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Abstract: Background: After the acute disease, convalescent coronavirus disease 2019 (COVID-19)
patients may experience several persistent manifestations that require multidisciplinary pulmonary
rehabilitation (PR). By using a machine learning (ML) approach, we aimed to evaluate the clinical
characteristics predicting the effectiveness of PR, expressed by an improved performance at the
6-min walking test (6MWT). Methods: Convalescent COVID-19 patients referring to a Pulmonary
Rehabilitation Unit were consecutively screened. The 6MWT performance was partitioned into three
classes, corresponding to different degrees of improvement (low, medium, and high) following PR.
A multiclass supervised classification learning was performed with random forest (RF), adaptive
boosting (ADA-B), and gradient boosting (GB), as well as tree-based and k-nearest neighbors (KNN)
as instance-based algorithms. Results: To train and validate our model, we included 189 convalescent
COVID-19 patients (74.1% males, mean age 59.7 years). RF obtained the best results in terms of
accuracy (83.7%), sensitivity (84.0%), and area under the ROC curve (94.5%), while ADA-B reached
the highest specificity (92.7%). Conclusions: Our model enables a good performance in predicting
the rehabilitation outcome in convalescent COVID-19 patients.

Keywords: COVID-19; machine learning; exercise; rehabilitation; disability; occupational medicine;
chronic disease; outcome

1. Introduction

The coronavirus disease 2019 (COVID-19) is a syndrome with a number of clinical
manifestations, ranging from mild symptoms to severe complications necessitating inten-
sive care unit (ICU) admittance [1]. After the acute disease, convalescent COVID-19 patients
may experience several persistent symptoms, such as fatigue and muscular weakness [2],
with a residual pulmonary impairment potentially lasting for months after a negative swab
test [3]. Overall, given the high proportion of patients with such persistent manifestations,
the new paradigm of a “post-acute COVID-19 syndrome” has been introduced [3]. Thus,
the need for an early and multidisciplinary rehabilitation has been proposed [4–7]. Unfor-
tunately, the information on the effectiveness of this approach in the post-acute care setting
is still to be determined, given the absence of a general consensus on the rehabilitation
programs and the lack of adequate prediction tools [8].
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Among the functional outcome measures of pulmonary rehabilitation (PR), the 6-min
walking test (6MWT) is widely accepted as an accurate and cost-effective method [9].
6MWT is commonly used to measure physical activity and exercise capacity, correlating
with both peak oxygen consumption and handgrip strength [10].

In the last years, the machine learning (ML) approach has been increasingly used,
allowing researchers to implement algorithms that analyze datasets in order to predict
the onset of a disease. Moreover, ML algorithms have been successfully used to predict
rehabilitation outcomes in neurology [11], orthopaedics [12], and cardiology [13]. Recently,
ML has also been used to find hidden patterns among patients affected by COVID-19,
employing features extracted from X-ray and computed tomography (CT) images with
good results [14].

While ML has been extensively employed as a means of triaging COVID-19 patients
during the acute phase [15], no studies have used this approach to classify the factors
influencing the rehabilitative outcome in the post-acute care setting.

Using the clinical characteristics of convalescent COVID-19 patients hospitalized for
PR, the aim of our study was to develop a model predicting the effectiveness of multidisci-
plinary rehabilitation in terms of improved performance at the 6MWT.

2. Materials and Methods
2.1. Study Population

Convalescent COVID-19 patients referring to the Pulmonary Rehabilitation Unit of
Istituti Clinici Scientifici Maugeri Spa SB, IRCCS of Telese Terme, Benevento, Italy, were
consecutively evaluated for enrolment. Inclusion criteria were recent severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) infection, as confirmed by reverse transcription
polymerase chain reaction (RT-PCR); severe-to-critical COVID-19 according to World Health
Organization (WHO); negative nasopharyngeal swab for SARS-CoV-2 in the past 2 months;
and indication for in-hospital PR due to persistent clinical manifestations of COVID-19 after
the acute phase. Exclusion criteria were age < 18 years and inability to understand the in-
formed consent or poor compliance with the study procedures in the investigator’s opinion.
Patients with missing data for the outcome of interest were excluded from the study.

Whenever appropriate and applicable, this study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines [16].
The protocol was approved by the Institutional Review Board of “Istituto Nazionale Tumori,
Fondazione Pascale”, Naples, Italy, with reference number ICS 11/20, and all patients
provided written informed consent to use their de-identified data.

2.2. Data Collection and Analysis

After informed consent signature, the main demographic and clinical characteristics
were collected in all included patients. All study procedures were performed at baseline
and after conclusion of the PR program.

A blood gas analyzer (ABL 825® FLEX BGA, Radiometer Medical Aps, Copenhagen,
Denmark) was used to measure arterial oxygen (PaO2) and carbon dioxide tension (PaCO2).
Spirometry parameters, lung volumes, and diffusion capacity for carbon monoxide (DLCO)
were measured by using automated equipment (Vmax® Encore, Vyasis Healthcare, Milan,
Italy) according to American Thoracic Society/European Respiratory Society (ATS/ERS)
guidelines [17,18]. Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and
DLCO were expressed both in liters (L) and percent of predicted values (FEV1%, FVC%,
and DLCO%, respectively).

The Barthel score and the COPD Assessment Test (CAT) were calculated to determine
the level of functioning and to monitor improvements in activities of daily living over
time [19,20]. The 6MWT was also performed in accordance with the ATS/ERS guide-
lines [21]. The 6-min walking distance (6MWD) was reported in meters.

Since the 6MWD parameter is a good outcome measure in rehabilitation [22], a normal-
ization was performed in order to obtain a class column to conduct ML analysis. For this
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purpose, all 6MWD values before and after rehabilitation were normalized in percentage
depending on the theoretical maximum for each patient, as determined according to the
ATS guidelines for the 6MWT [14] and considering age, sex, and body mass index (BMI),
as follows:

6MWDMaximum%_before =
6MWD_before

6MWD_Maximum
× 100 (1)

6MWDMaximum%_after =
6MWD_after

6MWD_Maximum
× 100 (2)

6MWD = 6MWDMaximum%after − 6MWDMaximum%before (3)

Consequently, ∆6MWD has been partitioned into three classes corresponding to
different degrees of improvement following rehabilitation:

• Class 0: low improvement, between 0 and 20%;
• Class 1: medium improvement, between 20 and 40%;
• Class 2: high improvement, over 40%.

The IBM SPSS Statistics V. 27.0 system (Chicago, IL, USA) was used to compare
demographic and clinical features of patients before and after rehabilitation through a
univariate statistical analysis. The normality distribution of the data was assessed with the
Kolmogorov–Smirnov test. Then a t-test for paired samples was performed for normally dis-
tributed data; otherwise, the Wilcoxon signed-rank test for paired samples was performed.

2.3. Pulmonary Rehabilitation Program

All enrolled patients underwent a 5-week PR program with daily sessions (6 ses-
sions/week). Thus, a total of 30 sessions were planned, according to the official ATS/ERS
guidelines [23]. PR consisted of physical exercise training, dietary counselling, and psy-
chosocial counselling. Physical exercise training was the key point of the program, consist-
ing of exercises to strengthen groups of muscles, treadmill walking, and stationary cycling.
Lower- and upper-limb strengthening exercises were performed by using body and fixed
weights at a load that could be supported for 8 to 10 repetitions before muscle exhaustion.
Loads were increased when patients were able to complete 3 sets of 8–10 repetitions in
two consecutive training sessions. Arm ergometry was planned for a 10 min/session at an
intensity of 3 or 4 on the Rating of Perceived Exertion (RPE) 0 to 10 scale [24]. Treadmill
walking duration was 15 min at PR initiation and was progressed to 30 min during the
first 2 weeks, reaching an RPE score of 3 to 4. The intensity of lower-limb cycling intensity
was set at an intensity aimed at scoring dyspnea or perceived exertion from 3 to 4 on
the modified 0-to-10 category-ratio scale [24,25]. Patients also underwent flexibility and
stretching exercises. A physiotherapist monitored and supervised participation.

2.4. Machine Learning Workflow

ML algorithms were implemented through KNIME analytics platform (v. 4.2.1), already
successfully used in other biomedical studies [11,26,27]. In this study, a multiclass supervised
classification learning was performed with tree-based and instance-based algorithms.

Overall, 189 instances were recorded, and a set of 30 features was chosen for modelling.
Among them, 19 were continuous attributes and did not require a discretization, since
they represented numerical clinical variables, and 11 were nominal attributes that were
transformed in binary variables. A previous preprocessing was performed to replace
missing values with rounded mean or most frequent value in numerical and categorical
features, respectively. Then the Synthetic Minority Oversampling Technique (SMOTE) was
applied in order to reduce data imbalance between classes: this technique oversamples
minority classes by introducing synthetic samples along lines that join k-nearest neighbors
of the same class [28]. Regardless, synthetic sample size was less than 50% of the entire
dataset. The holdout method (70% training and 30% test) was used to train and validate
random forest (RF), adaptive boosting (ADA-B), and gradient boosting (GB), as well as tree-
based and k-nearest neighbors (KNN) as instance-based algorithms. Tree-based learning
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algorithms employ the decision-tree classifier, sorting instances down the tree from the root
to some leaf nodes. These algorithms are a good method for discrete-valued target problems.
Decision-tree learning methods usually perform well when instances are represented by
attribute–value pairs and are robust to missing values and errors that could be contained
in the training data. For the explained reasons, tree-based algorithms are generally better
suited to medical and clinical issues where a classification is required. RF in an ensemble
learning algorithm based on the bagging technique, which combines predictions of several
trained models and returns the most voted result as an output. Another key concept
of RF is randomization: each tree is trained on different and random sets of data and
subsets of features [29]. ADA-B and GB are two ensemble and iterative learning algorithms
that use the boosting principle. The former starts from a set of weak learners, usually
decision stumps, and for each cycle, it assigns different weights to incorrect classifications,
building a strong learner [30]. The latter optimizes weak learners results according to the
gradient descent criterion: each single model is trained by minimizing the cost function,
which, in this case, is the mean square error. Differently, instance-based algorithms use
instances to perform classification tasks, assuming that similar instances have similar
classifications, thus considering the most similar neighbors in terms of variables and
attributes. Therefore, this method can be employed to explore a medical issue and to
evaluate if different phenotypes depending on their characteristics can be identified. KNN
is an instance-based model and one of the simplest classification algorithms that identifies
similarity between k-neighbor samples by measuring their distances and then defines
groups of k-similar samples. In this study, a Distance-Weighted KNN was employed, so
the contribution of each attribute was evaluated according to its distance to the query point,
and closer neighbors were greater weighted.

Feature importance was computed with RF to identify the most relevant features in
classification through Information Gain (IG). IG is an entropy-based feature evaluation
method, which considers how much information a feature can provide and how much this
feature can be used in the classification process in order to measure its importance. In RF,
feature importance is estimated by looking at how much prediction error increases when
data for a certain variable are permuted while the others are left unchanged [31]. Then the
IG of all the features was normalized and transformed into percentage in order to express
and compare the contribution of each feature to the prediction.

Finally, the algorithms’ performances were evaluated through the following metrics,
based on true negatives (TN), true positives (TP), total sample (TOT), false negatives (FN),
and false positives (FP):

Accuracy =
TN + TP

TOT
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

AUROC = area under the receiver operating characteristics (ROC) curve (sensitivity − specificity). (7)

3. Results

Among 197 patients screened for eligibility, three (1.5%) were ineligible for protocol
adherence issues. A total of two (1.0%) out of the 194 eligible patients dropped out
before completion of the project requirements, while three (1.5%) refused to sign the
informed consent.

Therefore, the study population consisted of 189 convalescent COVID-19 patients
(74.1% males, mean age 59.7 years). In Table 1, the baseline demographic and clinical
characteristics pertaining to the acute phase of COVID-19 are reported.
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Table 1. Baseline demographic and clinical characteristics of post-acute COVID-19 patients.

Patients, N 189

Age, years 59.7 ± 10.4

Female, N 49

Smokers, N 14

BMI, Kg/m2 29.1 ± 6.1

Hospitalization length, days 17.6 ± 15.2

Days from a negative swab 22.6 ± 17.8

High flow oxygen, N 42

Mechanical ventilation, N 47

Hypertension, N 86

Hypercholesterolemia, N 18

Hypertriglyceridemia, N 12

Diabetes, N 32

Heart failure, N 18

Atrial fibrillation, N 5

History of stroke/TIA, N 4
BMI, body mass index; TIA, transient ischemic attack.

As shown in Table 2, convalescent COVID-19 patients showed a significant improve-
ment in the main pulmonary function parameters and exercise capacity after PR.

Table 2. Main clinical features and pulmonary function tests before and after pulmonary rehabilitation
(PR) in 189 post-acute COVID-19 patients.

Before PR After PR p-Value

PaO2, mmHg 73.48 ± 14.98 80.91 ± 14.20 <0.001

PaCO2, mmHg 36.18 ± 5.37 36.94 ± 3.64 0.002

pH 7.45 ± 0.05 7.43 ± 0.04 <0.001

FEV1, L 2.34 ± 0.76 2.65 ± 0.75 <0.001

FEV1%, % predicted 76.66 ± 19.78 84.51 ± 17.69 <0.001

FVC, L 2.84 ± 0.96 3.19 ± 0.90 <0.001

FVC%, %predicted 74.34 ± 19.82 81.73 ± 16.77 <0.001

FEV1 / FVC 81.88 ± 9.70 81.15 ± 9.52 <0.001

RV, L 1.36 ± 0.73 1.43 ± 0.86 0.123

TLC, L 4.58 ± 1.35 5.82 ± 1.27 0.017

DLCO,
mL/min/mmHg 10.71 ± 7.43 10.17 ± 8.15 0.002

DLCO%, % predicted 55.02 ± 19.40 61.13 ± 20.98 <0.001

6MWD, meters 156.41 ± 123.83 304.32 ± 135.67 <0.001

CAT 26.68 ± 3.25 9.51 ± 4.66 <0.001

Barthel 67.96 ± 29.68 94.34 ± 13.10 <0.001
PaO2, arterial oxygen tension; PaCO2, arterial carbon dioxide tension; pH, power of hydrogen; FEV1, forced
expiratory volume in 1 s; FVC, forced vital capacity; RV, residual volume; TLC, total lung capacity; DLCO, diffusion
lung of carbon monoxide; 6MWD, 6-min walk distance; CAT, COPD Assessment Test. Data are presented as
mean ± standard deviation unless otherwise indicated.
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In detail, as compared to baseline, a significant increase in PaO2 was documented
(p < 0.001). Moreover, an improvement in most spirometry parameters was reported at
the end of the PR program, with FEV1% changing from 76.66% predicted ± 19.78 to
84.51% predicted ± 17.69 (p < 0.001) and FVC% from 74.34% predicted ± 19.82 to 81.73%
predicted ± 16.77 (p < 0.001). Similarly, DLCO% and total lung capacity (TLC) significantly
increased after PR, from 55.02% predicted ± 19.40 to 61.13% predicted ± 20.98 (p < 0.001),
and from 4.58 L ± 1.35 to 5.82 L (p = 0.017), respectively. A significant and consistent
improvement in exercise capacity was also documented at the end of the PR program,
with 6MWD changing from 156.41 m ± 123.83 to 304.32 m ± 135.67 (p < 0.001). Finally,
self-assessment measures of health status impairment (CAT) and functional limitation
(Barthel score) also significantly improved after PR (p-value always < 0.05).

Machine Learning Anlysis

The three classes of normalized ∆6MWD corresponding to different degrees of im-
provement after PR were the following:

• Class 0, low improvement: 64 patients;
• Class 1, medium improvement: 95 patients;
• Class 2, high improvement: 30 patients.

They were oversampled through SMOTE, for a total sample size of 285 patients.
The set of features was composed of the variables reported in Tables 1 and 2 and were

passed in input to ML algorithms. The evaluation metrics are summarized in Table 3 per
each algorithm.

Table 3. Evaluation metrics for each algorithm.

Algorithm Accuracy Sensitivity
(%)

Specificity
(%)

AUROC
(%)

RF 83.7 84.0 91.8 94.5

ADA-B 81.4 71.0 92.7 88.5

GB 79.1 71.0 87.3 84.6

KNN 80.2 74.2 89.1 93.4
AUROC, area under the receiver operating characteristic curve; RF, random forest; ADA-B, adaptive boosting;
GB, gradient boosting; KNN, k-nearest neighbors.

RF obtained the best results in terms of accuracy (83.7%), sensitivity (84.0%), and
AUROC (94.5%), while ADA-B reached the highest specificity (92.7%). Figure 1 shows the
ROC curve of the RF algorithm, with Class 0 being the positive class value.

Figure 2 shows the RF confusion matrix, which compares the predicted values and
the actual values for each class, with the corresponding accuracies. Due to the well-
balanced dataset, a high number of instances were correctly classified, as reported in the
highlighted cells.

The 10 most important baseline features with the corresponding relative importance
rankings are reported in Table 4.

Table 5 shows the distribution of these features among the three classes of improve-
ment, with 6MWD, FEV1, FVC, FVC%, and PaO2 being significantly different between the
three study groups (p always < 0.05).
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Figure 1. Receiver Operating Characteristic (ROC) curve of RF algorithm (blue line); ROC = 0.5,
threshold for considering the model better than random guessing (black line).

Figure 2. Confusion matrix of random forest (RF) algorithm.

Table 4. Features information gain (IG) normalized and transformed into percentage for the 10 most
important features chosen for modeling.

Feature IG

6MWD, meters 10.62%

DLCO%, % predicted 6.25%

FVC, L 5.85%

DLCO, mL/min/mmHg 5.09%

FEV1, L 4.68%

PaO2, mmHg 4.67%

TLC, L 4.59%

CAT 4.57%

Age, years 4.53%

FVC%, % predicted 4.41%
6MWD, 6-min walking distance; DLCO, diffusing lung capacity for carbon monoxide; FVC, forced vital capacity;
FEV1, forced expiratory volume in 1 s; PaO2, arterial oxygen tension; TLC, total lung capacity.
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Table 5. Comparisons among the three classes of improvement following PR, according to the 10 most
important features.

Features Group 0
(n = 64)

Group 1
(n = 95)

Group 2
(n = 30) p-Value

6MWD, meters 193.13 ± 131.77 171.20 ± 90.16 31.10 ± 56.69 <0.001

DLCO%, % predicted 55.70 ± 15.63 56.27 ± 12.82 49.97 ± 11.58 0.230

FVC, L 2.97 ± 0.62 2.92 ± 0.85 2.42 ± 0.65 0.001

DLCO, mL/min/mmHg 11.73 ± 6.77 10.97 ± 5.19 10.47 ± 4.11 0.682

FEV1, L 2.44 ± 0.52 2.34 ± 0.67 2.03 ± 0.58 0.003

PaO2, mmHg 75.19 ± 13.12 72.89 ± 12.33 65.03 ± 13.32 0.005

TLC, L 4.51 ± 0.85 4.71 ± 1.02 4.53 ± 1.11 0.736

CAT 26.92 ± 2.53 26.61 ± 1.36 27.00 ± 3.53 0.163

Age, years 62.56 ± 12.84 62.88 ± 8.62 63.97 ± 9.18 0.972

FVC%, % predicted 76.81 ± 15.56 76.57 ± 14.83 64.33 ± 14.22 <0.001
6MWD, 6-min walking distance; DLCO, diffusing lung capacity for carbon monoxide; FVC, forced vital capacity;
FEV1, forced expiratory volume in 1 s; PaO2, arterial oxygen tension; TLC, total lung capacity.

4. Discussion

Based on an ML approach, the results of this study show the importance of some
clinical and functional parameters in predicting the rehabilitation outcome in convalescent
COVID-19 patients, expressed by an improved performance at 6MWT. Moreover, in line
with previous evidence [32], our findings confirm the potential usefulness of multidisci-
plinary PR for COVID-19 patients in the post-acute care setting.

In this study, clinical and functional features of post-COVID-19 patients were explored
through a univariate analysis and then employed as input for several ML algorithms
in order to predict the percentage of improvement after rehabilitation. Our statistical
analysis showed significant differences for the majority of functional and spirometry
parameters before and after rehabilitation. The outcome measure identified for the ML
analysis was the 6MWD, for which a normalization was performed. In detail, all the values
were normalized depending on the theoretical maximum for each patient. Therefore, the
evaluation was conducted on the basis of individual parameters and health status. After
defining three ranges of improvement following rehabilitation, SMOTE was used to balance
classes without altering the clinical significance of the dataset, and then ML algorithms
were implemented.

Previous researchers focused on COVID-19 patients through a similar ML approach
aimed at predicting mortality and stratifying risks correlated to comorbidities. For example,
Gao et al. presented a prediction model trained and validated in over 2000 participants
to stratify patients by mortality risk, using their clinical data on admission and obtaining
an AUROC of 96.2% [33]. On the other hand, Hajifathalian et al. developed a prediction
model to assess short-term mortality risk among hospitalized COVID-19 patients, based on
patient age, hypoxia severity, mean arterial pressure, and presence of kidney disfunction.
This model exhibited a similar performance in both internal (AUROC: 86.0%) and external
validation (AUROC: 86.0%) [34]. Several other studies used ML to predict mortality [35] but
also to evaluate the necessity of oxygen supplementation [36], to monitor pandemic-related
psychopathology [37], to identify vaccine-related adverse events from Twitter data [38],
and even to diagnose COVID-19 from cough audio signals [39]. However, to the best of
our knowledge, no previous study used ML to predict the rehabilitation outcome in the
post-acute phase of COVID-19.

Therefore, our study was the first specifically focusing on rehabilitation. The ML anal-
ysis was aimed at implementing algorithms that are able to predict clinical and functional
improvements, overcoming good results in terms of accuracy (83.7%) and AUROC (94.5%).
A relevant result of our model was the importance of certain spirometry and functional
parameters as leading features in predicting the rehabilitative outcome in post-COVID-19
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patients, expressed by an improved performance at the 6MWT. Beyond the baseline 6MWD,
it is interesting to highlight the relevance of a number of pulmonary function parameters,
including FEV1, FVC, DLCO, and TLC, potentially indicating restriction [40,41]. In de-
tail, the strong interrelationship between FVC and lung volumes is one of the elements
allowing us to clarify the nature of the lung damage, thus confirming the restrictive na-
ture of the residual pulmonary involvement in our study population. Therefore, the fact
that FVC and TLC are among the parameters that contribute the most to the prediction
of the rehabilitation outcome suggests that, in line with previous evidence [32,42], there
is a strong influence of the residual restrictive pattern on the disabling manifestations
and the possibility of recovery after the acute phase. Accordingly, the role of DLCO as a
main discriminating feature for the rehabilitation outcome emerges from our model, also
suggesting the importance of interstitial or pulmonary vascular abnormalities in predicting
the response to rehabilitation. Moreover, if the key prognostic role of some demographic
variables is well established in COVID-19 [43], our prediction model further confirms the
importance of age. Another noteworthy point is the presence of the CAT score as one of the
features with greater relative importance in our model, as it suggests the key role of the
self-assessment of health status improvement in predicting the rehabilitation outcome.

Of interest, although a significant difference between the three classes of improve-
ment was observed for some—but not all—features, our findings indicate a better room
for improvement among patients with greater functional limitations at baseline. This is
partially in contrast with previous evidence on chronic obstructive pulmonary disease
(COPD), showing that patients with COPD may benefit from PR regardless of disease
severity [44]. In another study on 80 patients, in stark contrast to our results, 6MWD was
directly correlated with the baseline FEV1, PaO2, and 6MWD [45]. Accordingly, Berry et al.
previously documented an average increase in 6MWD after PR of 61.2, 72.7, and 34.2 m in
mild, moderate, and severe COPD, respectively [46]. In our study on COVID-19 survivors,
the fact that patients in group two presented a significantly lower functional status at
baseline, as expressed by lower 6MWD and pulmonary parameters, indicates a negative
association of most features chosen for modeling with the rehabilitation outcome. This
apparently contrasting result may depend on the different nature of the disease, obstructive
for COPD and mainly restrictive for COVID-19, on the different etiology, and, most impor-
tant, on the different disease duration and course. While COPD is a chronic progressive
disease, the current literature data suggest that most COVID-19 survivors may substantially
improve their functional status [32,43], particularly following a rehabilitation program,
with most patients showing no computed tomography abnormalities after 1 year from the
acute phase [47], although this can often require a long time. This possibility of a consistent
functional improvement may at least in part justify the lower functional status among
patients with a higher degree of 6MWD improvement after PR.

Some potential limitations of our study should be addressed. Patients included in our
protocol were all local residents from the Campania Region in Italy. This could somehow
reduce the predictive value of our model, which would therefore need to be validated on
other populations/ethnic groups. Moreover, the relatively low number of participants in
our study suggests the need of further prospective studies on a larger sample in order to
clarify which features chosen for modeling may have a positive or negative association with
the rehabilitation outcome. Finally, since COVID-19 disease is proven to be a systematic
disease that may also harm the cardiovascular and neurologic system, more clinical data
from the cardiovascular, neurological, and myoskeletic system would help the assessment.

5. Conclusions

In addition to suggesting and confirming the favorable effect of rehabilitation on a
range of functional parameters after the acute phase of COVID-19, our results support the
importance of some clinical and demographic variables in predicting the rehabilitation
outcome. Our model, despite needing further validation in larger external populations,
could effectively assist clinicians in defining more personalized rehabilitation programs.



J. Pers. Med. 2022, 12, 328 10 of 12

Author Contributions: Conceptualization, S.A. and P.A.; methodology, S.A., C.R., M.C. and G.d.;
formal analysis, C.R., M.A. and M.M. (Marco Mosella); investigation, P.A., M.A., M.M. (Marco
Mosella) and M.M. (Mauro Maniscalco); resources, C.R., M.A. and M.M. (Marco Mosella); data
curation, P.A. and M.M. (Mauro Maniscalco); writing—original draft preparation, S.A., P.A., C.R.,
M.C., G.d. and M.M. (Mauro Maniscalco); writing—review and editing, all authors; supervision,
G.d. and M.M. (Mauro Maniscalco).; project administration, C.R., M.C., G.d. and M.M. (Mauro
Maniscalco); S.A. and P.A. are co-first authors; G.d. and M.M. (Mauro Maniscalco) share co-seniorship.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the “Ricerca Corrente” funding scheme of the Ministry of
Health, Italy.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of “Istituto Nazionale
Tumori, Fondazione Pascale”, Naples, Italy, with reference number ICS 11/20.

Informed Consent Statement: All patients provided written informed consent to use their de-
identified data.

Data Availability Statement: The data are available upon request to the corresponding author.

Acknowledgments: We thank Anna Ciullo for technical support. Anna Ciullo provided written
permission to be included in the acknowledgments section of this manuscript. Sarah Adamo wishes
to thank the Gruppo per l’Armonizzazione delle Reti della Ricerca (GARR) for her research grant.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected

with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef]
2. Kamal, M.; Abo Omirah, M.; Hussein, A.; Saeed, H. Assessment and characterisation of post-COVID-19 manifestations. Int. J.

Clin. Pract. 2021, 75, e13746. [CrossRef] [PubMed]
3. Amdal, C.D.; Pe, M.; Falk, R.S.; Piccinin, C.; Bottomley, A.; Arraras, J.I.; Darlington, A.S.; Hofso, K.; Holzner, B.; Jorgensen,

N.M.H.; et al. Health-related quality of life issues, including symptoms, in patients with active COVID-19 or post COVID-19;
a systematic literature review. Qual. Life Res. 2021, 30, 3367–3381. [CrossRef] [PubMed]

4. Ambrosino, P.; Fuschillo, S.; Papa, A.; Di Minno, M.N.D.; Maniscalco, M. Exergaming as a Supportive Tool for Home-Based
Rehabilitation in the COVID-19 Pandemic Era. Games Health J. 2020, 9, 311–313. [CrossRef] [PubMed]

5. Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of
pulmonary rehabilitation in COVID-19: A prospective observational cohort study. ERJ Open Res. 2021, 7, 00108. [CrossRef]

6. Buckley, B.; Harrison, S.L.; Fazio-Eynullayeva, E.; Underhill, P.; Jones, I.D.; Williams, N.; Lip, G. Exercise rehabilitation associates
with lower mortality and hospitalisation in cardiovascular disease patients with COVID-19. Eur. J. Prev. Cardiol. 2021, 29, e32–e34.
[CrossRef]

7. Spruit, M.A.; Holland, A.E.; Singh, S.J.; Tonia, T.; Wilson, K.C.; Troosters, T. COVID-19: Interim Guidance on Rehabilitation in the
Hospital and Post-Hospital Phase from a European Respiratory Society and American Thoracic Society-coordinated International
Task Force. Eur. Respir. J. 2020, 56, 2002197. [CrossRef]

8. Demeco, A.; Marotta, N.; Barletta, M.; Pino, I.; Marinaro, C.; Petraroli, A.; Moggio, L.; Ammendolia, A. Rehabilitation of patients
post-COVID-19 infection: A literature review. J. Int. Med. Res. 2020, 48, 300060520948382. [CrossRef]

9. Solway, S.; Brooks, D.; Lacasse, Y.; Thomas, S. A qualitative systematic overview of the measurement properties of functional
walk tests used in the cardiorespiratory domain. Chest 2001, 119, 256–270. [CrossRef]

10. Zhang, Q.; Lu, H.; Pan, S.; Lin, Y.; Zhou, K.; Wang, L. 6MWT Performance and its Correlations with VO(2) and Handgrip Strength
in Home-Dwelling Mid-Aged and Older Chinese. Int. J. Environ. Res. Public Health 2017, 14, 473. [CrossRef]

11. Scrutinio, D.; Ricciardi, C.; Donisi, L.; Losavio, E.; Battista, P.; Guida, P.; Cesarelli, M.; Pagano, G.; D’Addio, G. Machine learning
to predict mortality after rehabilitation among patients with severe stroke. Sci. Rep. 2020, 10, 20127. [CrossRef] [PubMed]

12. Fontana, M.A.; Lyman, S.; Sarker, G.K.; Padgett, D.E.; MacLean, C.H. Can Machine Learning Algorithms Predict Which
Patients Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty? Clin. Orthop. Relat. Res. 2019,
477, 1267–1279. [CrossRef] [PubMed]

13. Inan, O.T.; Baran Pouyan, M.; Javaid, A.Q.; Dowling, S.; Etemadi, M.; Dorier, A.; Heller, J.A.; Bicen, A.O.; Roy, S.; De Marco, T.; et al.
Novel Wearable Seismocardiography and Machine Learning Algorithms Can Assess Clinical Status of Heart Failure Patients.
Circ. Heart Fail. 2018, 11, e004313. [CrossRef] [PubMed]

14. Kassania, S.H.; Kassanib, P.H.; Wesolowskic, M.J.; Schneidera, K.A.; Detersa, R. Automatic Detection of Coronavirus Disease
(COVID-19) in X-ray and CT Images: A Machine Learning Based Approach. Biocybern. Biomed. Eng. 2021, 41, 867–879. [CrossRef]
[PubMed]

http://doi.org/10.1016/S0140-6736(20)30183-5
http://doi.org/10.1111/ijcp.13746
http://www.ncbi.nlm.nih.gov/pubmed/32991035
http://doi.org/10.1007/s11136-021-02908-z
http://www.ncbi.nlm.nih.gov/pubmed/34146226
http://doi.org/10.1089/g4h.2020.0095
http://www.ncbi.nlm.nih.gov/pubmed/32876489
http://doi.org/10.1183/23120541.00108-2021
http://doi.org/10.1093/eurjpc/zwaa135
http://doi.org/10.1183/13993003.02197-2020
http://doi.org/10.1177/0300060520948382
http://doi.org/10.1378/chest.119.1.256
http://doi.org/10.3390/ijerph14050473
http://doi.org/10.1038/s41598-020-77243-3
http://www.ncbi.nlm.nih.gov/pubmed/33208913
http://doi.org/10.1097/CORR.0000000000000687
http://www.ncbi.nlm.nih.gov/pubmed/31094833
http://doi.org/10.1161/CIRCHEARTFAILURE.117.004313
http://www.ncbi.nlm.nih.gov/pubmed/29330154
http://doi.org/10.1016/j.bbe.2021.05.013
http://www.ncbi.nlm.nih.gov/pubmed/34108787


J. Pers. Med. 2022, 12, 328 11 of 12

15. Nguyen, S.; Chan, R.; Cadena, J.; Soper, B.; Kiszka, P.; Womack, L.; Work, M.; Duggan, J.M.; Haller, S.T.; Hanrahan, J.A.; et al.
Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients. Sci. Rep. 2021, 11, 19543.
[CrossRef]

16. von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies.
Ann. Intern. Med. 2007, 147, 573–577. [CrossRef]

17. Laszlo, G. Standardisation of lung function testing: Helpful guidance from the ATS/ERS Task Force. Thorax 2006, 61, 744–746.
[CrossRef]

18. Macintyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.;
Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005,
26, 720–735. [CrossRef]

19. Collin, C.; Wade, D.T.; Davies, S.; Horne, V. The Barthel ADL Index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63.
[CrossRef]

20. Karloh, M.; Fleig Mayer, A.; Maurici, R.; Pizzichini, M.M.M.; Jones, P.W.; Pizzichini, E. The COPD Assessment Test: What Do We
Know So Far?: A Systematic Review and Meta-Analysis About Clinical Outcomes Prediction and Classification of Patients Into
GOLD Stages. Chest 2016, 149, 413–425. [CrossRef]

21. Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.;
Pitta, F.; et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in
chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [CrossRef] [PubMed]

22. Laboratories ATSCoPSfCPF. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002,
166, 111–117. [CrossRef] [PubMed]

23. Rochester, C.L.; Vogiatzis, I.; Holland, A.E.; Lareau, S.C.; Marciniuk, D.D.; Puhan, M.A.; Spruit, M.A.; Masefield, S.; Casaburi, R.;
Clini, E.M.; et al. An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing Imple-
mentation, Use, and Delivery of Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2015, 192, 1373–1386. [CrossRef]
[PubMed]

24. Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [CrossRef] [PubMed]
25. Zainuldin, R.; Mackey, M.G.; Alison, J.A. Prescribing Cycle Exercise Intensity Using Moderate Symptom Levels in Chronic

Obstructive Pulmonary Disease. J. Cardiopulm. Rehabil. Prev. 2016, 36, 195–202. [CrossRef] [PubMed]
26. Ricciardi, C.; Valente, A.S.; Edmund, K.; Cantoni, V.; Green, R.; Fiorillo, A.; Picone, I.; Santini, S.; Cesarelli, M. Linear discriminant

analysis and principal component analysis to predict coronary artery disease. Health Inform. J. 2020, 26, 2181–2192. [CrossRef]
[PubMed]

27. Stanzione, A.; Ricciardi, C.; Cuocolo, R.; Romeo, V.; Petrone, J.; Sarnataro, M.; Mainenti, P.P.; Improta, G.; De Rosa, F.;
Insabato, L.; et al. MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: A Machine Learning
Exploratory Study. J. Digit. Imaging 2020, 33, 879–887. [CrossRef]

28. Nakamura, M.; Kajiwara, Y.; Otsuka, A.; Kimura, H. LVQ-SMOTE-Learning Vector Quantization based Synthetic Minority
Over-sampling Technique for biomedical data. BioData Min. 2013, 6, 16. [CrossRef]

29. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
30. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.

Sci. 1997, 55, 119–139. [CrossRef]
31. Lei, S. A Feature Selection Method Based on Information Gain and Genetic Algorithm. In Proceedings of the International

Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; pp. 355–358.
32. Ambrosino, P.; Molino, A.; Calcaterra, I.; Formisano, R.; Stufano, S.; Spedicato, G.A.; Motta, A.; Papa, A.; Di Minno, M.N.D.;

Maniscalco, M. Clinical Assessment of Endothelial Function in Convalescent COVID-19 Patients Undergoing Multidisciplinary
Pulmonary Rehabilitation. Biomedicines 2021, 9, 614. [CrossRef] [PubMed]

33. Gao, Y.; Cai, G.Y.; Fang, W.; Li, H.Y.; Wang, S.Y.; Chen, L.; Yu, Y.; Liu, D.; Xu, S.; Cui, P.F.; et al. Machine learning based early
warning system enables accurate mortality risk prediction for COVID-19. Nat. Commun. 2020, 11, 5033. [CrossRef] [PubMed]

34. Hajifathalian, K.; Sharaiha, R.Z.; Kumar, S.; Krisko, T.; Skaf, D.; Ang, B.; Redd, W.D.; Zhou, J.C.; Hathorn, K.E.; McCarty, T.R.; et al.
Development and external validation of a prediction risk model for short-term mortality among hospitalized U.S. COVID-19
patients: A proposal for the COVID-AID risk tool. PLoS ONE 2020, 15, e0239536. [CrossRef] [PubMed]

35. Jamshidi, E.; Asgary, A.; Tavakoli, N.; Zali, A.; Setareh, S.; Esmaily, H.; Jamaldini, S.H.; Daaee, A.; Babajani, A.;
Sendani Kashi, M.A.; et al. Using Machine Learning to Predict Mortality for COVID-19 Patients on Day 0 in the ICU.
Front Digit Health 2022, 3, 681608. [CrossRef]

36. Saadatmand, S.; Salimifard, K.; Mohammadi, R.; Marzban, M.; Naghibzadeh-Tahami, A. Predicting the necessity of oxygen
therapy in the early stage of COVID-19 using machine learning. Med. Biol. Eng. Comput. 2022, 1–12. [CrossRef]

37. Enevoldsen, K.C.; Danielsen, A.A.; Rohde, C.; Jefsen, O.H.; Nielbo, K.L.; Østergaard, S.D. Monitoring of COVID-19 Pandemic-
related Psychopathology using Machine Learning. Acta Neuropsychiatr. 2022, 1–14. [CrossRef]

38. Lian, A.T.; Du, J.; Tang, L. Using a Machine Learning Approach to Monitor COVID-19 Vaccine Adverse Events (VAE) from Twitter
Data. Vaccines (Basel) 2022, 10, 103. [CrossRef]

http://doi.org/10.1038/s41598-021-98071-z
http://doi.org/10.7326/0003-4819-147-8-200710160-00010
http://doi.org/10.1136/thx.2006.061648
http://doi.org/10.1183/09031936.05.00034905
http://doi.org/10.3109/09638288809164103
http://doi.org/10.1378/chest.15-1752
http://doi.org/10.1183/09031936.00150314
http://www.ncbi.nlm.nih.gov/pubmed/25359355
http://doi.org/10.1164/ajrccm.166.1.at1102
http://www.ncbi.nlm.nih.gov/pubmed/12091180
http://doi.org/10.1164/rccm.201510-1966ST
http://www.ncbi.nlm.nih.gov/pubmed/26623686
http://doi.org/10.1249/00005768-198205000-00012
http://www.ncbi.nlm.nih.gov/pubmed/7154893
http://doi.org/10.1097/HCR.0000000000000172
http://www.ncbi.nlm.nih.gov/pubmed/27115076
http://doi.org/10.1177/1460458219899210
http://www.ncbi.nlm.nih.gov/pubmed/31969043
http://doi.org/10.1007/s10278-020-00336-y
http://doi.org/10.1186/1756-0381-6-16
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.3390/biomedicines9060614
http://www.ncbi.nlm.nih.gov/pubmed/34071308
http://doi.org/10.1038/s41467-020-18684-2
http://www.ncbi.nlm.nih.gov/pubmed/33024092
http://doi.org/10.1371/journal.pone.0239536
http://www.ncbi.nlm.nih.gov/pubmed/32997700
http://doi.org/10.3389/fdgth.2021.681608
http://doi.org/10.1007/s11517-022-02519-x
http://doi.org/10.1017/neu.2022.2
http://doi.org/10.3390/vaccines10010103


J. Pers. Med. 2022, 12, 328 12 of 12

39. Hemdan, E.E.; El-Shafai, W.; Sayed, A. CR19: A framework for preliminary detection of COVID-19 in cough audio signals using
machine learning algorithms for automated medical diagnosis applications. J. Ambient. Intell. Humaniz. Comput. 2022, 1–13.
[CrossRef]

40. Ruppel, G.L. What is the clinical value of lung volumes? Respir. Care 2012, 57, 26–35. [CrossRef]
41. Owens, M.W.; Kinasewitz, G.T.; Anderson, W.M. Clinical significance of an isolated reduction in residual volume. Am. Rev. Respir.

Dis. 1987, 136, 1377–1380. [CrossRef]
42. Ambrosino, P.; Calcaterra, I.; Molino, A.; Moretta, P.; Lupoli, R.; Spedicato, G.A.; Papa, A.; Motta, A.; Maniscalco, M.;

Di Minno, M.N.D. Persistent Endothelial Dysfunction in Post-Acute COVID-19 Syndrome: A Case-Control Study. Biomedicines
2021, 9, 957. [CrossRef] [PubMed]

43. Ambrosino, P.; Papa, A.; Maniscalco, M.; Di Minno, M.N.D. COVID-19 and functional disability: Current insights and rehabilita-
tion strategies. Postgrad Med. J. 2021, 97, 469–470. [CrossRef] [PubMed]

44. Takigawa, N.; Tada, A.; Soda, R.; Takahashi, S.; Kawata, N.; Shibayama, T.; Matsumoto, H.; Hamada, N.; Hirano, A.;
Kimura, G.; et al. Comprehensive pulmonary rehabilitation according to severity of COPD. Respir. Med. 2007, 101, 326–332.
[CrossRef] [PubMed]

45. Shehata, S.M.R.M.; Al Gabry, M.M.; Nafae, R.M. Outcome of pulmonary rehabilitation in patients with stable chronic obstructive
pulmonary disease at Chest Department, Zagazig University Hospitals (2014–2016). Egypt. J. Bronchol. 2018, 12, 279–287.
[CrossRef]

46. Berry, M.J.; Rejeski, W.J.; Adair, N.E.; Zaccaro, D. Exercise rehabilitation and chronic obstructive pulmonary disease stage. Am. J.
Respir. Crit. Care Med. 1999, 160, 1248–1253. [CrossRef] [PubMed]

47. Pan, F.; Yang, L.; Liang, B.; Ye, T.; Li, L.; Li, L.; Liu, D.; Wang, J.; Hesketh, R.L.; Zheng, C. Chest CT Patterns from Diagnosis to
1 Year of Follow-up in COVID-19. Radiology 2021, 211199. [CrossRef]

http://doi.org/10.1007/s12652-022-03732-0
http://doi.org/10.4187/respcare.01374
http://doi.org/10.1164/ajrccm/136.6.1377
http://doi.org/10.3390/biomedicines9080957
http://www.ncbi.nlm.nih.gov/pubmed/34440161
http://doi.org/10.1136/postgradmedj-2020-138227
http://www.ncbi.nlm.nih.gov/pubmed/32753565
http://doi.org/10.1016/j.rmed.2006.03.044
http://www.ncbi.nlm.nih.gov/pubmed/16824743
http://doi.org/10.4103/ejb.ejb_21_18
http://doi.org/10.1164/ajrccm.160.4.9901014
http://www.ncbi.nlm.nih.gov/pubmed/10508815
http://doi.org/10.1148/radiol.2021211199

	Introduction 
	Materials and Methods 
	Study Population 
	Data Collection and Analysis 
	Pulmonary Rehabilitation Program 
	Machine Learning Workflow 

	Results 
	Discussion 
	Conclusions 
	References

