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Abstract: Background: Transesophageal echocardiography (TEE) is the first technique of choice for 

evaluating the left atrial appendage flow velocity (LAAV) in clinical practice, which may cause some 

complications. Therefore, clinicians require a simple applicable method to screen patients with de-

creased LAAV. Therefore, we investigated the feasibility and accuracy of a machine learning (ML) 

model to predict LAAV. Method: The analysis included patients with atrial fibrillation who visited 

the general hospital of PLA and underwent transesophageal echocardiography (TEE) between Jan-

uary 2017 and December 2020. Three machine learning algorithms were used to predict LAAV. The 

area under the receiver operating characteristic curve (AUC) was measured to evaluate diagnostic 

accuracy. Results: Of the 1039 subjects, 125 patients (12%) were determined as having decreased 

LAAV (LAAV < 25 cm/s). Patients with decreased LAAV were fatter and showed a higher preva-

lence of persistent AF, heart failure, hypertension, diabetes and stroke, and the decreased LAAV 

group had a larger left atrium diameter and a higher serum level of NT-pro BNP than the control 

group (p < 0.05). Three machine-learning models (SVM model, RF model, and KNN model) were 

developed to predict LAAV. In the test data, the RF model performs best (R = 0.608, AUC = 0.89) 

among the three models. A fivefold cross-validation scheme further verified the predictive ability 

of the RF model. In the RF model, NT-proBNP was the factor with the strongest impact. Conclu-

sions: A machine learning model (Random Forest model)-based simple clinical information showed 

good performance in predicting LAAV. The tool for the screening of decreased LAAV patients may 

be very helpful in the risk classification of patients with a high risk of LAA thrombosis.  
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1. Background  

Atrial fibrillation is the most common arrhythmia in clinical practice and is associ-

ated with stroke [1]. As shown in previous reports, the left atrial appendage (LAA) may 

harbor up to 90% of thrombi occurring in patients with AF [2]. 

The left atrial appendage flow velocity (LAAV) can reflect left atrial appendage func-

tion, which has many clinical implications. First, a low LAAV indicates a high risk of LAA 

spontaneous echo contrast (SEC) and LAA thrombus [3], and SEC is an independent risk 

factor for subsequent thromboembolic events [4]. Second, LAAV was proved to be an in-

dependent predictor of cardioversion success [5]. The measurement of LAAV could pro-

vide useful information for the prediction of cardioversion outcomes in AF patients. 

Third, previous studies have proved that a low LAAV was associated with AF recurrence 
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after the initial catheter ablation of persistent AF [5]. Moreover, low flow velocity in LAA 

is a predisposing factor in AF patients [6].  

Now, transesophageal echocardiography (TEE) is the first technique of choice to eval-

uate the LAAV [7]. Although TEE is relatively safe and noninvasive, the insertion and 

manipulation of the ultrasound probe may cause some complications such as oropharyn-

geal, esophageal, or gastric trauma [8,9]. Therefore, clinicians require a simple applicable 

method with high sensitivity, which could screen patients with decreased LAAV.  

Machine learning (ML) has been used and has shown an acceptable performance in 

predicting the risk of diseases [10–12]. Therefore, in the current study, we used simple 

clinical data obtained by an ML model to predict LAAV and aim to examine the feature 

importance of the ML model to understand its mechanism. 

2. Methods  

2.1. Participants 

In the present study, we have retrospectively recruited patients who visiting the Gen-

eral Hospital of PLA and underwent transesophageal echocardiography in between Jan-

uary 2017 and December 2020. Inclusion criteria: (1) age ≥ 18 years old; (2) data docu-

mented in HIS system in hospital; (3) complete transesophageal echocardiography exam-

ination; (4) diagnosed with nonvalvular atrial fibrillation. Subjects were excluded if they 

did not meet the above criteria. 

2.2. Transesophageal Echocardiography  

Left atrial appendage flow velocity was measured by TEE, and all transesophageal 

echocardiography procedures were performed by experienced cardiologists. Evaluation 

of LAA by TEE included the presentation or absence of left atrial thrombus, left atrial 

appendage spontaneous echo contrast, and decreased left atrial appendage emptying 

peak flow velocity. Based on previous research, LAAV of <25 cm/s was suggested as a 

useful cutoff value to discriminate patients with a high risk of systemic embolization 

[13,14].  

2.3. Clinical Factors  

All clinical data were searched for by the HIS system (Hospital Information System). 

Since the model we built is a primary screening model, covariates for the machine leaning 

model were chosen based on prior literature review and clinical judgment, focusing on 

easily accessible variables that were expected to affect the LAAV.  

Predictors in our model included demographics (age and sex), previous medical his-

tory (history of atrial fibrillation, hypertension, heart failure, diabetes, stroke, and vascu-

lar diseases), anticoagulant drugs and left atrial (LA) diameter. In addition, many studies 

have proved the correlation between NT-proBNP and LAA flow velocity [15–17]. There-

fore, we chose BNP as one of the predictors. 

To ensure accuracy, all the data were collected twice. If there was any inconsistency, 

a third review was conducted.  

2.4. Study Design  

As shown in Figure 1, the data were randomly split into a training set (80%) and a 

test set (20%). The CreateDataPartition function (caret package) in the R 15.6 Available 

online: http://www.R-project.org (accessed on 11 February 2022). was used to segment the 

dataset, and a statistical test was carried out to ensure the balance of the variables in the 

two datasets. A training set was used for the training of the ML model, and the models 

were tested in the testing set by cross-validation and 5-fold validation. 
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Figure 1. Flow diagram. TEE: transesophageal echocardiography; LAAV: left atrial appendage flow 

velocity. 

2.5. Model Development  

In the current study, we built regression models using various ML algorithms, in-

cluding the support vector machine (SVM) model, random forest (RF) model, and k-near-

est neighbor (KNN) model because they are used widely in regression models [18–21]. All 

models were developed by R 15.6.  

2.6. Model Evaluation  

The optimal cut-off point of the predicted LAAV was determined by receiver oper-

ating characteristic curve (based on the principle of maximum Yordon index), using 

LAAV measured by TEE as a gold standard (<25 cm/s). With the cut-off values, the sensi-

tivity, specificity, and F1 score of three models were calculated. Accuracy, sensitivity, 

specificity, mean squared error and area under the receiver operating characteristic curve 

(AUCROC), and F1 score were used to evaluate the performance of the model. Accuracy 

refers to the ratio of the number of correctly predicted decreased LAAV to the total num-

ber of participants. Among the metrics, AUCROC and F1 score were the main metrics to 

reflect the performance of the model.  

2.7. Fivefold Cross-Validation  

Considering that the model may suffer from overfitting, we performed a fivefold 

cross-validation scheme. First, the data were partitioned into 5 equal parts. The model was 

trained on 4 parts, leaving 1 part for testing. The process was repeated 5 times until testing 

was performed on all of the 5 parts. 

3. Definition and Statistics of Variables  

Continuous variables (age, Body Mass Index (BMI), serum of NT-proBNP and left 

atrial diameter) are presented as medians (interquartile ranges) and compared by Mann–

Whitney U tests. Categorical variables (gender, anticoagulant, history of persistent AF, 
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heart failure, hypertension, diabetes, stroke, and vascular disease) were presented as 

number (proportion) and compared by Pearson’s χ2 test or Fisher’s exact test. A p-value 

of less than 0.05 was considered significant.  

4. Results  

4.1. Patient Characteristics  

Of the 1152 patients undergoing TEE, 1039 patients were included in the final analy-

sis (Figure 1). Among the 1039 patients, 125 patients (12%) were diagnosed with decreased 

LAAV (<25 cm/s).  

As shown in Table 1, patients with low LAAV flow showed a higher prevalence of 

persistent AF (66.4% vs. 27.7%, p < 0.001), heart failure (32.8 vs. 7.3%, p < 0.001), hyperten-

sion (63.2% vs. 51.9%, p = 0.011), diabetes (31.2% vs. 21.9%, p = 0.015), and stroke (21.6% 

vs. 13.9%, p = 0.02). Left atrial diameter (LA diameter) was larger in patients with de-

creased LAAV than in those with normal LAAV (35–43 vs. 35–42, p < 0.001), and patients 

with decreased LAAV were fatter than those in the control group (BMI 26.9 vs. 25.8, p = 

0.01). The serum level of NT-pro BNP was higher in the decreased-LAAV group than in 

the normal-LAAV group (Table 1).  

Table 1. Baseline characteristics of the records of the enrolled patients with decreased LAAV and 

normal LAAV. 

 
ALL 

n = 1039 

Normal LAAV 

n = 914 

Decreased LAAV 

n = 125 
p-Value 

Age (years) 62 (54–69) 62 (54–68) 64 (54–71.5) 0.022 

Gender (male) 757 (72.9%) 663 (72.5%) 94 (75.2%) 0.530 

BMI (kg/m2) 26 (23–28) 25.8 (23.8–28.0) 26.9 (24.4–29.3) 0.010 

Persistent AF 336 (32.3%) 253 (27.7%) 83 (66.4%) <0.001 

Antithrombotic therapy    <0.001 

No antithrombotic ther-

apy  
528 (50.8%) 478 (52.3%) 50 (40.0%)  

Aspirin 130 (12.5%) 113 (12.4%) 17 (13.6%)  

Clopidogrel 11 (1.1%) 8 (0.9%) 3 (2.4%)  

Dual antiplatelet 21 (2.0%) 18 (2.0%) 3 (2.4%)  

Warfarin 95 (9.1%) 76 (8.3%) 19 (15.2%)  

NOAC 254 (24.5%) 221 (24.2%) 33 (26.4%)  

Heart failure 108 (10.4%) 67 (7.3%) 41 (32.8%) <0.001 

Hypertension  553 (53.2%) 474 (51.9%) 79 (63.2%) 0.017 

Diabetes  239 (23.0%) 200 (21.9%) 39 (31.2%) 0.020 

Stroke  154 (14.8%) 127 (13.9%) 27 (21.6%) 0.023 

Vascular disease 92 (8.9%) 83 (9.1%) 9 (7.2%) 0.487 

NT-pro BNP (pg/mL)  319 (116–770) 266 (103–635) 997 (590.5–1862) <0.001 

LA diameter (mm) 39 (35–43) 38 (35–42) 43 (40–47.5) <0.001 

NOAC: New oral anticoagulants, include dabigatran and rivaroxaban; LA diameter: left atrial di-

ameter; BMI: Body Mass Index. 

4.2. The Characteristics of the Training Set and Testing Set 

As shown in Table 2, of the 1039 patients, 834 patients (80%) were included in the 

training set, and the remaining 259 patients (20%) were included in the test set. The ratio 

of decreased LAAV was not significantly different in the training set compared to the test 

set (11.6% vs. 13.7%, p = 0.424). Patients in the training set showed a similar prevalence of 

persistent AF (31.7% vs. 35.1%, p = 0.342), heart failure (9.8% vs. 12.7%, p = 0.231), hyper-

tension (53.8% vs. 50.7%, p = 0.425), diabetes (22.9% vs. 23.4%, p = 0.876), stroke (14.9% vs. 
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14.6%, p = 0.933), and vascular disease (9.4% vs. 6.8%, p = 0.255). The LAAV was not sig-

nificantly different in the training set than in the testing set (p = 0.727). 

Table 2. The characteristics of training set and testing set. 

Feature  
Training Set 

n = 834 

Testing Set 

n = 205 
p-Value 

Age (years) 62 (54–69) 61 (54–68.5) 0.357 

Gender(male) 592 (71.0%) 165 (80.5%) 0.006 

BMI (kg/m2) 26 (23.9–28.1) 26 (24.2–28.2) 0.772 

Persistent AF 264 (31.7%) 72 (35.1%) 0.342 

Antithrombotic therapy   0.68 

No antithrombotic therapy 426 (51.2%) 102 (49.8%)  

Aspirin 104 (12.5%) 26 (12.7%)  

Clopidogrel 10 (1.2%) 1 (0.5%)  

Dual antiplatelet 19 (2.3%) 2 (1%)  

Warfarin 72 (8.6%) 23 (11.2%)  

NOAC 203 (24.3%) 51 (24.8%)  

Heart failure 82 (9.8%) 26 (12.7%) 0.231 

Hypertension  449 (53.8%) 104 (50.7%) 0.425 

Diabetes  191 (22.9%) 48 (23.4%) 0.876 

Stroke  124 (14.9%) 30 (14.6%) 0.933 

Vascular disease 78 (9.4%) 14 (6.8%) 0.255 

NT-pro BNP (pg/mL)  309 (111–725) 401 (150–885) 0.061 

LA size (mm) 39 (35–43) 39 (36–42) 0.446 

LAAV (cm/s) 46 (33–60.25) 46 (36–42) 0.727 

Decreased LAAV 97 (11.6%) 28 (13.7%) 0.424 

4.3. Development of Machine Learning Model  

The development of the ML models is shown in Figure 2. In the KNN model, the K 

value was adjusted to develop the best model, and the performance of the KNN model 

suggested the best accuracy with a K value of 49 (the absolute error: 13.4 cm/s). The de-

velopment of the RF model and the KNN model is shown in Figure 2. In the RF model, 

the number of trees was 500. The support vector machine (SVM) model was also devel-

oped based on the training dataset. 

 

Figure 2. Development of KNN Model and Random Forest Model. (A) Development of KNN 

model; (B) Development of Random Forest model.  
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4.4. Model Comparison for Regression and Binary Classification Problem 

The ability of the three ML models to predict the LAAV is shown in Table 3 (training 

set) and Table 4 (testing set). The RF model performed the best of the three models. In the 

testing set, the root-mean-square errors (RMSEs) of the three models were 17.51 cm/s 

(KNN model), 16.65 cm/s (RF model) and 17.66 cm/s (SVM model), and the mean absolute 

error of the RF model was also the smallest among the three models (13.4 cm/s, 13.04 cm/s 

and 13.68 cm/s, respectively).  

Table 3. Comparison of the predictive performance for three models in the training set. 

Model  Accuracy (%) F1 Score AUC 
Cut-off 

Value 
R2 RMSE (cm/s) MAE (cm/s) 

KNN 76 0.44 0.81 (0.76–0.85) 41.3 0.26 17.29 13.80 

RF 92 0.77 0.98 (0.97–0.99) 33.8 0.85 7.85 5.97 

SVM 84 0.58 0.91 (0.87–0.94) 37.1 0.23 17.66 13.68 

KNN, k-nearest neighbor; RF, random forest; SVM, support vector machine; AUC, area under the 

receiver operating characteristic curve; R2, R Squared; RMSE, root-mean-square error; MAE, mean 

absolute deviation. 

Table 4. Comparison of the predictive performance for three models in the testing set. 

Model  
Accuracy 

(%) 

F1 

Score 
AUC 

Specificity 

(%) 

Sensitivity 

(%) 
R2 

RMSE 

(cm/s) 
MAE (cm/s) 

KNN 63 0.43 0.81 (0.73–0.89) 58 93.5 0.24 17.51 13.40 

RF 85 0.62 0.89 (0.83–0.95) 86 81 0.31 16.65 13.04 

SVM 67 0.48 0.87 (0.82–0.93) 62 100 0.23 17.66 13.68 

KNN, k-nearest neighbor; RF, random forest; SVM, support vector machine; AUC, area under the 

receiver operating characteristic curve; R2, R Squared; RMSE, root-mean-square error; MAE, mean 

absolute deviation. 

The ability of the ML algorithms to discriminate between decreased LAAV and nor-

mal LAAV is shown in Tables 3 and 4. 

In the training set, the KNN model showed the poorest performance, with an 

AUCROC of 0.81 (0.76–0.85), while the RF model had the highest AUCROC of 0.98 (0.97–

0.99) (RF model vs. KNN model, p < 0.001; RF model vs. SVM model, p < 0.001). The cut-

off values were added in Table 3. With the cut-off values, the sensitivity, specificity, accu-

racy, and F1 score of the three models were calculated. The RF model has the best accuracy 

(92%) and highest F1 score among three models (KNN 0.44; RF 0.77; SVM 0.58). 

In the testing set, the KNN model showed the poorest performance, with an 

AUCROC of 0.81 (0.73–0.89), while there was no difference found in AUCROC between 

the RF model and SVM model (p = 0.373). As shown in Table 4, although the sensitivity of 

the RF model (81%) was lower than the KNN model (93.5%) and SVM model (100%), the 

specificity of the RF model was highest (RF 86%, KNN 58% and SVM 62%) with the high-

est accuracy of 85% and highest F1 score of 0.62 (KNN 0.43, SVM 0.48).  

The calibration plots of the models were shown in Figure 3. A Hosmer–Lemeshow 

test was used to evaluate the classification efficiency of the three models, and p-values 

were shown in Figure 3. All models indicated appropriate calibration (p > 0.05). 

As reported in previous studies, a model with AUC ranging from a range of 0.80 to 

0.90 is considered excellent [22]. The RF model showed acceptable AUC in both training 

and testing sets (0.98 and 0.89) and performed better than other non-invasive methods 

using CT [14,23]. 

The results of the fivefold cross-validation showed that the RF model showed a better 

discriminative ability for decreased LAAV than the other two models (Table 5). 
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Figure 3. Calibration plots for the KNN(A), RF(B), and SVM(C) models. (KNN, k-Nearest Neighbor; 

RF, random forest; SVM, support vector machine). All models indicated appropriate calibration (p 

> 0.05). (A) Calibration plot for the KNN model; (B) Calibration plot for the RF model; (C) Calibra-

tion plot for the SVM model. 

Table 5. Comparison of the predictive performance for three models (fivefold cross-validation). 

Model  AUCROC R2 RMSE (cm/s) MAE (cm/s) 

KNN 0.806 0.24 17.43 13.40 

RF 0.854 0.735 10.28 7.44 

SVM 0.84 0.39 15.76 11.92 

4.5. Factors Predicting Decreased LAAV in the RF Model 

The overall attributions of variables in the Random Forest model are shown in Figure 4.  

The percentages of increase in mean square error (%IncMSE) and increased node pu-

rity (IncNodePurity) were used to evaluate the importance of each variable in the model. 

The serum level of NT-pro BNP contributed the most (%IncMSE: 34.5) to the LAAV pre-

diction, followed by the diagnosis of persistent AF (%IncMSE: 28.0), LA size (%IncMSE: 

25.6%), BMI (%IncMSE: 14.7), weight (%IncMSE: 13.3%), etc. IncNodePurity relates to the 

loss function, which is chosen by best splits. The loss function is MSE for regression and 
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Gini-impurity for classification. In the RF model, the serum level of NT-pro BNP, LA size, 

BMI, and diagnosis of persistent AF played an important role with high IncNodePurity in 

all variables. 

 

Figure 4. The importance of variables in Random Forest model. BMI: body mass index; DM: diabetes 

mellitus. 

5. Discussion  

We developed three machine learning models (KNN model, Random Forest model 

and SVM model) to predict LAAV in AF patients using simple clinical risk factors. The 

models were trained using data from 834 patients and tested using data from 205 patients. 

In this retrospective analysis, the RF model demonstrated the highest accuracy (AUCROC: 

0.89, MAE: 13.04 cm/s) of the three models when validating in the testing set. In the RF 

model, the serum level of NT-pro BNP contributed the most to the LAAV prediction, fol-

lowed by LA size, diagnosis of persistent AF, BMI, weight, etc. 

The left atrial appendage was proved to be a major source of emboli responsible for 

cardioembolic stroke in previous studies [24], and decreased LAAV has been proved to 

be a well-recognized risk factor for left atrial appendage thrombosis and stroke [6,24–26]. 

In clinical practice, TEE was regarded as the first technique of choice to measure the func-

tion of left atrial appendage, but TEE may cause severe discomfort in patients and, more-

over, serious complications (such as esophageal damage) [27]. Freitas-Ferraz et al. con-

ducted a study including 1249 consecutive patients undergoing TEE and found that the 

overall incidence of TEE-related complications was 0.9% to 6.1% [28]. Therefore, clinicians 

require a noninvasive method to screen patients with decreased LAAV.  

Coletta et al. [23] proved that transthoracic echocardiography (TTE) could be used to 

identify patients with low and high blood flow velocities, but only 84% of the patients 

could be measured by TTE, and this study was conducted with a small number of patients 

(86 patients). Yasuoka et al. [14] found another noninvasive method to predict LAAV us-

ing enhanced computed tomography. They found that the LAAV could be estimated by 

the HU density ratio at distal and proximal sites within the LAA. However, the study was 

conducted with a small number of patients (60 patients) and, in clinical practice, the HU 

density ratio of many patients could not always be measured because of poor-contrast 

filling of the left atrial appendage. In this study, using noninvasive clinical data, we de-

veloped an ML model to predict the LAAV of AF patients, which could be used to pri-

marily screen patients with decreased LAAV in a cheap and fast way. 

Machine learning has shown acceptable results in various medical fields. In ML 

model development, to avoid overfitting of the model, it has been suggested that the 
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number-to-feature ratio should be at least 5 [29]. In the present study, the ratio was about 

70. The data were randomly divided into two subsets, and the features in the testing set 

were not significantly different than the training set. In cross-validation, the RF model had 

86% specificity and 81% sensitivity. We further assessed the model by fivefold cross-vali-

dation, and, consistently with the previous results of cross-validation, the RF model per-

formed best (AUVROC 0.85). 

Goldman et al. found that age, systolic blood pressure, sustained AF, ischemic heart 

disease, and left atrial area were associated with LAAV [30]. Demircelik et al. found that 

left ventricular diastolic dysfunction was associated with left atrial appendage functions 

[31]. Handke et al. found that left ventricular ejection fraction, LA size, paroxysmal AF, 

age, and sex are independent parameters influencing LAAV [32]. Although many clinical 

factors associated with decreased LAAV are increasingly available, risk estimation of de-

creased LAAV remains challenging. The indicators included in our model were easily ac-

cessible; therefore, our model may enable instantaneous risk estimation of decreased 

LAAV, which may facilitate rapid identification of individuals at elevated risk to guide 

further invasive inspection. 

Although machine learning models may be useful to help us to diagnose patients, 

they are still a “black box”, lacking acceptable interpretability. In the RF model, we further 

uncovered important predictors of decreased LAAV. Based on our results, serum level of 

NT-proBNP and LA size was the most important variable (Figure 4), which was also con-

firmed as a risk factor in previous research [16,33]. The percentage of IncMSE (% increased 

mean square error) was equivalent to mean decrease accuracy, which could be used to 

measure the importance of each variable in the model. Other factors, such as diagnosis of 

persistent AF, weight, and BMI, were still proven to be useful for predicting LAAV. Be-

cause machine learning models can quickly process large amounts of data, we note other 

implications of our study, which suggest that machine learning models may contribute to 

extract elements of risk.  

It is worth noting the use of anticoagulants in AF patients. A previous study has 

shown that the underuse of OAC is common [34]. In 2008, only fewer than half were 

treated with anticoagulation (2.7%, warfarin; 39.7%, aspirin) [35]. In 2016, Xiong et al. 

found that only 44.5% of Chinese AF patients received OAC treatment in a research-based 

Chinese population [36]. In recent years, the use of anticoagulants has gradually increased 

but remains inadequate. In our results, about half of the AF patients (50.8%) were not 

taking anticoagulants, which indicates that standardized anticoagulant use remains inad-

equate. 

In our model, the serum level of NT-proBNP was one of the most important varia-

bles. Several mechanisms may explain the association between NT-proBNP and decreased 

LAAV. BNP is secreted mainly from the left atrium, and atrial pressure overload leads to 

elevation in plasma BNP levels [37]. Previous studies [38,39] found that elevated BNP was 

associated with LAA disfunction, and a high plasma brain natriuretic polypeptide level 

was a marker of risk for thromboembolism in patients with nonvalvular atrial fibrillation 

[40]. Harada et al. also found that higher plasma BNP was associated with a lower LAA 

flow velocity in patients with nonvalvular AF and normal LV systolic function [17]. There-

fore, in addition to diagnosing heart failure, the serum level of NT-pro BNP could, to a 

certain degree, reflect the function of left atrium and left atrial appendage. Therefore, it 

plays a great role in predicting the blood flow velocity of the left atrial appendage.  

6. Limitations  

This study has some limitations. First, this study was a single-center and retrospec-

tive study, and had a limitation in generalizability. Second, the model was only tested in 

the test set instead of a prospective cohort in the real world. Third, there may be some 

missing clinical features in the candidate features which may contribute to the improve-

ment of the model.  
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7. Conclusions  

Machine learning model (Random Forest model)-based simple clinical information 

showed good performance in predicting LAAV. The tool for screening decreased LAAV 

patients may be very helpful in the risk classification of patients with a high risk of LAA 

thrombosis.  
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