
 

 
 

 

Supplementary Materials 

Section S1. General aspects of the intelligent decision system.  

In the main manuscript, the design and development of a new intelligent clinical 

decision-support system is presented that provides support in the diagnosis process of 

breast cancer cases. Starting with the information and the characteristics extracted by the 

medical professionals from the interpretation of the mammogram images, as well as 

considering other data of interest about the patient (such as her clinical history) the sys-

tem provides a quantitative index value of the hazard associated to the potential presence 

of cancer, from which interpretation it will be possible to determine the diagnosis and the 

evolution of the treatment. Thus, according to the hazard estimation, some additional 

tests (other additional image tests, biopsy, blood tests, etc.) might be recommended 

which, in case of a high hazard level, will confirm the presence of a cancer case, or else 

will establish a series of routine examinations to continue monitoring the patient’s health 

status. To this end, and aiming to build a support system having higher diagnosis objec-

tivity and lower diagnosis uncertainty levels, the use of an intelligent system is proposed 

that integrates symbolic artificial intelligence models, represented by the use of expert 

systems, and statistical inference computational models [1,2], through the use of classi-

fication non-parametric inference algorithms that are commonly used in Machine 

Learning. 

The operation of the proposed system will in essence be sequential and consequent. 

First, the starting dataset will be processed in a compartmented way by means of a series 

of expert systems, deployed in a cascade, and based on Mamdani-type fuzzy-logic in-

ference engines[3–6]. Their subsequent answers will allow obtaining a series or risk in-

dices associated to the presence of cancer that are inferred from the different data groups. 

As the risk indices associated to each patient’s information are obtained, these are struc-

tured and stored together with the ‘cancer’ or ‘non-cancer’ label that was previously 

confirmed in the registration of the starting data. This new database will be then used to 

train classification algorithms, and later to elaborate a plausible prediction derived from 

the data on a new patient. It is precisely because of those algorithms and their implicit 

need for training that it is necessary to label the risk data considering a super-

vised-learning model. 

In the case of having an unbalanced and asymmetric dataset, that is, one having 

highly biased distributions regarding one of the classes or labels, it will be necessary to 

artificially normalize and modify the data using normalization algorithms and da-

ta-augmentation models. Once the database is created, exploratory factorial analysis 

techniques will be applied to detect the potential subjacent relationships that are present 

among the different risk indicators, thus determining these latent factors derived from 

the starting data that group together and represent them. By transforming the values of 

the different previously obtained risks, after being normalized and augmented, to the 

new factors space, and contemplating the labels that they had previously assigned, it is 

possible to have available a robust dataset to train a non-parametric classification algo-

rithm that allows helping to assess the hazard related to the potential presence of breast 

cancer in a specific patient, which will allow to propose recommendations. With that, it is 

achieved to expressly reduce the indetermination in the evaluations, to control its sub-

jectivity and to restrict the uncertainty associated both to the measurements and to the 

evaluations themselves. With the goal of testing and verifying the proposed system, its 

implementation has been carried out on the MATLAB©  (R2021a, MathWorks© , Natick, 

MA, USA) software platform. 

  



 

Section S2. Introduction to the theoretical concepts used. 

Aiming to the clarification and extension of the explanation provided about the 

different theoretical concepts that are part of the decision intelligent system that is in-

troduced in the main manuscript, in this section some of their key aspects are shown in 

more detail, carrying out a revision of their main concepts and applications. 

Section S2.1. Clinical decision support systems and expert systems 

Clinical Decision Support Systems (CDSS) aim to help and provide support to deci-

sion-making processes in medical-healthcare environments by means of the processing, 

handling, and representation of information. When applied to the diagnosis, it has been 

shown the diagnosis improvement that they incorporate, as well as the increase in the 

quality and satisfaction of the service provided to patients [7–9]. On the light of this def-

inition, it is possible to consider the CDSS as a type of decision support system (DSS) that 

is specifically applied to the clinical area. 

Decision support systems are represented by means of a collection of methodologies 

and tools that make up a specific research discipline within information systems, because 

of their versatility of use and their capabilities for adapting and representing data [10–

12]. They can be applied in multi-disciplinary environments, in this case, for example, in 

the healthcare area to help in breast cancer diagnosis, providing an efficient support to 

the decision-making process whatever the source of the information to be considered 

might be. Integrating different techniques and approaches, among which the data science 

and artificial intelligence disciplines might be highlighted, these systems are aimed, not 

only toward improving the handling and management of information, but also toward 

driving and improving the decision-making process to guarantee optimal choices. 

Expert systems, being the most paradigmatic of the artificial intelligence symbolic 

models, stand out among all these techniques and approaches having a complementary 

relationship with DSS. Developed in the 1960 decade [13–15] their use is nowadays 

common in the fields of decision making and knowledge management. They may be 

framed within the intelligent systems category [16,17] and considered as computational 

systems that have the capability for representing and simulating human expertise and 

knowledge [15,18,19] in a way that they are capable to solve complex problems. Because 

of the benefits and capabilities of expert systems, these are frequently used in the decision 

theory field, complementing, and strengthening the DSS [20–26], their presence being 

common in many study fields such as the medical-healthcare one to which this work is 

aimed [27]. 

From the viewpoint of its architecture, for the definition of an expert system it is 

necessary to have available, in its essential conceptualization, the data of the problem 

from a real domain, with an expert knowledge base that precisely represents the human 

knowledge and expertise, a human-machine interface, and an inference engine to de-

termine the solution [13,14,18,19,28–30]. Its own architecture establishes the main classi-

fication of expert systems based on their capabilities to handle uncertainty. These sys-

tems, working with information, are exposed to the vagueness and inaccuracy that are 

inherent to the handling and transmission of that information. The control of these im-

perfections has been widely studied, and it has caused several divisions in the expert 

systems category. In this way, all those that do not handle uncertainty (or deterministic) 

are associated to rule-based systems, while those other that do efficiently manage it are 

associated to stochastic systems, either with probabilistic or non-probabilistic approach-

es.  

It is unquestionable that an expert system applied to decision-making in the sanitary 

environment must take into account the control of uncertainty, and because of that in this 

work the use of fuzzy logic-based non-probabilistic inference engines is posed. 

Taking into account all that previously mentioned and considering that the devel-

opment of the clinical decision support system is made within the information systems 

field, as it will need to be integrated into one of them, it is necessary to consider the 

proposals by Hevner et al. in their works [31,32], relative to the basics and fundamentals 

of design science research. From them, it is possible to evaluate the development of 



 

software artifacts within such field, as it is the case of the clinical decision support intel-

ligent system that is proposed in this work. Because of that, the guidelines proposed by 

Hevner et al. for the evaluation of the design of the proposed artifact will be considered, 

as argued in Section S3. 

Section S2.2. Data generation and analysis 

All medical-healthcare applications must start with the premise of having available 

a statistically coherent and balanced database, that is, without anomalies present, these 

understood as elements in the set having a low probability of being there [33]. However, 

on some occasions the generation of unbalanced datasets results to be entirely unavoid-

able because of the nature of the data to be collected and the different unbalance types 

that exist [34]. Thus, for example, in two-class datasets, such as the one that will be used 

in the case study, it is common the presence of a majority dominant more probable class, 

and a minority less probable class that is usually processed by predictive classification 

algorithms as noise, producing low-reliability predictions [33–35]. Different solutions 

exist  [35] oriented to the prevention of the potential issues associated to unbalanced 

data sets. Among all these solutions, those focused on the pre-processing of the starting 

data have become more relevant in these last years. They are based in performing inten-

tional modifications on the database aiming to balancing the classes by means of the ar-

tificial data elimination or addition, using techniques respectively known as 

sub-sampling and over-sampling, even resorting to hybrid combined solutions of them 

[34]. Among the different over-sampling alternatives, one of the most popular and ac-

cepted ones is Safe-Level SMOTE [36], a variation of SMOTE [37]. The SMOTE technique 

adds new samples to the minority class in a random way, placing them somewhere in the 

line connecting the minority class and its nearest neighbor, ignoring which are the mi-

nority classes in its environment. This behavior might not be appropriate, and it could 

cause a fictional over-generation that produces class overlapping, adding noise, and not 

reflecting the reality. To correct those effects, SMOTE has evolved in an adaptive way to 

models such as Borderline-SMOTE or Safe-Level SMOTE. In the later, a coefficient 

named ‘safe level’ is used that allows to determine which zones are the most convenient 

to produce synthetic data. SMOTE and its adaptive variants have been used with notable 

success as over-sampling methods to correct unbalanced data situations in medi-

cal-healthcare regression and classification problems [38–40]. In this line, it has been re-

ported that when working with medical datasets [38] it is recommended the combined 

use of the Z-score normalization technique as a previous step to the performance of the 

over-sampling using the SMOTE variants. 

In parallel to the data generation, and prior to the determination of whether the pa-

tient’s data show a high danger of suffering breast cancer, it is necessary to find those 

subjacent factors, non-directly measurable, that might be related to dependency groups 

based on variance patterns that are shared among the variables representing the risks 

obtained in the expert systems cascade and the latent factors that are present in the data. 

To do that, one of the more used and well-known approaches is the Exploratory Factorial 

Analysis (EFA). In this specific case, because of its popularity and applicability to the 

case, a choice will be made for the Common Factor Analysis, an approach aimed to ex-

press the variance shared by a certain number of variables as a function of a particular set 

of subjacent factors, so that this reduced number of dimensions succeeds in explaining 

the most possible information [41,42]. It is clear that, in this example, the goal is not only 

reducing the dimensionality of the risk data set, in which case a principal component 

analysis approach would be more convenient, but to determine parameters representing 

the latent factors themselves, observing and categorizing the covariance among the var-

iables and their load and commonality with the different factors. It is precisely the need 

for determining and interpreting the relationships that exist between the observed vari-

ables and the latent factors from a conceptual viewpoint, determining the logic of these 

relationships as a future source of diagnosis information, what justifies the election of 

that method [41,43]. 

  



 

Section S2.3. BI-RADS© 

The BI-RADS©  (Breast Imaging Reporting and Data System) system is nowadays a 

widely accepted and used diagnosis instrument in the evaluation of breast cancer. It was 

developed by the American College of Radiology (ACR) [44] with the goal of homoge-

nizing the assessments by providing a standard operation framework for the study of 

mammogram images through the use of a common vocabulary and a structuration of the 

evaluation process. The indications made in the 5th edition of BI-RADS©  [44,45] have been 

considered for the elaboration of this work. 

Section S2.3.1. Findings 

According to the BI-RADS guidelines, the main types of findings and descriptors 

that can be detected on a mammography image are the presence of masses, calcifications, 

architectural mammary distortion, presence of asymmetries, revision of the in-

tra-mammary lymphatic ganglia, presence of skin wounds, presence of a single dilated 

conduct, location of the lesion, as well as other meaningful findings [45]. Taking into ac-

count the criteria used by the specialists that built the previously mentioned dataset, in 

this work the study will focus specifically on masses, calcifications, architectural distor-

tion and asymmetries, as these are the signs with which breast cancer is usually associ-

ated according to the criteria referred before:  

 Masses: These are tri-dimensional elements that may be visualized by combining two 

different mammogram images. According to the 5th BI-RADS©  edition, to character-

ize a mass its shape (oval, rounded or irregular), its margins (circumscribed, dark-

ened, micro-lobulated, undefined or spiculated) and its density (hyper-dense, 

iso-dense, hypo-dense, or adipose content) will be taken into account [45]. In the 

current literature there are different works from which it is possible to find criteria 

that allows to interpret the findings. For example, in the study by Woods et al. [46] it 

was proved that a high density in masses implies a high malignity risk. As a sum-

mary, Table S1 shows the degree of malignity suspicion associated to each one of the 

elements from the different mass descriptors. It is relevant to mention that, as the 

used dataset was built between the years 2006 and 2011, thus before the publication 

of the current BI-RADS©  edition, Table S1 incorporates some terms in the ‘Shape’ 

columns that are nowadays obsolete.   

Table S1. Malignity suspicion level for the mass’ characteristics – Adapted from Malagelada [47]. 

Shape Margins Density 

Malignity 

suspicion 

level 

 
Rounded 

 
Circumscribed Adipose 

 

Hypo-dense 

 

Iso-dense 

 

Hyper-dense 

- 

 

 

 

 

 

+ 

 
Oval  Darkened 

 Lobulated 
 

Micro-lobulated 

 Irregular 
 

Undefined 

 
Architectural 

distorsion  
Spiculated 

 

 Calcifications: These may be classified as: typically benign (skin, vascular, gross or 

macro-calcified –popcorn-like, thick linear, rounded, annular, dystrophic, cal-

cic-milk or suture-threads), with a suspicious morphology (amorphous, heteroge-

neous-gross, thin-pleomorphic, and thin-linear or thin-branched-linear), or distri-

bution-related (diffuse, regional, grouped, linear or segmented) [45]. In relation to 

the interpretation of the malignity suspicion degree of calcifications, the two first 

groups are clearly characterized. Table S2 shows the different distributions, ordered 

according to the malignity suspicion level. 



 

Table S2. Malignity suspicion level for calcifications according to distribution – Adapted from 

Sickles et al. [45]. 

Distribution 
Malignity suspicion 

level 

Diffuse 

Regional 

Grouped 

Linear 

Segmented 

- 

 

 

 

 

 

+ 

 

 Architectural distortion: This is an alteration of the normal mammary architecture 

caused by a non-visible and non-touchable mass which is commonly not diagnosed 

in mammogram images, thus causing false negatives [48]. When the patient has no 

previous (traumatic or surgical) antecedents, the appearance of a distortion may 

suggest the presence of cancer [45]. 

 Asymmetries: These can be classified as: global, focal or in development. Global 

asymmetry is generally considered as a normal variant. With regard to focal asym-

metries, it is common that they become considered as masses after their diagnosis 

evaluation. Asymmetries in development are new focal asymmetries, about 15% of 

which result in the appearance of malignant wounds [45]. 

Additionally, the breast composition is taken into account, categorizing breasts 

having a mostly adipose tissue, breasts having fibro-glandular density disperse sectors, 

heterogeneously dense breasts, and highly-dense breasts [45]. It is commonly accepted 

that, as the breast density increases, the process for its evaluation becomes more difficult, 

with that density being considered as an independent risk factor [49].   

Section. S2.3.2. BI-RADS©  evaluation categories 

After the mammogram image elaboration and analysis, it is required to describe the 

anomalies detected in that image by means of the system’s own scale, that is the 

BI-RADS©  scale [45]. Such scale has a 0 to 6 range, with a value of 0 corresponding to a 

non-completed study, so more tests are required, while a value of 6 indicates a malignant 

diagnosis already confirmed by means of a biopsy.  

Table S3. BI-RADS©  evaluation categories – Adapted from Sickles et al. [45]. 

BI-RADS©  assessment category 
Malignancy  

probability level 

0 N/A 

1 − 0% malignancy 

- 

 

 

 

+ 

2 − 0% malignancy 

3 − (0.2] % malignancy 

4 − (2.95] % malignancy 

* 4A − (2.10]% malignancy 

* 4B − (10.50]% malignancy 

* 4C − (50.95]% malignancy 

5 − ≥ 95% malignancy 

6 Confirmed cancer 
 

Table S3 shows the different categories, together with a malignancy probability 

value. It is important to point out that for the case of category 4 three subcategories are 

taken into account: 4A with (2.10]% malignancy probability, 4B with (10.50]% malig-

nancy probability and 4C with (50.95]% malignancy probability.  



 

Section S3. Adaptation of the proposed system to Hevner’s design guidelines within 

the Information Systems field. 

As it was already mentioned in Section S2 of this Supplementary Materials docu-

ment, the general theoretical framework on which this work is developed is the infor-

mation systems context, a fact already argued before, and by which the guidelines pro-

posed by Hevner in 2004 [32] are considered next. The performance analysis for the pre-

sented system across these seven guidelines allows to size the nature of the contribution 

within the information systems scope: 

 Guideline 1 — Design an artifact: The proposed clinical decision support system, 

developed across Section 2 of the article, has been implemented into a software ar-

tifact which, by using a set of expert systems deployed in cascade, exploratory fac-

torial analysis, data augmentation approaches and classification algorithms, allows 

to help in an early detection of patients with potential breast cancer cases. To ease 

the calculations, the artifact has been implemented on the MATLAB©  platform, what 

allows easing the use of the proposed system. 

 Guideline 2 — Relevance of the problem: The design and development of a clinical 

decision support system oriented towards the early detection of breast cancer cases 

is a relevant contribution to the healthcare field, as already indicated in Section 1 of 

the article, because of the high impact this cancer involves as it is one of the main 

causes of death in women. It is important also to highlight that, in line with what has 

been already commented, a great variability can exist in the diagnosis process de-

pending on the professional in charge of the evaluation, because of which the de-

veloped system may achieve a reduction in that variability. 

 Guideline 3 — Design evaluation: In Section 3 of the article, a case study is presented 

that gives an example of the operation of the proposed decision support system. 

 Guideline 4 — Contributions to the field of research: The contributions of the pro-

posed decision support system have been described in Section 1 of the article, to be 

later expanded and detailed in Section 4 of the article and Section S6 of the Supple-

mentary Materials. 

 Guideline 5 — Rigor in the research: The proposed system, framed within the in-

formation systems and design science contexts, uses concepts from fuzzy inference 

systems, these being widely supported in current literature because of their proved 

capabilities to handle uncertainty across decision-making processes. Additionally, it 

is common practice in current literature to apply factorial analysis and da-

ta-augmentation techniques, as previously mentioned in Section S2.2 of the Sup-

plementary Materials, allowing reducing the dimensionality by combining a series 

of latent factors using coherent and balanced databases. 

 Guideline 6 — Design as a search: A revision was carried out in Section 4 of the ar-

ticle and Section 2.1 of the Supplementary Materials of the theoretical and practical 

contexts of the decision support system proposed in this article. 

 Guideline 7 — Communication of the research: In Section 4 of the article and Section 

S6 of the Supplementary Materials the contributions of this work are presented.  

Section S4. Guided process for the use of the developed software application. 

In this section, complementing the explanation made in Section 2.2 of the main arti-

cle, an illustrated exposition is made of the work and operations flows within the de-

veloped software application.  

Section S4.1. Data preparation: normalization and balancing 

The zone of the application oriented to the normalization and balancing of data is 

shown inside the red frame in Figure S1. First, the dataset derived from the cascaded 

expert systems will be loaded by clicking on the Load Data button, which already con-

tains the different risks for each one of the patients in the dataset. After that, all the pre-

viously loaded risks are normalized, together with those from the patient, clicking on the 

Apply Zscore button. Next, the system will suggest the user, in the boxes labelled as Add, 

how many synthetic data should be generated to have the same number of positive and 



 

negative cases, and the user could change this ratio as wished. Additionally, the user 

must define the number of neighbors in the Number of Neighbors box, so the algorithm 

can make the calculations. Finally, the user will click on the Safe Level SMOTE button. 

The green frame in Figure S1 shows the new normalized and balanced dataset, while in-

side its blue frame the values of the normalized risks are shown for the patient whose 

case is under study by the medical team. 

 

Figure S1. Dialog box for the normalization and balancing of the starting data. 

Section S4.2. Determination of Latent Factors 

Starting from the data that was normalized and augmented in the previous phase, in 

this stage those subjacent latent factors that are present in the dataset are determined by 

using Exploratory Factorial Analysis (EFA) techniques, more specifically the Common 

Factor Analysis approach. However, as a previous step to the application of EFA, it is 

necessary to verify the statistical assumptions that are recommended to ensure that the 

dimensionality reduction process is statistically significant. Said assumptions are often 

referred, on the one hand to the nature of the data, assessing its normality and mul-

ti-collinearity, as well as the presence of atypical data, and on the other hand to the 

number and interrelation of the data itself. The Shapiro-Wilk test, together with the es-

timation of the asymmetry indices, will be used for the normality case. The mul-

ti-collinearity will search for the presence of strong correlations among data, that are 

harmful to the analysis; the Variance Inflation Factor (VIF) will be used for that. The 

Mahalanobis distance will be used for the detection of atypical or marginal data points. 

Finally, the number of data must be high enough, what is guaranteed by having a ratio of 

more than 10 data lines per risk (actually, the dataset consists of more than 400 data 

lines). Regarding data interrelation, this must be guaranteed to exist, because of which 

Bartlett's Test of Sphericity will be performed, together with the determination of Kai-

ser-Mayer-Olikin (KMO) index. Table S4 collects all those previously mentioned studies, 

incorporating an estimation of the values or intervals considered as appropriate.  

  



 

Table S4. Studies carried out and acceptance range. 

Normality Study 

Shapiro-Wilk The Shapiro-Wilk test poses the following hypotheses, in this 

case, with a significance level of 0.05: 

- H0: The data present a normal distribution. 

- H1: The data do not present a normal distribution. 

After performing the test on the different variables, p-values 

lower than 0.05 have been obtained, because of which the null 

hypothesis can be rejected, confirming that the data do not follow 

a normal distribution. 

Asymmetry Indices When the symmetry indices are within the ±1.5 interval, then it 

may be claimed that small variations are present with respect to 

the normal distribution. All the variables in the dataset present 

symmetry indices contained into that interval, except for R1c that 

shows a value of 2.301. 

Multi-Collinearity 

Study 

Cref R1a R1b R1c R2 R3 R4 

Variance Inflation 

Factor (VIF) 

VIF > 10 

indicates 

high col-

linearity 

2.593 2.29 2.643 4.291 3.789 1.728 

Atypical data study 

Mahalanobis Dis-

tance 

The calculation of Mahalanobis distance has been performed on 

the generated database. After that, a cut distance is determined 

using the Chi-square inverse cumulative distribution function for 

6 degrees of freedom and a probability of 0.999, that is, for a sig-

nification level p<0.001. 

After performing the calculation, it was observed the presence of 

three potentially atypical data lines which, after being reviewed, it 

was decided to keep them. 

Data Interrelation Study 

Bartlett's Test of 

Sphericity 

The following hypotheses are posed in Bartlett’s Test of Spheric-

ity, in this case with a signification level of 0.05: 

- H0: The correlations matrix is an identity matrix (there is 

no correlation). 

- H1: The correlations matrix is not an identity matrix 

(there is correlation). 

A p-value=0 is obtained, so the null hypothesis must be rejected, 

and it may be claimed that the variables are correlated enough to 

apply EFA. 

Kaiser-Mayer-Olikin 

(KMO) Index 

The KMO index is in the range 0-1, and as the index value grows, 

more correlated the data are. Values above 0.5 might be accepta-

ble to perform EFA. 

In this case a value of 0.467 is obtained, because of which the data 

is appropriate to perform EFA. 

 

In Figure S2 a tab is incorporated, named EFA Check, where the assessment indices 

values of the prior statistical assumptions of EFA can be verified. 



 

 

Figure S2. Dialog box for data validation prior to applying factorial analysis. 

 

Figure S3. Dialog box of the application for performing the factorial analysis. 

Figure S3 shows the dialog box used for performing the factorial analysis. The user 

must only click on the Factorial Analysis button and the calculation process will be auto-

matically carried out, obtaining the number of extracted factors, as well as the value of 

each factor for each one of the starting datasets. Additionally, several additional data re-

lated to the calculation process are shown. The first frame shows the factorial loads ma-

trix. After this box, the loads matrix already rotated using Varimax is shown. The third 

box presents the specific variances matrix. The last box, in the line of the already men-

tioned, provides the values of the factors for each patient in the dataset, derived from the 

factorial score obtained after the application of the Anderson-Rubin method, chosen here 

because Varimax was used in the rotation. The factorial score allows characterizing each 



 

patient in each one of the determined factors, providing a qualitative metric of the quality 

in dimensionality reduction and in the explanation of the involved information.  

Section S4.3. The Machine Learning algorithm 

In Figure S4, the red frame highlights the panel for choosing and training the classi-

fication algorithm. Additionally, a window is presented in which the user can observe the 

ROC curve for the model. Also, a table is provided on the right of the graph, with data of 

interest about the different points in the ROC curve (data associated to the confusion 

matrix, sensitivity, and specificity), that may help the user to determine which operation 

point is to be selected.  

 

Figure S4. Module for applying the Machine Learning algorithm. 

In the green frame of Figure S4, it is performed the calculation of the scores derived 

from the factor values for the patient case, on the one hand that associated to the patient 

having cancer, and on the other hand to the patient not having cancer, these being re-

spectively named for the sake of this work ‘Hazard index’ and ‘Safety index’. The Hazard 

index may be understood as a danger index associated to the patient potentially having 

cancer, while the Safety index can be interpreted as a safety index associated to the pa-

tient potentially not having cancer. These factors are within the 0-1 range, and they must 

add up to one. To facilitate their use, in this work they will be scaled to a 0-100 range. 

From the interpretation of these scores and taking into account the ROC curve for the 

used model, it will be possible to determine the patient’s status. 

Section S4.4. Generation of alerts & decision making 

Figure S5 shows a screen capture of the application in which it is possible, first to 

define the operation limits for the system, and after that to determine the system’s rec-

ommendation. Furthermore, that recommendation comes with a luminous signal show-

ing green, orange, and red colors for status 1, 2 and 3, respectively, aiming to indicate the 

danger level that each patient has.    



 

 

Figure S5. Module for the generation of alerts and decision-making. 

Section S5. Guided process for the case study. 

This section complements what was explained in the Results section of the main ar-

ticle. In it, an illustrated revision of the process for using the application for the diagnosis 

of a typical patient will be shown. Aiming to facilitate its understanding, some of the 

texts are directly replicated from the main manuscript. 

Section S5.1. Compilation of characteristics and other information of interest, and expert 

interpretation 

As already mentioned, the presented system starts its operation with the data being 

input by the professional into the application. Table S5 shows a summary of the patient’s 

data to be analyzed in this case study She is a 53-year old patient, with a family history of 

low cancer risk, without having previously debuted in cancer. After evaluating her 

mammogram, it is possible to observe the presence of associated calcifications, with a 

coarse heterogeneous shape and a segmental distribution. A focal asymmetry was also 

observed. It is relevant to highlight that this patient was diagnosed with cancer. All those 

data, compiled in Table S5, have been introduced into the application, in the Input Data 

box of Figure S6. 

  



 

Table S5. Data of the patient to be studied input to the application. 

Mass 

Present/Absent Absent 

Shape (None) 

Margins (None) 

Density (None) 

Calcifications 

Present/Absent Present 

Primary/Associated Associated 

Shape Coarse heterogeneous 

Distribution Segmental 

Asymmetry 

Present/Absent Present 

Type Focal 

Architectural Distortion 

Present/Absent Absent 

Primary/Associated (None) 

BI-RADS category 4A 

Breast density Scattered 

Other data 

Age 53 

Patient history No 

Family history Minor 

 

Section S5.2. Data processing and interpretation 

After inputting the data into the application, it is possible to proceed to its pro-

cessing by the system. 

First, the risks calculation is carried out in the cascaded expert systems, as previ-

ously mentioned in Section 2.2.1 of the article, with the results shown in Figure S6 inside 

the Expert System Cascade module. 

The risk value associated to the masses, R1a, shows a value of 0.01538, the risk value 

associated to the calcifications, R1b, shows a value of 39.97, the risk value associated to 

asymmetries and architectural distortion, R1c, shows a value of 70.03, and finally the risk 

value associated to the BI-RADS©  indicator and to the first-level risks, R2, shows a value 

of 89.98. On the other hand, the risk value associated to the breast density and to the risk 

values of the first and second levels, R3, shows a value of 80. Finally, the risk value asso-

ciated to age, patient/family history and to the first, second and third levels, R4, shows a 

value of 89.97. 

As it can be observed, in this case the higher risk values are those associated to the 

architectural distortion & asymmetries, to the BI-RADS, to the breast density and to the 

patient’s age/history, that is, the R1C, R2, R3 and R4 risks. 

Once the risk values for the patient to be studied have been calculated, it is pro-

ceeded to load the training dataset, to perform their normalization, and to apply 

Safe-Level SMOTE (a clear asymmetry is observed in it), adding 189 samples for the 

‘cancer’ class and 100 for the ‘non-cancer’ one, which makes the training dataset to have 

almost the same number of ‘cancer’ and ‘non-cancer’ classes, presenting more than 400 

data lines. The normalization of the previously calculated risks for the patient to be 

studied is also performed. All that procedure is illustrated in Figure S7. 



 

 

Figure S6. Screen capture of the risk results obtained from the cascaded expert systems. 

 

Figure S7. Screen capture of the dataset normalization and balancing module. 

Taking the augmented dataset, exploratory factorial analysis techniques are applied 

next after verifying its pertinence, as previously described in Section 2.2.3 of the main 

article, and as shown in Figure S8. In line with that already explained, three latent factors 

are extracted which, on this dataset, allow to explain a 75.28% of the total variability. 

For this case: 

 Factor 1, the one presenting larger rotated loads for R2, R3 y R4, represents a varia-

bility value of 36.81% for the starting data. 

 Factor 2, the one having larger rotated loads for R1a and R1b, represents a variability 

value of 21.45% for the starting data. 



 

 Factor 3, the one associated with R1c because it presents a larger load, represents a 

variability value of 17.03% for the starting data.  

 

Figure S8. Screen capture of the exploratory factorial analysis module. 

The starting values (the risks) have been also mapped to the new factors space, using 

the Anderson-Rubin factorial scoring method, both for the dataset and for the data of the 

patient to be analyzed. 

Once this is done, it is proceeded to train the Machine Learning model, using 

Bagged Tree in this case, as described in Section 2.2.4 of the article and as it can be seen in 

Figure S9. The scores for the patient’s data are also calculated, obtaining a Hazard index 

value of 66.67. 

 

Figure S9. Screen capture of the model training module. 

  



 

Section S5.3. Generation of alerts and decision-making 

After the model has been trained and the scores for the patient to be studied have 

been calculated, it is possible to proceed to the generation of alerts and the deci-

sion-making process. 

Taking into account limit values of 60 and 65, established after analyzing the ROC 

curve, in this specific case the system is facing a potential cancer case, in which it is 

recommended to the medical-healthcare professionals to perform more tests, starting 

from the least aggressive ones, that could help to make a diagnosis decision, determining 

whether it will be finally necessary to proceed to biopsy tests. Figure S10 shows the 

module associated with this stage. 

  

Figure S10. Screen capture of the generation of alerts and decision-making module. 

Section S6. Discussion of the system’s relevance within the field of study. 

The use of clinical decision support systems is common in medical-healthcare environ-

ments, either integrated into information systems or as standalone tools for a local or 

particular use [7]. These systems incorporate many tools that range from the simple data 

processing to those other having learning and inference capabilities [14,50,51]. In this last 

group, it is common the incorporation of expert systems, as well as the use of factorial 

analysis (exploratory and/or confirmatory), and of Machine Learning itself. However, the 

conjoint, compensated, and justified use of all these approaches within a necessarily in-

telligent system is an unquestionable novelty. The ‘intelligent system’ concept, derived 

from artificial intelligence, acts in this work as an aggregator of methods that use differ-

ent knowledge representations. Nevertheless, all of them efficiently complement one 

another and perform consequent representation and inferences that increase the rele-

vance of the final result. The posed intelligent system possesses, therefore, perception, 

reasoning, learning and inference capabilities [16]. In the same way, among other features 

of the intelligent systems [17], the one presented in this work is able to reason logically, 

solve complex problems, can be adapted to different scenarios and makes an effective use 

of the existing information. Thus, it is unquestionable the intelligent nature of the system 

that, additionally, is reached by means of the integrated models. The combined operation 

of these models, in turn, presents notable challenges that have been solved in this work. 

The data significance and relationships have not been altered across the processing chain, 

and the incorporation of deductive reasoning, typical of expert systems, has been com-

plemented by the more inductive approach that is typical of EFA. Uncertainty, in all its 



 

meanings, has been (directly or indirectly) controlled in the models, and the logic that is 

present in the medical diagnosis base has been respected and reinforced. The case study 

shows these results, as well as the system’s applicability and robustness. At this moment, 

the authors may conclude that the incorporation of a different dataset would not return 

lower success rate values than those obtained in the case study. In this point, it is difficult 

to perform a relevant comparison of the presented method to other methods and ap-

proaches that are used in breast cancer diagnosis, as none of them poses an aggregated 

intelligent system. Notwithstanding, Table S6 shows a formal comparison of different 

models found in literature to the current intelligent system, according to the five fol-

lowing criteria: efficiency (understood as the reliability of the diagnosis results consid-

ering uncertainty management), scalability (as a feature related to the incorporation of 

elimination of calculation elements to/from the system), inference (related to the system’s 

capability for symbolic, inductive and deductive reasoning), learning (associated to the 

capability to learn and incorporate knowledge), and finally adaptability (understood as 

the capability for adapting to the diagnosis of other diseases). 

Table S6. Comparison results. 

Method/System Efficiency Scalability Inference Learning Adaptability 

Ferreira et al. [52] An inductive logical 

programming (ILP) 

approach is used that 

does not manage un-

certainty, so its effi-

ciency is limited. 

The system consists 

only of a single in-

ductive logical pro-

graming system.  

It is not scalable. 

The system uses an 

inductive symbolic 

reasoning method. 

The system focuses 

in knowledge mod-

elling, so it has 

moderate capabili-

ties to incorporate 

new knowledge. 

The ILP system used 

might be adapted to the 

diagnosis of other 

diseases, by using other 

starting data in a dif-

ferent study domain. 

- - = - = 

Côrte-Real et al. [53] A probabilistic induc-

tive logical program-

ming (PILP) approach is 

used.  

Uncertainty is managed 

by using a probabilistic 

approach. 

The system consists 

only of a probabilistic 

inductive logical 

programming system. 

It is not scalable. 

The system uses an 

inductive symbolic 

reasoning method. 

The system focuses 

on knowledge mod-

elling, so it has 

moderate capabili-

ties to incorporate 

new knowledge. 

The PILP system use 

might be adapted to the 

diagnosis of other 

diseases, by using other 

starting dada in a dif-

ferent study domain. 

= - = - = 

Alaa et al. [54] A classifier is proposed 

that implicitly manages 

uncertainty. 

The system consists of 

a clustering module 

followed by a super-

vised learning algo-

rithm, a classifier in 

this case. 

It is scalable. 

Statistical inference 

is used instead of 

symbolic reason-

ing. 

The system incor-

porates knowledge 

in a way that is 

subsidiary to its 

classification pro-

cess. 

The system might be 

adapted to other 

pathologies. 

- = - - = 

Jiang et al. [55] Bayesian networks are 

used, with implicit 

uncertainty manage-

ment based on proba-

bilistic calculations. 

 

The system is not 

scalable, as it is asso-

ciated to the network 

model 

. 

Statistical inference 

is used instead of 

symbolic reason-

ing. 

The system incor-

porates knowledge 

in a way that is 

subsidiary to the 

Bayesian network. 

The system might be 

adapted to the 

recommedation or 

treatments for other 

diseases. 

= - - - = 

Abou et al. [56] Fuzzy logic-based 

programming ap-

proaches are used, so it 

manages uncertainty by 

means of a 

non-probabilistic ap-

The system is not 

scalable, as it is ex-

clusively associated 

to the inference mod-

el. 

The system uses a 

deductive symbolic 

reasoning method. 

The system possess-

es a knowledge base 

associated to the 

inference engine. It 

has the capability to 

incorporate new 

The system might be 

used for the diagnosis 

of other diseases. 



 

proach.  knowledge.  

= - = = = 

Fernandes et al. [57] The proposed system 

uses a decision 

trees-inspired classifier 

that does not manage 

uncertainty. 

 

The system is not 

scalable. 

The system uses 

statistical inference 

instead of symbolic 

reasoning. 

The system incor-

porates knowledge 

in a way that is 

subsidiary to its 

classification pro-

cess. 

The system could not 

be easily used for the 

diagnosis of other 

diseases. 

- - - - - 

Proposed system The proposed system 

manages uncertainty by 

means of the use of both 

probabilistic and 

non-probabilistic ap-

proaches.  

The system is scala-

ble. It is possible to 

modify, incorporate 

or eliminate calcula-

tion and inference 

blocks. 

The system uses 

deductive symbolic 

reasoning methods 

and statistical 

inference models.  

The system has 

capabilities to model 

and incorporate new 

knowledge, and to 

learn across the 

process. 

The system can be 

quickly adapted to the 

diagnosis of other 

diseases. 

 

It is possible to observe in the previous table that the introduced system, besides being 

the only one that might be characterized as intelligent, satisfactorily fulfills all the indi-

cated criteria. The results that are pointed out for all the previously mentioned works do 

not achieve the success rates of the current system, which does not lessen their validity, 

but it invites to consider the usefulness of the indicated intelligent system. All that in-

volves a meaningful starting point, with wide growth possibilities in the field of clinical 

decision support systems. 
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