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Abstract: Chronological age (CA) predicts health status but its impact on health varies with an-
thropometry, socioeconomic status (SES), and lifestyle behaviors. Biological age (BA) is, therefore,
considered a more precise predictor of health status. We aimed to develop a BA prediction model
from self-assessed risk factors and validate it as an indicator for predicting the risk of chronic disease.
A total of 101,980 healthy participants from the Korean Genome and Epidemiology Study were
included in this study. BA was computed based on body measurements, SES, lifestyle behaviors,
and presence of comorbidities using elastic net regression analysis. The effects of BA on diabetes
mellitus (DM), hypertension (HT), combination of DM and HT, and chronic kidney disease were
analyzed using Cox proportional hazards regression. A younger BA was associated with a lower risk
of DM (HR = 0.63, 95% CI: 0.55–0.72), hypertension (HR = 0.74, 95% CI: 0.68–0.81), and combination
of DM and HT (HR = 0.65, 95% CI: 0.47–0.91). The largest risk of disease was seen in those with a BA
higher than their CA. A consistent association was also observed within the 5-year follow-up. BA,
therefore, is an effective tool for detecting high-risk groups and preventing further risk of chronic
diseases through individual and population-level interventions.

Keywords: biological age; chronic disease; precision medicine; personalized lifestyle medicine;
machine learning

1. Introduction

As the national life span increases, the prevalence of chronic diseases including hyper-
tension (HT), diabetes (DM), and chronic kidney disease (CKD) is accelerating globally [1–3].
Chronological age (CA) is a major indicator of health status; however, the effects of CA
on diseases may differ based on anthropometry, socioeconomic status (SES), and lifestyle
behaviors [4–6]. As a result of this difference, people of the same CA have varied biological
ages (BA). Therefore, BA, which is calculated using aging markers, has been regarded as a
more precise index for assessing health status than CA [7–10].

Substantial changes in body shape and composition occur with age, and these changes
can have an impact on health [6]. In particular, waist circumference is positively associ-
ated with the risk of chronic disease [11–13]. Differences in aging and health outcomes
have also been associated with socioeconomic status [4]. According to the World Health
Organization (WHO), chronic diseases share risk factors, including poor lifestyle behaviors
such as cigarette smoking, heavy drinking, physical inactivity, and excess body weight [14].
Lifestyle behaviors are also regarded as mediators between SES and health, and they may
help alleviate health inequities [15–17]. During the coronavirus 2019 (COVID-19) pan-
demic, health inequities based on socioeconomic disparities have become increasingly
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pronounced [18]. As a result, the necessity for a personalized health assessment tool is
emphasized [19–22].

There are several previous studies on BA based on clinical information such as labora-
tory blood tests, frailty-related physical factors, physiological factors, metabolomics, and
DNA-methylation [7,23–25]. These were useful to understand the biological mechanism
of aging, however, were inflexible to control the aging process. Moreover, limited studies
were conducted to assess the BA as an index for predicting the risk of disease [26,27]. In this
study, BA, which is calculated based on self-assessed risk factors, can be a useful indicator
of health status. The combination of these risk factors may relate to increasing BA, which
is positively associated with the risk of developing chronic diseases. This suggests that
people can regulate the pace of their biological aging by promoting healthy lifestyles and
addressing population-level determinants of health.

Therefore, this study aimed to develop a personalized BA prediction model based
on individual- and population-level risk factors and assess it as a useful indicator for
predicting the risk of chronic disease (Figure 1).

Figure 1. Architecture of development and evaluation of self-assessment of biological age for predict-
ing the risk of chronic disease.

2. Materials and Methods
2.1. Study Population

Participants were drawn from the Korean Genome and Epidemiology Study (KoGES)
which integrated three cohorts (including the Ansan and Ansung baseline study from
2001–2002, the health examines study [HEXA] from 2004 to 2013, and the cardiovascular
disease association study [CAVAS] from 2005 to 2011). The HEXA study consisted of a total
of 173,353 participants aged 40–79 years, which was the largest population dataset from the
KoGES. A total of 28,338 individuals aged 40–91 years participated in the CAVAS, and the
Ansan and Ansung baseline study consisted of 10,030 individuals aged 40–69 years. All the
participants of these three cohorts were interviewed using structured questionnaires and
blood tests were collected by well-trained researchers. The detailed design of the KoGES
study has been described elsewhere [28]. Of the 211,721 participants in the integrated
data, 101,980 healthy individuals with a Charlson’s comorbidity index [29] of 0, who had
done body measurements (height, weight, waist, and hip circumference) and completed
self-reported information such as SES, comorbidities, and lifestyle behaviors, were included
to develop the BA prediction model. To estimate the risk of developing complex chronic
disease, 43,143 participants with at least 2 years of follow-up were included (Figure S1).

2.2. Biological Age

Among the 128 measurements, variables with missing rates of more than 20% and
laboratory data (blood test and calculated dietary intake), which needed to be managed by
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medical personnel were excluded. Based on previous aging studies, the BA was computed
based of the following: (1) body measurement (height, weight, waist, and hip size); (2) SES
(income, education level, marital status, and occupation); (3) lifestyle behaviors (smoking
duration [years], smoking consumption [packs per day], second-hand smoking [yes/no],
drinking frequency [none, 1 time, 2–3 times, 4–6 times/week and daily], frequency of
regular exercise [none, 1 time, 2–3 times, 4–6 times/week and daily]); and (4) disease
comorbidity (dyslipidemia, asthma, allergy, and thyroid disease).

As there are substantial changes in body shape that occur during the aging process [6],
body measurements are useful indicators for estimating biological aging. The relationship
between SES and acceleration of aging has been well established [4]. According to previous
studies, lifestyle behaviors are also related to chronic diseases and aging [5,14,30,31]. So,
lifestyle behaviors were selected as factors affecting BA. Comorbidities were also included.
Thus, BA was estimated as a single index using a combination of these self-assessed
variables. For women, reproductive factors including age at menarche, oral contraceptive
use, and parity were included.

To generate the definite effect of the BA, we defined ‘Age-difference (Age-Diff)’, as
the difference between BA and CA (‘Age-Diff’ = BA-CA). The categories of ‘Age-Diff were
classified into 4 groups: “Very young BA”, where BA was at least 5-year younger than CA
(BA-CA ≤ −5); “Young BA”, where BA was between 1-year and <5-year younger than CA
(−5 < BA-CA ≤ −1); “Same BA as CA”, where the BA-CA difference was between −1 year
and 1 year (−1 < BA-CA ≤ 1); “Older BA”, where BA was at least 1 year older than CA
(BA-CA > 1), respectively.

2.3. Outcome Assessments

HT was defined as systolic blood pressure≥ 130 mmHg or diastolic blood pressure ≥ 80 mmHg
or taking any antihypertensive drugs [30]. DM was defined as either a fasting plasma
glucose level ≥ 126 mg/dL, HbA1c ≥ 6.5%, or taking any anti-diabetic drugs [31]. CKD was
defined as an estimated glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73 m2 according
to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) [32].

2.4. Statistical Analysis

Baseline characteristics were compared according to each chronic condition using a Stu-
dent’s t-test for continuous variables and a chi-squared test for categorical variables. Z-score
standardization was performed for continuous elements including body measurements and
lifestyle information. Based on the standardized elements, elastic net linear regression [33]
was applied to find the optimized coefficients for selected variables that minimize the
sum of error squares, which were used to generate our BA prediction model (Figure S2).
Our model was then evaluated using 10-fold cross-validation (Figure S3) [34] To estimate
the correlation between CA and BA, correlation coefficients (r) were calculated. Logistic
regression analyses were performed to calculate the odds ratios (ORs) of chronic diseases
according to CA (<50, 50–59, 60–59, and ≥70 years), BA (<50, 50–59, 60–59 and ≥70 years),
and Age-Diff (very young BA, young BA, same BA as CA, and older BA). Cox proportional
hazards regression analyses were further performed to assess the hazard ratio (HR) of BA
and the risk of complex chronic diseases. Further analyses were conducted to estimate the
risk of disease within a 5-year follow-up period. All analyses were performed using SAS
9.4 software (SAS Institute, Cary, NC, USA) and R (version 3.3.3) with the ‘glmnet’ package.

3. Results
3.1. Baseline Characteristics

For BA prediction and to find the association between BA and disease prevalence, a
total of 101,980 healthy participants (Charlson’s comorbidity index of ‘0’) aged 40–89 years
were included in this study. More than half (65.4%) were women and the mean age at
recruitment was 53.0 and 51.9 years for men and women, respectively. Among the total
participants, 58,801 had repeat measurements after a median follow-up of 5 (range: 2–13)
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years. Among the total follow-up subjects, there were new events of DM (2474 subjects),
HT (7274 subjects), combination of DM and HT (535 subjects), and CKD (1177 subjects)
(Table S1).

3.2. Calculation and Assessment of Biological Age

Based on the differences in demographic backgrounds and lifestyle behaviors between
sexes, this study developed a sex-specific BA prediction model. BA was calculated based
on self-reported questionnaire, including body measurements, SES, comorbidities, and
lifestyle behaviors. According to the elastic net regression variable selection process, a total
of 20 markers for men and 23 for women were selected. The computed BA was a signifi-
cantly correlated with CA for men (r = 0.709, p < 0.001) and women (r = 0.688, p < 0.001),
respectively. According to BA predictors, waist circumference, alcohol consumption, and
smoking duration were positively associated with BA (Equations (S1)–(S3)).

We found that the oldest CA group (≥70 years) had higher odds of DM (OR: 2.48,
95% CI: 1.93–3.17), HT (OR: 2.66, 95% CI: 2.36–3.00), combination of DM and HT (OR: 3.42,
95% CI: 2.44–4.80), and CKD (OR: 33.42, 95% CI: 26.21–42.61) than those in the youngest
CA group (<50 years). The odds of each disease increased more rapidly with an increase
in BA. As the BA increased by 1 year, the odds were increased by 6% for DM (OR: 1.06,
95% CI: 1.06–1.07), 7% for HT (OR: 1.07, 95% CI: 1.07–1.08), 10% for combination of DM and
HT (OR: 1.10, 95% CI: 1.10–1.11), and 16% for CKD (OR: 1.16, 95% CI: 1.15–1.17). Based on
the comparison, BA reflects disease prevalence better than CA. According to the Age-Diff,
we found that “Very young BA” group had lower odds of chronic diseases. Compared to
the individuals with “Same BA as CA”, lower odds of DM (OR: 0.72, 95% CI: 0.65–0.81), HT
(OR: 0.7, 95% CI: 0.68–0.75), combination of DM and HT (OR: 0.65, 95% CI: 0.56–0.76), and
CKD (OR: 0.77, 95% CI: 0.65–0.90) were observed in the individuals with “Very young BA”
(Table 1)

Table 1. Association with CA, BA, and Age-Diff on the likelihood for the prevalence of DM, HT, com-
bination of DM and HT, and CKD at the baseline among 101,980 cohort participants in the KOGES.

Prevalence at
Baseline

Total
Cohort

N

Chronological Age (CA) Biological Age (BA) 1 Age-Diff (BA-CA) 2

Cases
N OR (95% CI) 3 Cases

N OR (95% CI) 3 Age-Diff 2 Cases
N OR (95% CI) 4

DM
<50 41,156 915 1.00 854 1.00 Very young BA 759 0.72 (0.65–0.81)

50–59 38,767 1405 1.65 (1.52–1.80) 1970 1.70 (1.57–1.85) Young BA 788 0.88 (0.79–0.98)
60–69 20,821 1085 2.32 (2.12–2.54) 634 2.76 (2.48–3.06) Same BA as CA 676 1.00
≥70 1236 72 2.48 (1.93–3.17) 19 2.76 (1.72–4.43) Older BA 1254 1.17 (1.06–1.29)

Per 1-year
increment 101,980 3477 1.04 (1.04–1.05) 3477 1.06 (1.06–1.07) 3477 p–trend < 0.001

HT
<50 41,156 15,977 1.00 14,915 1.00 Very young BA 10,037 0.72 (0.68–0.75)

50–59 38,767 19,873 1.68 (1.63–1.73) 27,683 1.78 (1.73–1.83) Young BA 10,876 0.89 (0.85–0.92)
60–69 20,821 12,908 2.50 (2.41–2.59) 6777 2.95 (2.81–3.08) Same BA as CA 9496 1.00
≥70 1236 804 2.66 (2.36–3.00) 187 2.99 (2.27–3.93) Older BA 19,153 1.24 (1.19–1.29)

Per 1-year
increment 101,980 49,562 1.05 (1.04–1.05) 49,562 1.07 (1.07–1.08) 49,562 p–trend < 0.001

Combination of DM and HT
<50 41,156 576 1.00 521 1.00 Very young BA 535 0.65 (0.56–0.76)

50–59 38,767 944 2.13 (1.92–2.37) 1350 2.36 (2.12–2.61) Young BA 537 0.86 (0.75–0.99)
60–69 20,821 772 3.85 (3.44–4.31) 449 5.12 (4.48–5.85) Same BA as CA 431 1.00
≥70 1236 40 3.42 (2.44–4.80) 12 5.14 (2.75–9.62) Older BA 903 1.39 (1.21–1.61)

Per 1-year
increment 101,980 2332 1.07 (1.06–1.07) 2332 1.10 (1.10–1.11) 2332 p–trend < 0.001
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Table 1. Cont.

Prevalence at
Baseline

Total
Cohort

N

Chronological Age (CA) Biological Age (BA) 1 Age-Diff (BA-CA) 2

Cases
N OR (95% CI) 3 Cases

N OR (95% CI) 3 Age-Diff 2 Cases
N OR (95% CI) 4

CKD
<50 41,156 145 1.00 150 1.00 Very young BA 609 0.77 (0.65–0.90)

50–59 38,767 433 3.19 (2.65–3.86) 920 4.61 (3.87–5.48) Young BA 425 0.98 (0.83–1.16)

60–69 20,821 891 12.49
(10.47–14.90) 512 13.30

(11.07–15.98) Same BA as CA 235 1.00

≥70 1236 134 33.42
(26.21–42.61) 21 20.91

(12.98–33.68) Older BA 334 1.51 (1.27–1.80)

Per 1-year
increment 101,980 1603 1.15 (1.14–1.16) 1603 1.16 (1.15–1.17) 1603 p–trend < 0.001

Abbreviations: CA, chronological age; BA, biological age; DM, diabetes mellitus; HT, hypertension; CKD, chronic
kidney disease. 1 BA using sex-specific Elastic net model (Supplementary Equations (S1) and (S2)). 2 BA-CA
difference was classified into four groups: [Very young BA] BA was at least 5-year younger than CA; [Young BA]
BA was between 1-year and <5-year younger than CA; [Same BA as CA] BA-CA difference was between −1 year
and 1 year; [Older BA] BA was at least 1 year older than CA (>1 year). 3 Adjusted for sex. 4 Adjusted for sex and
chronological age.

The risk of developing disease was larger with advanced BA compared to advanced
CA. The risk of developing each disease was 1.88-fold for DM (95% CI: 1.28–2.76), 1.57-fold
for HT (95% CI: 1.19–2.07), 2.21-fold for combination of DM and HT (95% CI: 0.82–5.99), and
9.62-fold for CKD (95% CI: 6.11–15.14) in the highest CA group, whereas it was 2.68-fold for
DM (95% CI: 1.44–5.02), 2.48-fold for HT (95% CI: 1.49–4.11), 5.98-fold for the combination
of DM and HT (95% CI: 0.83–43.01), and 13.52-fold for CKD (95% CI: 6.65–27.49) in the
“Older BA” group. Compared to the reference group, individuals with “Very young BA”
had a decreased risk of DM (HR: 0.63, 95% CI: 0.55–0.72), HT (HR: 0.74, 95% CI: 0.68–0.81),
and combination of DM and HT (HR: 0.65, 95% CI: 0.47–0.91). The highest risk of DM
(HR: 1.20, 95% CI: 1.07–1.35), HT (HR: 1.15, 95% CI: 1.07–1.23), combination of DM and HT
(HR: 1.32, 95% CI: 1.01–1.74), and CKD (HR: 1.20, 95% CI: 0.99–1.45) were observed in the
“Older BA” group (Table 2).

Table 2. Association with CA, BA, and Age-Diff on the risk of the development of DM, HT, combina-
tion of DM and HT, and CKD over total follow-up periods (median 6 years, range 2–13 years) among
101,980 cohort participants in the KOGES.

Total
Cohort

N

Chronological Age (CA) Biological Age (BA) 1 Age-Diff (BA-CA) 2

Cases
N OR (95% CI) 3 Cases

N OR (95% CI) 3 Age-Diff 2 Cases
N OR (95% CI) 4

DM
<50 15,548 735 1.00 698 1.00 Very young BA 491 0.63 (0.55–0.72)

50–59 16,661 1035 1.61 (1.47–1.78) 1429 1.63 (1.49–1.79) Young BA 591 0.93 (0.83–1.06)
60–69 9127 677 1.81 (1.63–2.01) 337 2.37 (2.08–2.70) Same BA as CA 473 1.00
≥70 378 27 1.88 (1.28–2.76) 10 2.68 (1.44–5.02) Older BA 919 1.20 (1.07–1.35)

Per 1-year
increment 41,714 2474 1.03 (1.03–1.04) 2474 1.06 (1.05–1.06) 2474 p–trend < 0.001

HT
<50 9977 2822 1.00 2765 1.00 Very young BA 1405 0.74 (0.68–0.81)

50–59 8746 2840 1.38 (1.30–1.45) 3867 1.51 (1.44–1.59) Young BA 1512 0.86 (0.80–0.93)
60–69 3863 1561 1.73 (1.63–1.84) 627 1.99 (1.82–2.17) Same BA as CA 1473 1.00
≥70 131 51 1.57 (1.19–2.07) 15 2.48 (1.49–4.11) Older BA 2884 1.15 (1.07–1.23)

Per 1-year
increment 22,717 7274 1.03 (1.02–1.03) 7274 1.05 (1.04–1.05) 7274 p–trend < 0.001
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Table 2. Cont.

Total
Cohort

N

Chronological Age (CA) Biological Age (BA) 1 Age-Diff (BA-CA) 2

Cases
N OR (95% CI) 3 Cases

N OR (95% CI) 3 Age-Diff 2 Cases
N OR (95% CI) 4

Combinationof DM and HT
<50 7107 193 1.00 183 1.00 Very young BA 1047 0.65 (0.47–0.91)

50–59 5796 208 1.63 (1.32–2.02) 303 1.95 (1.59–2.38) Young BA 135 1.10 (0.82–1.46)
60–69 2250 130 2.36 (1.84–3.03) 48 3.03 (2.15–4.27) Same BA as CA 100 1.00

≥70 77 4 2.21 (0.82–5.99) 1 5.98
(0.83–43.01) Older BA 196 1.32 (1.01–1.74)

Per 1-year
increment 15,230 535 1.05 (1.03–1.06) 535 1.07 (1.06–1.09) 535 p–trend < 0.001

CKD
<50 15,808 200 1.00 222 1.00 Very young BA 450 0.86 (0.71–1.03)

50–59 17,069 359 2.39 (2.01–2.85) 722 2.83 (2.43–3.29) Young BA 258 0.81 (0.67–0.98)
60–69 9215 597 7.36 (6.26–8.64) 225 5.82 (4.83–7.02) Same BA as CA 191 1.00

≥70 368 21 9.62
(6.11–15.14) 8 13.52

(6.65–27.49) Older BA 278 1.20 (0.99–1.45)

Per 1-year
increment 42,460 1177 1.11 (1.10–1.12) 1177 1.12 (1.11–1.13) 1177 p–trend < 0.001

Abbreviations: CA, chronological age; BA, biological age; DM, diabetes mellitus; HT, hypertension; CKD, chronic
kidney disease. 1 BA using sex-specific Elastic net model (Supplementary Equations (S1) and (S2)). 2 BA-CA
difference was classified into four groups: [Very young BA] BA was at least 5-year younger than CA; [Young BA]
BA was between 1-year and <5-year younger than CA; [Same BA as CA] BA-CA difference was between −1 year
and 1 year; [Older BA] BA was at least 1 year older than CA (>1 year). 3 Adjusted for sex. 4 Adjusted for sex and
chronological age.

A consistent association was also observed for 5 years short-term follow-up period. The
“Very young BA” group had a significantly lower risk of DM (HR: 0.66, 95% CI: 0.54–0.80), HT
(HR: 0.74, 95% CI: 0.67–0.82), and combination of DM and HT (HR: 0.77, 95% CI: 0.47–1.26)
than the reference group (Table 3).

Table 3. Association with CA, BA, and Age-Diff on the risk of the development of DM, HT, combi-
nation of DM and HT, and CKD on short-term follow-up periods (≤5 years) among 101,980 cohort
participants in the KOGES.

Total
Cohort

N

Chronological Age (CA) Biological Age (BA) 1 Age-Diff (BA-CA) 2

Cases
N OR (95% CI) 3 Cases

N OR (95% CI) 3 Age-Diff 2 Cases
N OR (95% CI) 4

DM
<50 15,548 292 1.00 295 1.00 Very young BA 251 0.66 (0.54–0.80)

50–59 16,661 514 1.67 (1.45–1.93) 692 1.72(1.50–1.97) Young BA 310 1.02 (0.86–1.22)
60–69 9127 373 2.18 (1.87–2.54) 202 2.81 (2.35–3.37) Same BA as CA 219 1.00
≥70 378 18 2.43 (1.51–3.92) 8 3.76 (1.86–7.61) Older BA 417 1.32 (1.11–1.56)

Per 1-year
increment 41,714 1197 1.04 (1.03–1.05) 1197 1.06 (1.05–1.06) 1197 p–trend < 0.001

HT
<50 9977 1586 1.00 1516 1.00 Very young BA 966 0.74 (0.67–0.82)

50–59 8746 1909 1.38 (1.29–1.48) 2667 1.66 (1.56–1.77) Young BA 980 0.84 (0.77–0.92)
60–69 3863 1140 1.86 (1.73–2.01) 478 2.19 (1.97–2.43) Same BA as CA 931 1.00
≥70 131 36 1.68 (1.21–2.35) 10 2.26 (1.21–4.22) Older BA 1794 1.21 (1.11–1.32)

Per 1-year
increment 22,717 4671 1.03 (1.03–1.04) 4671 1.05 (1.05–1.06) 4671 p–trend < 0.001
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Table 3. Cont.

Total
Cohort

N

Chronological Age (CA) Biological Age (BA) 1 Age-Diff (BA-CA) 2

Cases
N OR (95% CI) 3 Cases

N OR (95% CI) 3 Age-Diff 2 Cases
N OR (95% CI) 4

Combinationof DM and HT
<50 7107 87 1.00 80 1.00 Very young BA 217 0.77 (0.47–1.26)

50–59 5796 106 1.87 (1.33–2.63) 166 2.29 (1.66–3.17) Young BA 115 1.23 (0.80–1.91)
60–69 2250 79 3.18 (2.17–4.64) 29 3.83 (2.37–6.20) Same BA as CA 78 1.00

≥70 77 4 5.67
(2.04–15.77) 1 9.63

(1.32–70.28) Older BA 115 1.47 (1.10–1.98)

Per 1-year
increment 15,230 276 1.06 (1.04–1.08) 276 1.08 (1.06–1.11) 525 p–trend = 0.002

CKD
<50 15,808 62 1.00 70 1.00 Very young BA 62 0.88 (0.66–1.16)

50–59 17,069 151 2.33 (1.73–3.13) 330 3.63 (2.81–4.70) Young BA 72 0.83 (0.62–1.11)

60–69 9215 299 3.91
(6.94–12.01) 117 7.70

(5.72–10.37) Same BA as CA 49 1.00

≥70 368 13 10.46
(5.74–19.04) 8 24.41

(1.68–51.04) Older BA 93 1.44 (0.93–2.23)

Per 1-year
increment 42,460 525 1.13 (1.12–1.14) 525 1.13 (1.12–1.15) 276 p–trend = 0.049

Abbreviations: CA, chronological age; BA, biological age; DM, diabetes mellitus; HT, hypertension; CKD, chronic
kidney disease. 1 BA using sex-specific Elastic net model (Supplementary Equations (S1) and (S2)). 2 BA-CA
difference was classified into four groups: [Very young BA] BA was at least 5-year younger than CA; [Young BA]
BA was between 1-year and <5-year younger than CA; [Same BA as CA] BA-CA difference was between −1 year
and 1 year; [Older BA] BA was at least 1 year older than CA (>1 year). 3 Adjusted for sex. 4 Adjusted for sex and
chronological age.

4. Discussion

In this study, we developed machine learning-based self-assessment of BA using
body measurements, SES, lifestyle factors, and the presence of comorbidity. We found
that BA was more strongly associated with the risk of developing chronic diseases than
CA. Individuals with a BA lower than the CA have a decreased risk of developing chronic
diseases and the risk increased rapidly within a short period of follow-up (within 5 years).
A recent study forecasted a continued increase in the global life expectancy [35]. However,
the prevalence of comorbidities also increases with age, which decreases quality of life and
increases the burden of disease [36,37]. Thus, increasing healthy life expectancy has become
more important since the turn of the 21st century. Based on the different health statuses
of people of the same CA, several previous studies have come up with BA as an index to
represent biological health status. However, most of these studies were based on clinical
data such as laboratory blood tests [9,38], physical tests (grip strength and vertical jump) [8],
physiological factors (body mass index and percent body fat mass) [9,38], metabolomics [7],
and DNA methylation [25]. Although clinical information may reflect the biological aging
status, it is difficult for the general population to understand its meaning, and there are
restrictions on information collection.

In this study, we computed for BA based on self-assessed variables including body
measurement, SES, modifiable lifestyle factors, and the presence of comorbidities. As
there are substantial changes in body shape that occur during the aging process [6], body
measurements are useful indicators for estimating biological aging. The relationship
between SES and acceleration of aging has been well established [4]. According to previous
studies, lifestyle modification is effective in decreasing the risk of cardiovascular disease
in primary prevention [14,39]. However, there are increasing health inequities due to
socioeconomic disparities [18]. Thus, BA might be a valuable predictor of health status,
which has an impact on health equity.

Among the risk factors, we found a positive association between waist circumstance
and BA. This relationship was supported by prior studies showing that excess body weight
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is associated with DM, CKD, and cardiovascular diseases [11–13]. We also found that
lifestyle factors including smoking duration and drinking frequency were significantly
associated with BA. This is in line with the J-shaped relationship between alcohol con-
sumption and all-cause and all-cancer mortality in Korea [40]. The causal association with
smoking duration also confirmed that smoking increased oxidative stress and inflammation
which accelerated aging [41–43]. These findings support the idea that lifestyle modification
is effective in delaying biological aging. Further research including dietary intake and
type of exercise is needed to assess more comprehensive association between the healthy
lifestyles and BA.

In this study, we used machine learning algorithms, particularly the elastic net regres-
sion to estimate BA. Previous studies have used multiple linear regression and principal
component analysis to compute BA, but these methods resulted in overfitting and low
interpretability, respectively [44]. Therefore, we selected elastic net linear regression with
10-fold cross-validation to produce a model that minimize overfitting, reduces bias, and are
easily to interpret [33,34].

In addition, previous studies on BA have observed the likelihood of diseases by BA in
cross-sectional data [8] or the risk of death in cohort data [7,9] rather than observing the
risk of developing diseases. In this study, using data from a large cohort of 101,980 Koreans
aged 40 to 89 years, we validated that BA could be used as a significant indicator of the risk
of developing chronic disease.

One of the strengths of this study is its large sample size. Second, to our knowledge,
this is the first approach to advance the study of BA by using factors that are well-measured,
well-understood, and easily collected. Because BA consists of modifiable factors, it could
be worthwhile to detect high-risk groups and prevent further risks with healthy lifestyle
promotion. Third, we could prevent the model overfitting problem by using the elastic net
regression model to predict the BA. Finally, we validated that BA is an important indicator
of the risk of chronic diseases and their combination in both short (within 5 years) and long
follow-up periods.

However, some limitations of this study need to be considered. First, because BA relies
on self-reported factors, recall and misclassification biases should be considered. Second,
although we examined the combination risk of DM and HT, we could not estimate the risk
of when combined with CKD because of the small number of CKD events. Further research
is needed to investigate the role of BA in various combinations of chronic diseases. Lastly,
due to the lack of data, we were unable to find the association between BA and mortality
and frailty. Further study on the effects of BA on mortality and frailty is needed.

5. Conclusions

In conclusion, this study suggests that self-assessment of BA could be an effective
tool for detecting high-risk groups and reducing disease burden through individual and
population-level health promotion.

6. Patents

Park, S. (2019). Method and apparatus for generating biometric age prediction model
(WO Patent Application No. PCT/KR2018/015516).
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