively; p = 1.88 × 10−2 and p = 

0.25). Chr 7 gain/Chr 10 loss was also less prevalent in IDH-wt gliomas ascribed to the 

NT-1 cluster when compared to NT-2 (28.57% for NT-1 vs 71.66% and 45.94% for NT-2 

and NT-4, respectively; p = 3.15 × 10−4 and p = 0.36). We conclude that the expression levels 

of GABA, glutamate and calcium signaling elements segregate with known glioma 
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molecular alterations (IDH mutation and 1p/19q chromosomic status) for NT-1, NT-2, NT-

3 and NT-4 clusters. 

3.3. Clinical and Epidemiological Characterization of Neurotransmission-Based Glioma Clusters 

We evaluated the clinical and histopathological characteristics of the four glioma sub-

groups identified based on their expression patterns of glutamate, GABA and calcium 

genes. Comparison analysis (Table 1) did not show significant age differences between 

the NT-1, NT-3 and NT-4 gliomas (average of 42.69 yo, p = 0.08 and 0.18). On the other 

hand, NT-2 gliomas affected significantly older patients (average of 58.12 yo, p = 1.06 × 

10−21; p = 4.29 × 10−12; p = 9.95 × 10−29). Gliomas were more frequent in males than females, 

with no significant gender distribution differences between the different clusters. 

Table 1. Age at diagnosis and gender for NT-1-4 gliomas. 

Variable Category NT-1 (n = 168) NT-2 (n = 188) NT-3 (n = 81) NT-4 (n = 224) 

Gender 

Female 77 (45.8%) 75 (39.9%) 39 (48.1%) 88 (39.3%) 

Male 90 (53.6%) 113 (60.1%) 42 (51.9%) 135 (60.3%) 

Unknown 1 (0.6%) 0 (0.0%) 0 (0.0%) 1 (0.4%) 

Age at Diagno-

sis 

Min. 14 24 22 18 

1st Qu. 32.5 51 36 31 

Median 40 59 46 38 

Mean 42.69 58.12 45.59 41.03 

3rd Qu. 53 66.25 53 49 

Max. 87 85 75 89 

Survival analysis showed similar survival for NT-1 and NT-3 (log-rank test p = 0.44, 

Figure 3A). However, survival was shorter for NT-2 gliomas (log-rank test, p = 7.10 × 10−32, 

p = 1.06 × 10−20 and 1.09 × 10−33 compared to NT-1, NT-3 and NT-4, respectively). The same 

pattern was observed with regard to the Karnofsky’s performance scores associated with 

the different glioma NT clusters; NT-2 glioma patients were associated with significantly 

lower performance scores (Fisher’s exact test, p = 5.00 × 10−4 Figure 3B). 

 
(A) 
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(B) 

Figure 3. (A) Kaplan–Meier survival curves associated with NT-1-4 gliomas. Red, blue, green and 

purple represent the various NT-1-4 glioma clusters, respectively. Cluster-to-cluster significance 

was calculated using the log-rank test. (B) Karnofsky performance score distribution among NT-1-

4 gliomas. These scores reflect the patient’s ability to perform ordinary tasks and range from 100 

(patient without disabilities) to 0 (patient death). 

We performed a univariate and multivariate cox regression analysis to validate the 

prognosis associated with each glioma cluster (Table 2). As expected from the literature, 

univariate regression suggested that higher age at diagnosis, clustering within the NT-2 

cluster or higher grade had significant negative impact on patient survival (beta = 0.066 

with p = 9.31 × 10−42; beta = 2.216 with p = 6.62 × 10−28; beta = 2.976 with p = 6.38 × 10−43 for 

NT-2 cluster, G4 glioma and age at diagnosis, respectively). The multivariate cox regres-

sion model confirmed that clustering within the NT-2 glioma cluster is an independent 

factor impacting patient survival (beta = 0.901; p = 1.93 × 10−4) regardless of gender, age or 

grade. As expected, age at diagnosis and grade were also found to be independent, sig-

nificant prognostic factors for gliomas. NT-2 gliomas, which are mostly comprised of IDH-

wt gliomas, bear the worst prognosis out of the neurotransmission-related clusters. NT-1 

gliomas had similar prognosis compared to NT-3 and NT-4 gliomas. 

Table 2. Univariate and multivariate Cox regression analysis. Cluster (NT-1, NT-2, NT-3 and NT-

4), gender (male and female), age at diagnosis and glioma grade (G1, G2, G3 and G4) information 

were integrated into this analysis as covariates. 

  Univariate Cox Regression Multivariate Cox Regression 

Covariate Category Beta HR (95% CI for HR) p-value Beta HR (95% CI for HR) p-value 

Cluster 

NT-1 Reference Reference 

NT-2 2.216 9.169 (6.167–13.633) 6.62 × 10−28 0.901 2.461 (1.533–3.952) 1.93 × 10−4 

NT-3 −0.262 0.769 (0.398–1.485) 4.35 × 10−1 −0.456 0.634 (0.327–1.229) 1.77 × 10−1 

NT-4 0.433 1.543 (1.020–2.333) 4.00 × 10−2 0.31 1.363 (0.894–2.079) 1.51 × 10−1 

Gender 
Female Reference Reference 

Male 0.202 1.224 (0.947–1.582) 1.22 × 10−1 0.029 1.029 (0.794–1.334) 8.29 × 10−1 

Age at Diagno-

sis 
 0.066 1.068 (1.058–1.079) 9.31 × 10−42 0.039 1.040 (1.028–1.052) 4.32 × 10−11 

Grade 

G2 Reference Reference 

G3 1.148 3.153 (2.054–4.841) 1.53 × 10−7 0.972 2.644 (1.717–4.074) 1.03 × 10−5 

G4 2.976 19.605 (12.821–29.978) 6.38 × 10−43 1.772 5.883 (3.534–9.791) 9.30 × 10−12 

Unknown 1.092 2.979 (1.652–5.370) 2.83 × 10−4 0.92 2.510 (1.381–4.565) 2.55 × 10−3 
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3.4. Lower Expression of Neurotransmission Genes Correlates with Increased Aggressivity in the 

NT-1, NT-2, NT-3 and NT-4 Gliomas 

Following the identification of four glioma clusters with distinct GABA, glutamate 

and calcium-related gene expression patterns, we searched for specific genes expressed 

by cancer cells or their microenvironment that may impact gliomagenesis by performing 

differential gene cluster-to-cluster expression analysis. We retrieved 232 unique neuro-

transmission-associated genes that were significantly expressed (Bonferroni-adjusted p < 

0.001 and absolute value of log2foldchange greater than 1). In this analysis, the highest 

number of significantly differentially expressed genes (43 genes) belonged to the NT-1 

cluster comparison (Figure 4A). 

(A) 

 
(B) 
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(C) 

Figure 4. (A) Upset plot representing the differential gene cluster-to-cluster expression analysis. A 

total of 232 genes were differentially expressed in NT-1-4 gliomas (up- or downregulated). Each row 

represents a specific cluster comparison; columns represent the number of common genes. Each 

linked black point represents intersecting genes between glioma clusters. (B) GABA-, glutamate- 

and calcium-related gene expression profiles for NT-1-4 gliomas. Average normalized expression 

was performed with the DESeq2 v1.26.0 R package. Healthy samples (n = 5) were also included in 

this analysis. Genes were ordered by descending expression levels of the healthy samples. (C) 

CHRM1, CHRM3 and GRIN1 gene expression levels in NT-1-4 gliomas. Expression levels are pre-

sented in log2 FPKM for 3 intersecting genes from all 6 cluster-to-cluster expression analyses (* p < 

0.05, ** p < 0.001 and *** p < 0.0001) 

Cluster-to-cluster expression profile analyses for calcium endocrine, calcium signal-

ing, GABA synapse, glutamate metabolism and glutamate synapse metabolic pathways 

are presented in Figure 4B and supplementary data Table S4. Amongst all samples (gli-

oma and healthy patients), we observed that neurotransmission-related genes were the 

most highly expressed in healthy samples when compared to NT glioma clusters. (18/23, 

82/132, 43/55, 6/15 and 49/65 genes for calcium endocrine, calcium signaling, GABA syn-

apse, glutamate metabolism and glutamate synapse metabolic pathways, respectively). 

With regard to the comparisons between NT glioma clusters, we found that NT-1 gliomas 

were associated with the largest number of overexpressed genes (15/23, 70/132, 41/55, 8/15 

and 43/65 genes for calcium endocrine, calcium signaling, GABA synapse, glutamate me-

tabolism and glutamate synapse metabolic pathways, respectively). Conversely, NT-2 gli-

omas were associated with the largest number of underexpressed genes ascribed to these 

pathways (14/23, 60/132, 36/55, 7/15 and 48/65 for calcium endocrine, calcium signaling, 

GABA synapse, glutamate metabolism and glutamate synapse metabolic pathways, re-

spectively). These observations were more significant for GABA synapse, glutamate me-

tabolism and glutamate synapse pathways. NT-3 and NT-4 cluster expression profiles 

showed intermediate levels of expression for all pathways. We also identified three genes 

that were significantly differentially expressed amongst all six cluster-to-cluster analyses: 

the cholinergic receptor muscarinic 1 (CHRM1), the cholinergic receptor muscarinic 3 

(CHRM3) and the glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) genes. 

These three genes were significantly overexpressed in healthy samples and NT-1 gliomas 

(Figure 4C). Overall, we found that NT-1 gliomas are characterized by the overexpression 

of neurotransmission-related genes when compared to other glioma clusters. 
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3.5. Correlation between DNA Hypermethylation and Gene Expression Is Preserved in NT-1 

Gliomas 

We then sought to evaluate the role of DNA methylation, which is an important epi-

genetic mechanism involved in gliomagenesis, in modulating neurotransmission gene ex-

pression in NT gliomas. Using the TCGA methylation quantification dataset, we first ex-

amined the DNA methylation levels of GABA-, glutamate- and calcium-related genes 

used for NT-1-4 glioma unsupervised clustering. For this, we extracted the methylation 

beta values of the differentially expressed neurotransmission-related genes between NT-

1-4 gliomas (Wilcoxon rank sum test Bonferroni-corrected p-value less than 0.001 and ab-

solute log2 fold change superior to 1). Methylation beta values equal to 0 and equal to 1 

reflect DNA hypomethylation and hypermethylation, respectively. We found that NT-2 

gliomas were associated with lower average beta values than NT-1, NT-3 and NT-4 glio-

mas (Figure 5A, Wilcoxon rank sum test adjusted by Bonferroni correction; p = 4.9 × 10−10; 

p = 5.8 × 10−14; p = 1.1 × 10−5, respectively). The average beta values of NT-2 were also sig-

nificantly higher than in healthy samples albeit with lower statistical significance because 

of the number of healthy samples in the analysis (n = 2) (Wilcoxon rank sum test p = 1.2 × 

10−9). We further investigated DNA methylation levels for individual genes ascribed to 

calcium endocrine, calcium signaling, GABA synapse, glutamate metabolism and gluta-

mate synapse signaling pathways by generating methylation profiles (Figure 5B). Again, 

NT-2 gliomas and healthy samples were associated with overall DNA hypomethylation. 

Interestingly, a significant negative correlation between DNA methylation and expression 

levels was only maintained for NT-1 gliomas (r = −0.53; p = 3.02 × 10−13; Figure 4D). How-

ever, DNA methylation levels in NT-2, NT-3 and NT-4 gliomas correlated weakly with 

gene expression levels (r = −0.23; p = 1.21 × 10−5; Figure 5C).  

 

(A) 
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(B) 

 

(C) 

Figure 5. (A) DNA methylation levels associated with neurotransmission-related genes used for 

NT1-4 glioma unsupervised clustering. Average methylation beta values of 351 neurotransmission-
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related genes reflect DNA hypomethylation (beta = 0) and hypermethylation (beta = 1). Healthy 

samples (n = 2) were also added to the analysis. (B) DNA methylation profiles associated with neu-

rotransmission-related genes used for NT1-4 glioma unsupervised clustering. A total of 351 indi-

vidual gene methylation beta-values are sorted in descending order and rated between 0 and 1. 

Healthy samples (n = 2) were also added to the analysis. (C) Correlation between average neuro-

transmission-related gene DNA hypermethylation and expression in NT-1-4 gliomas (n = 661). Each 

point represents a glioma sample, and the color is specifically related to the NT glioma cluster (***p 

< 0.001).  

3.6. NT-1 and NT-2 Gliomas Are Regulated by More Complex Epigenetic Mechanisms Involving 

Differential Expression of microRNA 

MicroRNAs (miRNAs) are small, single-stranded, non-coding RNA molecules (21–

25 nucleotides in length) that play an important role in tumorigenesis through RNA si-

lencing and post-transcriptional regulation of gene expression [31]. We explored their po-

tential regulatory roles on GABA-, glutamate- and calcium-associated gene expression in 

gliomas by extracting from the RNA Interactome database [27] the miRNAs that inter-

acted directly with our 351 neurotransmission-related genes. We identified 73 differen-

tially expressed miRNAs (DE-miRNAs) in this analysis. The largest counts of highest-ex-

pressed DE-miRNAs were found in NT-1 and NT-2 gliomas (26, 25, 14 and 8 DE-miRNAs 

for NT-1, NT-2, NT-3 and NT-4, respectively; Figure 6A) and the largest counts of lowest-

expressed DE-miRNAs were found in NT-2 and NT-3 gliomas (31, 25, 9 and 8 for NT-2, 

NT-3, NT-1 and NT-4, respectively). 

 

 
(A) 
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(B) 

Figure 6. (A). Number of differentially highly or lowly expressed miRNAs identified in NT-1-4 gli-

omas. The differential analysis was performed using DESeq2 R packages without taking into ac-

count healthy samples (n = 5). High or low expression of miRNAs in an NT cluster indicates the 

miRNAs having the highest/lowest expression in one of the four NT clusters. (B) Average expres-

sion levels for hsa-mir-100, hsa-mir-183, hsa-mir-128 and hsa-mir-23a in NT-1-4 gliomas. Stars rep-

resent the significance of the glioma cluster compared to the others (healthy samples are excluded 

in the comparison: * p < 0.05; *** p < 0.001). 

A total of 29 DE-miRNAs were found to be associated with higher expression compared 

to the average expression of all DE-miRNAs (average of 4.3 DESeq2 normalized counts; sup-

plementary data Table S5). Amongst these 29, the top 4 were the miRNAs hsa-mir-100, hsa-

mir-183, hsa-mir-128-2 and hsa-mir-23a (Figure 6B and supplementary data Table S5). The 

hsa-mir-100 and hsa-mir-23a mirRNAs were significantly overexpressed in NT-2 gliomas 

when compared to NT-1, NT-3, and NT-4 clusters (Bonferroni-adjusted p < 0.05 for all cluster 

pairwise comparison). The hsa-mir-128-2 was overexpressed in NT-1 (Bonferroni-adjusted p 

< 10 × 10−5 for all cluster pairwise comparison). Expression of hsa-mir-183 was lower in NT-2 

gliomas (Bonferroni-adjusted p < 10 × 10−5 for all cluster pairwise comparison). Overall, neuro-

transmitter-related miRNAs appeared to be more deregulated in NT-2 gliomas when com-

pared to other glioma subgroups. 

3.7. Neurotransmission-Related Gene Expression Correlates with the Immune Response 

Signaling Pathways in NT-1-4 Glioma Clusters 

To look into the regulation of specific cellular signaling pathways by neurotransmitter-

related genes in glioma, we performed a correlation analysis of the TCGA glioma dataset be-

tween previously-identified NT1-4 discriminatory genes (CHRM1, CHRM3 and GRIN1) and 

non-neurotransmission-related genes. We retrieved 7758 and 7346 genes with negative and 

positive correlation, respectively (Bonferroni-adjusted p < 0.05, supplementary data Table S6).  

Analyses of negatively-correlated genes revealed enrichment for genes pertaining to 15 

specific cellular pathways such as cell activation, immune effector process, cell population 

proliferation, response to biotic stimulus, primary metabolic process, symbiotic process, 

movement of cell or subcellular component, response to external stimulus, etc. (Supplemen-

tary data Figure S3). Amongst these pathways, 10 out of 15, such as cell activation, cell popu-

lation proliferation and movement of cell and/or subcellular component process groups, were 
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mainly composed of immune cellular processes such as positive regulation of leukocyte acti-

vation, T cell activation and leukocyte proliferation (Supplementary data Figure S4). 

Positively-correlated genes were significantly associated with signaling pathways 

such as system process, macromolecule localization, establishment of localization, regu-

lation of biological quality, cellular component organization or biogenesis and cell com-

munication (Supplementary data Figure S5). In summary, neurotransmission gene ex-

pression in gliomas correlates with various cellular pathways related to immunity. 

3.8. Immune Cell Characterization Reveals Different Tumor Immune Microenvironment 

Composition 

The identification of a high number of immune processes with the CHRM1, CHRM3 

and GRIN-1 neurotransmission-related gene signature may suggest that NT-related glio-

mas possess distinct tumor immune microenvironments. We first performed an ESTI-

MATE R tumor purity calculation on NT-1-4 gliomas, as this tool evaluates immune and 

stromal gene expression signatures. We found that the NT-1 gliomas were associated with 

significantly higher tumor purity scores when compared to the NT-2 (Wilcoxon rank sum 

test p = 3.01 × 10−45) and NT-4 (Wilcoxon rank sum test p = 5.2 × 10−26, Figure 7A) gliomas, 

reflecting lower levels of immune cells in the NT-1 gliomas. There were no significant 

differences observed between NT-1 and NT-3 gliomas. 

(A) 

 
(B) 
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Figure 7. (A) ESTIMATE R tumor purity for the NT-1, NT-2, NT-3 and NT-4 gliomas. Purity scores 

were inferred from the presence of infiltrating immune/stromal cells (*** p < 0.001). (B) Immune 

cell type inference for NT-1, NT-2, NT-3 and NT-4 gliomas using CIBERSORT and CIBERSORT-

ABS tools. CIBERSORT generates an immune cell fraction relative to the total immune cell content; 

CIBERSORTx generates an absolute proportion of each cell type. (C) Variable contributions within 

the first and second principal components. The PCA was performed on the CIBERSORTx immune 

cell composition inference data. 

To further substantiate this observation, we also inferred the immune cell type com-

position of each glioma cluster using CIBERSORT [32] and CIBERSORTx [33] tools (Figure 

7B). The CIBERSORTx analysis showed similar absolute immune cell quantification be-

tween the NT-1 and NT-4 gliomas (Wilcoxon rank sum test p = 0.28). NT-2 gliomas were 

associated with a higher number of immune cells (Wilcoxon rank sum test p = 6.42 × 10−32, 

p = 1.94 × 10−27 and p = 1.70 × 10−26 compared to NT-1, NT-3 and NT4, respectively). When 

analyzing the CIBERSORT results, NT-2, NT-3 and NT-4 gliomas were significantly asso-

ciated with a higher fraction of M2-phenotype macrophages when compared to NT-1 gli-

omas (Wilcoxon rank sum test p = 3.90 × 10−30, p = 2.01 × 10−8 and p = 1.49 × 10−17, respec-

tively). In addition, NT-1 gliomas had a higher fraction of plasma B cells (Wilcoxon rank 

sum test p = 1.73 × 10−42, p = 2.42 × 10−9 and p = 2.33 × 10−35, respectively) when compared to 

the three other groups. NT-1 gliomas also had a higher fraction of monocytes when com-

pared to NT-2 and NT-3 gliomas (Wilcoxon rank sum test p = 7.45 × 10−10, p = 1.23 × 10−5 

and p = 8.36 × 10−1, respectively). Other immune cell types were identified to be signifi-

cantly enriched in NT-1 gliomas and are described in the supplementary data Table S7. 

Principal component analysis (PCA) on the CIBERSORTx immune data showed that 

the first and second components explained 82.3% of the total variability (75.1% and 7.2% 

for the first and second component, respectively, Figure 7C). The first principal compo-

nent mainly consists of the M2 macrophage variable (93.87%). Monocytes were the main 

contributors to the second principal component (59.89%), with macrophages M0 (14.06%), 

mast cells resting (12.15%) and B cells plasma (8.01%) also contributing. 

3.9. Neurotransmission-Related Transcriptomic Profiling on the Chinese Glioma Genome Atlas 

Cohort 

We tested the reproducibility of our findings using 889 glioma samples from the Chi-

nese Glioma Genome Atlas cohort (CGGA) with the neurotransmission-related gene set 

(351 genes) used in the analysis of the TCGA cohort. We performed unsupervised cluster-

ing and generated four different clusters, which were identified as NT-1-like (n = 189), NT-

2-like (n = 259), NT-3-like (n = 166) and NT-4-like (n = 275) glioma clusters (Figure 8A). 
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Similar to the TCGA cohort, the NT-2-like cluster was mainly composed of IDH-wt glio-

mas (222/259 or 85.71%) whereas IDH-mutated gliomas were predominant in the NT-3- 

and NT-4-like clusters (122/166, 73.49% and 226/275, 82.18% for the NT-3- and NT-4-like 

clusters, respectively; supplementary data Table S8). The NT-1-like glioma cluster was 

composed of a mixture of IDH-mutated (112/189 or 59.26%) and IDH-wt gliomas (77/189 

or 40.74%). The 1p/19q chromosomal co-deletion did not predominate in any cluster. 

 

(A) 

 
(B) 
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(C) 

Figure 8. (A) Distribution of glioma molecular alterations in CGGA neurotransmission-related gli-

oma clusters. The four clusters were generated by hierarchical unsupervised clustering using Pear-

son correlation (glioma samples in column) and Minkowski distance (genes in rows). Ward.D2 clus-

tering method was selected for this clustering. (B) Kaplan–Meier survival curves associated with 

the CGGA NT-1-4 like glioma clusters. Red, blue, green and purple represent the various CGGA 

NT-1-4-like glioma clusters, respectively. Cluster-to-cluster significance was calculated using the 

log-rank test. (C) Immune cell type inference for NT-1-4 like gliomas using CIBERSORT. CIBER-

SORT infers the immune cell fraction relative to the total immune cell content. 

Survival analysis showed a similar survival for NT-1-like, NT-3-like and NT-4-like 

clusters (log-rank test p > 0.05 Figure 8B). NT-2-like gliomas had the shortest survival rate 

when compared to the three other clusters (log-rank test, p = 8.76 × 10−19, p= 1.02 × 10−16 and 

p = 3.66 × 10−15 when compared with NT-1-like, NT-3-like and NT-4-like, respectively). 

In terms of immune cell type composition, NT-2-like gliomas were associated with a 

higher cell fraction of M2-phenotype macrophages, similar to the TCGA cohort analysis 

findings. (Wilcoxon rank sum test p = 4.76 × 10−22, p = 1.03 × 10−29 and p = 2.09 × 10−17 com-

pared to the NT-1-like, NT-3-like and NT4-like, respectively; Figure 8C). In general terms 

and similar to the TCGA analyses, neurotransmission-based unsupervised clustering of 

the CGGA glioma expression dataset recapitulated four subgroups with similar survival 

and inflammatory microenvironment characteristics. 

4. Discussion 

Current glioma therapies lead to limited improvement in median overall survival in 

patients with high-grade infiltrating gliomas [34]. Beyond targeting tumor cells, there is 

currently a shift of focus towards understanding components of the tumor microenviron-

ment, such as surrounding neural cells (neurons and glia), hematopoietic cells (mono-

cyte/macrophage/microglia and T cells) or blood vessels, in an attempt to overcome re-

dundant compensatory mechanisms [35]. In this large-scale multi-omics analysis, IDH-

wildtype and IDH-mutated infiltrating gliomas were studied through the lens of neuro-

transmission-related (GABA, glutamate and calcium) gene expression patterns with the 

aim of unraveling specific vulnerabilities and cellular pathways. 

Neurotransmission-based unsupervised clustering enabled the proper classification 

of the majority of infiltrating gliomas into current WHO tumor categories (IDH-wt glio-

mas, IDH-mutated, 1p/19q oligodendrogliomas and IDH-mutated astrocytomas), sug-

gesting that neurotransmission-related pathways are differentially regulated in tumor 

cells and/or their microenvironment according to tumor subtype, and also reaffirming the 

importance of IDH1/2 mutations and of 1p/19q-codeletion for glioma stratification. 
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Interestingly, this strategy also identified a novel NT-1 glioma subgroup mostly com-

prised of IDH-mutated gliomas, which also included “normal-like” IDH-wt gliomas as-

sociated with a longer survival [1,29]. 

The NT-1 subgroup primarily distinguishes itself by its overexpression of GABA, 

glutamate and calcium genes. Conversely, the NT-2 cluster, which is principally com-

prised of more-aggressive IDH-wildtype glioblastomas, is associated with a lower expres-

sion of neurotransmission-related genes. IDH-mutated gliomas with (NT-3) or without 

(NT-4) the 1p/19q codeletion show intermediate levels of expression. This supports the 

importance of the IDH mutation in regulating neurotransmission-related gene programs 

in glioma [36,37]. 

The role of the IDH mutation as a trigger of the CpG island methylator phenotype in 

IDH-mutated gliomas via the production of 2-hydroxyglutarate (2-HG) oncometabolite is 

well-established [38,39]. It is interesting to note that—while the average methylation of 

neurotransmission genes in NT-1 gliomas is high, as expected from a group mainly com-

posed of IDH-mutated tumors—these tumors are distinct from other IDH-mutated glio-

mas by the partial preservation of their capacity to silence neurotransmission genes 

through methylation. We can speculate that epigenetic DNA methylation events that fol-

low IDH mutation in early gliomagenesis target neurotransmission genes randomly, 

thereby accounting for heterogeneous neurotransmission-related profiles and selective 

vulnerabilities within IDH-mutated tumors. Neurotransmitter-related genes amenable to 

epigenetic reprogramming may impact the therapeutic efficacy of experimental anti-can-

cer DNA demethylating drugs [40]. 

Neurotransmission-based glioma clusters are also distinct by virtue of altered expres-

sion of miRNAs interacting with GABA-, glutamate- and calcium-related genes. In partic-

ular, four miRNAs (hsa-mir-100, hsa-mir-183, hsa-mir-128-2 and hsa-mir-23a) were shown 

to be highly expressed in comparison to the other deregulated miRNAs. In gliomas, hsa-

mir-183 promotes cell proliferation, invasion, angiogenesis and radioresistance [41–46] 

and is overexpressed in NT-3 and NT-4 IDH-mutated gliomas. The hsa-mir-128-2 miRNA, 

which is overexpressed in the NT-1 cluster, has an inhibitory role on tumor growth and 

angiogenesis in glioma [47]. Furthermore, its overexpression is associated with an increase 

of temozolomide cytotoxicity and chemosensitivity in glioma and a decrease in chemo-

therapeutic resistance in breast cancer [48–50]. Next, hsa-mir-23a promotes cell growth 

[51], proliferation [52] and invasion [53] in glioma and participates in colorectal cancer cell 

chemoresistance [54,55]. As for hsa-mir-100, its overexpression is associated with reduc-

tions in cell proliferation [56], growth [57] and chemoresistance [58] even though it is over-

expressed in more aggressive NT-2 gliomas. Overall, the differential expression of miR-

NAs directly interacting with neurotransmission-related genes represents another layer 

of epigenetic diversity between NT-1-4 gliomas that may impact treatment response and 

resistance. 

Correlations between the CHRM1, CHRM3 and GRIN-1 NT-1-4 glioma intersecting 

gene signatures and various immune signaling pathways suggested that NT gliomas may 

be endowed with distinct tumor immune microenvironments. Further, 2-HG is an im-

portant mediator of tumor immunity in IDH-mutated gliomas. It acts as a suppressor of 

antitumor T-cell activity and also impedes macrophage recruitment in gliomas by altering 

tryptophan metabolism [59,60]. Lower pools of M2-phenotype macrophages were de-

tected in NT-1 gliomas when compared to NT-2-4 gliomas. Considering the anti-tumor 

and immunosuppressive functions of this type of macrophage in gliomas, this observation 

could be in keeping with a less suppressive and less tumor-supportive inflammatory mi-

croenvironment in NT-1 gliomas, partly explained by their IDH status but also promoted 

by operational neurotransmitter signaling pathways modulated by released GABA or glu-

tamate in cancer or microenvironment cells [61]. 

We identified novel, neurotransmission-based glioma subgroups with their peculi-

arities in terms of expression, epigenetics (methylation and miRNAs) and inflammatory 

microenvironment. These findings may be of clinical relevance should neurotransmitter 
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pathways impacting tumor aggressiveness be actionable or reactivable in gliomas, 

whether it is through epigenetic-based strategies for IDH-mutated tumors or any other 

strategy for IDH-wt gliomas. 

The adult gliomas included in this study are infiltrative by nature. It is thus expected 

that brain biopsy samples will include non-neoplastic brain cells. We do expect that some 

of the differentially expressed NT genes identified in this study belong to the non-neo-

plastic tumor microenvironment, where they can still impact tumor aggressiveness. Fur-

ther bioinformatics studies on microdissected tumor tissue and single-cell RNA sequenc-

ing data will help to specify more precisely the location of neurotransmission targets in 

tumor cells versus non-neoplastic tumor cells of the microenvironment. Experimental stud-

ies targeting neurotransmitter signaling elements and relevant miRNAs in vitro will also 

further our knowledge regarding the impact of these pathways on glioma aggressiveness. 

5. Conclusions 

This multi-omics analysis revealed the existence of neurotransmission-based glioma 

categories with significant differences in regard to neurotransmission-related gene ex-

pression, methylation, and miRNA profiles in adult gliomas. It also revealed alterations 

in the nature of the tumor inflammatory microenvironment between NT glioma sub-

groups. Deciphering operational neurotransmitter signaling pathways and underpinning 

mechanisms that may represent actionable targets is a promising personalized treatment 

avenue to explore for glioma patients as a complement to current radiotherapy and chem-

otherapy treatments in an attempt to improve clinical outcomes. 
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bolic database, Supplementary data Table S1: List of 351 neurotransmitter-related genes used for 

unsupervised clustering (>10 counts), Supplementary Data Figure S2: Average entropy of the TCGA 

glioma expression dataset unsupervised clustering based on the IDH and 1p/19q codeletion status, 

according to the number of clusters generated. The optimal number of clusters is equal to 4 (red 

dot), Supplementary data Table S2: Distribution of the NT-1-4 glioma clusters among the 661 TCGA 

glioma samples, Supplementary Data Figure S3: Gene ontology enrichment analysis on correlated 

genes between previously-identified NT1-4 intersecting genes (CHRM1, CHRM3 and GRIN1) and 

non-neurotransmission-related genes., Supplementary data Table S3: Distribution of biomolecular 

and epidemiological variables among NT-1-4 glioma clusters, Supplementary Data Figure S4: Sig-

nificant Gene Ontology group terms associated with cell activation, cell proliferation and movement 

of cell or subcellular component gene ontology level 3 gene ontology group terms. Colors represent 

the correlation type (blue and red for negative and positive correlations, respectively). Supplemen-

tary data Table S4: Distribution of overexpressed and underexpressed neurotransmission-related 

genes in NT-1-4 gliomas, Supplementary Data Figure S5. Significant Gene Ontology group terms 

associated with system process, macromolecule localization, establishment of localization, regula-

tion of biological quality, cellular component organization or biogenesis and cell communication 

gene level 3 gene ontology group terms. Colors represent the correlation type (blue and red for 

negative and positive correlations, respectively), Supplementary Data Table S5: Average expression 

levels of 73 differentially expressed miRNAs in NT-1-4 gliomas. Supplementary data Table S6: Pos-

itive and negative correlations between CHRM1, CHRM3 and GRIN-1 genes and nonrelated neu-

rotransmission genes. Supplementary data Table S7: Comparison of immune cell type enrichment 

among NT-1-4 glioma clusters generated by the CIBERSORT analysis tool. Supplementary data Ta-

ble S8: Distribution of biomolecular and epidemiological variables among CGGA NT-1-4-like gli-

oma clusters. 
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