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Abstract: The future development of personalized medicine depends on a vast exchange of data 

from different sources, as well as harmonized integrative analysis of large-scale clinical health and 

sample data. Computational-modelling approaches play a key role in the analysis of the underlying 

molecular processes and pathways that characterize human biology, but they also lead to a more 

profound understanding of the mechanisms and factors that drive diseases; hence, they allow per-

sonalized treatment strategies that are guided by central clinical questions. However, despite the 

growing popularity of computational-modelling approaches in different stakeholder communities, 

there are still many hurdles to overcome for their clinical routine implementation in the future. 

Especially the integration of heterogeneous data from multiple sources and types are challenging 

tasks that require clear guidelines that also have to comply with high ethical and legal standards. 

Here, we discuss the most relevant computational models for personalized medicine in detail that 

can be considered as best-practice guidelines for application in clinical care. We define specific chal-

lenges and provide applicable guidelines and recommendations for study design, data acquisition, 

and operation as well as for model validation and clinical translation and other research areas. 

Keywords: personalized medicine; computational models; data integration; model validation; 
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1. Introduction 

The amount of personalized data in today’s medicine is continuously increasing and 

holds great promises for both diagnosis and therapy at the single patient level. In the face of 

these complex and heterogenous data volumes, computational models support a functional 

understanding of the mechanisms and factors that drive certain diseases. Likewise, they allow 

the design of personalized treatment strategies in response to central clinical questions [1]. 

Computational models thus have the potential to translate in vitro, preclinical and clinical re-

sults (and their related uncertainty) into descriptive or predictive expressions. Over the last 

decades, the added value of such models, also called digital evidence, in medicine and phar-

macology has increasingly been recognized by the scientific community [2,3], as well as regu-

latory bodies, including the US Food and Drug Administration (FDA) or the European Med-

icines Agency (EMA) [4–7]—irrespective of their ultimate use or application. Computational 

models are now integrated in different fields in medicine and drug development expanding 

from disease modelling and biomarker research to the assessment of drug efficacy and safety. 

In silico processing and interpretation of clinical measurements can be either data-driven or 

theory-based (Figure 1). Though, both concepts are rather complementary, and they share the 

common general requirements for data standardization and data documentation. Mechanistic 

models aim for a structural representation of the governing physiological processes in the 

model equations to support a functional understanding of the underlying mechanisms. Vice 

versa, data-driven approaches, such as machine learning (ML) and deep learning (DL), which 

use algorithms and models that try to mimic (human) intelligence and that are commonly 

referred to as artificial intelligence (AI) [8,9], aim for knowledge discovery in big data through 

multidimensional regression analysis. In consequence, mechanistic models require a struc-

tural understanding of a process, yet the demand for data can be limited. Concepts in machine 

learning, in turn, are fundamentally based on large data sets, yet these models do not neces-

sarily need any prior functional understanding (Figure 1). Applied in personalized medicine, 

these modelling approaches allow stratification of patients into specific groups with similar 

characteristics—a prerequisite for advanced diagnosis, targeted therapies, and prevention 

strategies. In the following section, the most relevant modelling approaches for clinical appli-

cations in personalized medicine will be briefly introduced. 
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Figure 1. Computational concepts for patient stratification in personalized medicine. The modelling 

process starts with collection of data from various sources (data input). The two basic modelling 

tools are depicted as mechanistic models (theory-based) and machine learning (data-driven). Model 

analysis leads to either a structural reconstruction of physiological mechanisms that drive disease 

or to pattern identification from large data sets. The information obtained by these approaches can 

be used to generate knowledge for stratification of patients into specific subgroups facilitating dis-

covery, diagnosis, and therapy in personalized medicine. 

2. Modelling Approaches for Clinical Applications in Personalized Medicine 

2.1. Mechanistic Models 

The aim of a mechanistic model is to functionally understand, examine, and predict 

the emergent properties of individual components of a biological system and the manner 

in which they are coupled. It also predicts the complex non-linear dynamics of system 

variables and simulates the underlying dysregulations in processes that drive a healthy 
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state into a specific disease. To deal with this complexity, various systems biology and 

systems medicine approaches have been developed. By incorporating biochemical, phys-

iological, and environment interactions, these approaches produced successful results to 

understand the non-intuitive behavior of biological systems and especially of the human 

body [10–12]. Models are developed from available knowledge describing physical/bio-

chemical relationships among species, and kinetic parameters are retrieved from data un-

der investigation to mimic the biological reality. After calibration, simulations are per-

formed that generate new hypotheses to design new experiments. If experiments validate 

model-based hypotheses, it will generate new knowledge, which may be used for con-

structing another model, thus iteratively improving the functional understanding. In this 

way, the systems-biology/systems-medicine approach iterates in data-driven models and 

model-driven experimentations. Models are an abstract representation of reality, and 

thereby their validity and usefulness depends on the context and assumptions being 

made. Modeling approaches have different levels of abstraction, predictive power, ad-

vantages, and limitations. Previously established concepts range from static molecular in-

teraction maps and constraint based modelling to qualitative logic-based models to more 

detailed quantitative kinetic models. The choice of a model formalism depends on the 

availability of data, the type of research question and the size and structure of the system. 

The most relevant mechanistic models are described in the following section. 

2.1.1. Molecular Interaction Maps 

Molecular interaction maps (MIMs) are static models that depict the physical and 

causal interactions among biological species in the form of networks [13]. They serve as a 

knowledge-base containing information about different pathways and regulatory mod-

ules involved in a disease, such as Parkinson’s [14] or signaling in cancer [15]. MIMs can 

be computationally analyzed using graph-theory concepts to identify network static prop-

erties such as (i) identification of the most influential nodes, (ii) community detection by 

a clustering approach, and (iii) link prediction for the discovery of hidden links. Further-

more, upon overlying expression data, such maps serve as visualization tools for the ac-

tivity level of regulators and their targets of established disease markers, which will pro-

vide the simplest mechanistic visualization of data. 

2.1.2. Constraint-Based Models 

Constraint-based models, such as GEnome-scale Metabolic models (GEM), provide 

a mathematical framework to gaining an understanding of metabolic capacities of a cell, 

enabling system-wide analysis of genetic perturbations, exploring metabolic diseases, and 

finding the essential enzymatic reactions as well as drug targets [16]. GEMs have received 

substantial attention, and many investigations have been done about their applications in 

different aspects of medical sciences. This modeling approach has been applied to various 

fields, ranging from cancer [17] to obesity [18] and Alzheimer disease [19]. 

2.1.3. Boolean Models 

Boolean modelling (BM) is the simplest form of logic-based models where nodes 

(e.g., a gene, protein, a transcription factor, or microRNA, etc.) are described by one of 

two possible states: 1 (ON, activation) or 0 (OFF, inactivation) [20]. The regulatory rela-

tionship from upstream nodes (regulators) to downstream nodes (targets) are expressed 

by the logical operators AND, OR, and NOT. Such models do not require detailed kinetic 

data for parameter estimation, which makes them fit to apply to large biological systems 

and easier/quicker to calibrate/train with data. In the context of systems medicine, this 

approach is often applied for cancer research [21,22].  
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2.1.4. Quantitative Models 

Quantitative modeling, such as the ordinary differential equations (ODEs)-based ap-

proach, quantitatively analyses the behavior of a biochemical reaction over time. It com-

prises a set of differential equations containing variables (which are quantities of interest, 

e.g., the concentration of biological species) and parameters that describe how the system 

responds to different stimuli or perturbations (an extensive resource of ODE models rep-

resents the BioModels database [23]). Parameter values are fixed and can be personalized 

by either each experimental setup or a patient to make a model match the given data. This 

approach describes biological-systems dynamics in detail; however, it usually applies for 

a single pathway or only a few reactions due to the requirement of detailed kinetic data 

for parameter estimations. In personalized medicine in the context of patient stratification, 

ODE models are applied for individual biomarker discovery [24], drug response, and tai-

lored treatments [25]. 

2.1.5. Pharmacokinetic Models 

Pharmacokinetic models are a particular application of ODE models that describe the 

concentration of a drug in plasma or different tissues. Drug pharmacokinetics are fre-

quently used as a surrogate for drug-induced responses since they may be used to esti-

mate on-target and off-targeted drug exposure and in turn a to-be-expected effect 

strength. They can either be described by compartmental pharmacokinetic (PK) modelling 

[26] or by physiologically based PK (PBPK) modeling [27–29]. Compartmental PK models, 

also referred to as population PK (popPK) models, are top-down models that derive an 

empirical model structure from plasma PK. Model building usually starts with a simple 

one-compartment model, which is extended by linear absorption as well as clearance 

rates. Changes in model structure such as peripheral compartments may become neces-

sary during model development. There are domain-specific standard formats available to 

structure and share them, such as PharmML (Pharmacometrics Markup Language [30]) 

as an exchange format for the encoding of models, associated tasks, and their annotation 

in pharmacometrics. In contrast to compartmental PK approaches, PBPK modelling aims 

to reproduce the physiology of an organism at a large level of detail [29,31,32]. Different 

organs are explicitly represented in a PBPK model, and they are assigned specific physio-

logical properties such as volumes, surface, composition, and blood-flow rates. PBPK 

modelling allows to integrate very diverse patient-specific information ranging from the 

molecular scale to physiological properties at the whole-body level. This is because of the 

large granularity of PBPK models, which may represent physiological information from 

different levels of biological organization. A frequent application for the individualization 

of PBPK models is their specification to represent specific cohorts of patients such as el-

derly [33] or diseased patients from a base reference model [34]. This benchmark usually 

represents an average individual with mean values of physiological parameters. 

2.1.6. Software Resources and Tools 

In the following, we provide a list of widely used resources and tools for the con-

struction, visualization, and simulation of MIMs, including qualitative and quantitative 

models and pharmacokinetic models (summarized in Table 1). The choice of a single re-

source or tool is difficult; however, some resources, e.g., OmniPath [35] and Regulatory 

INteraction Graph (RING) [36], retrieve interactions from multiple repositories, which 

can, for example, ease MIM construction. Similarly, each tool is designed to address spe-

cific challenges in modeling, e.g., CellNetAnalyzer (CNA) [37] can be used to easily sim-

ulate a model for large combinations of inputs and perturbations (tens of thousand), but 

encoding models with graphical view is time consuming. CellCollective [38] is a web-

based simulation tool for community-driven model development and requires no com-

plex mathematical equations to encode. Gene Interaction Network simulation suite 
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(GINsim) [39] is a powerful tool for attractor analysis but for a large model and a large 

number of inputs and perturbations, it may not be ideal. 

Table 1. Resources and tools used to construct MIMs, quantitative and qualitative models, and phar-

macokinetic models. 

Research Field Resources Tools 

Molecular interaction 

maps 

SIGnaling Network Open Resource (SIGNOR) 

[40], Reactome [41], SignaLink [42], InnateDB 

[43], Atlas of Cancer Signalling Network 

(ACSN) [15], OmniPath [35], RING [36], Wik-

iPathways [44], Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [45] 

CellDesigner [46], Cytoscape & plugins [47], Molecu-

lar Interaction NEtwoRks VisuAlization (MINERVA) 

[48], NaviCell [49], Newt [50] 

Boolean models 

CellNetAnalyzer (CNA) [37], CellCollective 

[38], GINsim [39], PyBoolNet repository [46], 

BioModels [47] 

CNA [37], Genetic Network Analyzer (GNA) [48], 

CellCollective [38], GINsim [39], SQUAD-Boolsim 

[49], BoolNet [18], Markovian Boolean Stochastic 

Simulator (MaBoSS) [50], CellNOpt [51] 

Constrained-based mod-

els 

BioModels [47], BiGG (Biochemical, Genetic 

and Genomic knowledge base) [52], Human 

metabolic atlas [53], Virtual Metabolic Human 

[54] 

COnstraint-based Reconstruction and Analysis  

(COBRA) toolbox [55], Sybil package [56], CO-

BRApy [57], ModelSEED [58] 

Quantitative models 
BioModels [59], Java Web Simulation (JWS) [60], 

Physiome Model Repository [61] 

COmplex PAthway Simulator (COPASI) [62], 

CellDesigner [63], JWS [60] 

Pharmacokinetic models 
PharmML (Pharmacometrics Markup Language 

[30], Open Systems Pharmacology 

Monolix, SimCypTM, GastroPlus®, PK-Sim® 

Resources: comprises repositories of manually curated causal interactions and published models 

that can be used for the construction of new models. Tools: includes software programs with user 

interface to construct, visualize, or dynamically simulate the models. 

Several tools and resources can be combined to workflows for model development, sim-

ulation, and publication. For example, a model could be constructed in CellDesigner [63], sim-

ulated in JWS Online [60] and published in BioModels [47]. Community-driven harmoniza-

tion efforts led to several standards and formats that support the interoperability of the tools 

and resources. Over time, different, partially overlapping communities have been established, 

which take responsibility for the maintenance and development of the standards and formats. 

The Computational Modeling in Biology Network (COMBINE) community [64] develops 

standards to store and exchange computational models. Prominent examples are the Systems 

Biology Markup Language (SBML) [65], CellML [66] and The Systems Biology Graphical No-

tation (SBGN) [67]. Their standards are supported by many tools for MIMs and quantitative 

models. The Disease Maps Project [68] is a large-scale community with the goal to enhance the 

understanding of diseases. Their efforts focus on MIMs, including map and tool development. 

The consortium for Boolean models is CoLoMoTo (http://colomoto.org), which develops 

standards for model representation and exchange, especially SBML Qual [69]. 

2.2. Machine Learning and Deep Learning 

Data-driven approaches treat the causal mechanism as unknown and aim to model a 

function that operates on large-scale data input to predict the outcome, regardless of the 

unknown physiological processes. Since the mechanisms operating in the systems being 

modelled, i.e., which factors together drive outcomes, are considered too complex to be 

determined, ML and DL are often referred to as black-box models. Consequently, the ra-

tionale for the outputs generated is inscrutable not only by physicians but also by the 

engineers who develop them. There are ambitious attempts to make data-driven models 

explainable or understandable [8] by providing information on underlying model mech-

anisms and the factors driving predictions. In the context of personalized medicine, this 

requires examination of the concepts of explainee, explanandum, and explanans, amongst 

others. For example, the explainee, the person to whom an explanation is addressed, e.g., 
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a patient, clinician, or researcher, will determine what constitutes an appropriate expla-

nation of model predictions [70]. The object of the explanation (the explanandum) is not 

the patient/the disease course but the model/the model’s prediction, and the explanans 

that explains the prediction may in itself be complex mathematics. Clear causality is not 

provided, although explanations may make intuitive sense to explainees. 

For example, models that provide post-hoc feature-importance visualisation often 

show age or pre-existing disease to be features that drive predictions toward a negative 

outcome. While this does not give information about causality, the explainee “provides” 

the causal link in his/her own interpretation of the explanation. Clear causal understand-

ing is not provided, although data-driven models can be hypothesis-generating and can 

therefore provide clues to understanding. Understanding is epistemologically complex, 

but an explainee (for example, a biologist or a clinician) can be said to understand when 

they are in a position to move forward. For example, a post-hoc model providing visuali-

zation of the factors driving a clinical prediction for a patient can give a clinical sufficient 

understanding to move forward with recommending a clinical course of action to her pa-

tient [71]. A biologist can be said to understand when a biological area has been identified 

which seems to recur in model-prediction feature drivers; or a bioinformatician can be 

said to understand when reapplying the model’s code and examining output. 

The quality of such black-box models is assessed through the accuracy of their pre-

dictions, which are tested in a variety of ways. As a subset of AI, ML works cyclically and 

learns through experience and is largely used for prediction models and pattern recogni-

tion (Figure 1). A special case of ML that is used for integration of complex data such as 

omics and clinical data is DL. In DL, Deep Neural Networks can extract and process in-

formation from given data. DL mimics the human brain via connecting multiple artificial 

neurons in deep and densely connected layers [72–74]. ML/DL approaches provide an 

opportunity to move away from interpretive attempts to apply group-level associations 

and instead predict responses in individual patients, i.e., enabling more personalized 

medicine. Group-level associations, unlike individual-level predictions, are interpreted in 

a largely unstructured way for the treatment of an individual and may not provide the 

optimal treatment approach for that individual. Thus, classical group-based clinical stud-

ies and ML/DL approaches represent two distinct paradigms: the first provides infor-

mation based on associations at the level of a patient group, while the second, the ML/DL 

approach, builds a prediction at the level of an individual patient [75,76]. 

ML attempts ever more accurate clustering or classification to a high level of accuracy 

and a high level of confidence. Different types of ML are employed as appropriate accord-

ing to input data and the aim of analysis, i.e., according to the clinical question. ML ap-

proaches learn the theory automatically from the data through a process of inference, 

model fitting, or learning from examples [77]. ML can be supervised, unsupervised, or 

semi-supervised. Unsupervised learning has the potential to take all features into account, 

to comprise dimensionality reduction, permit feature elicitation, and big-data visualiza-

tion, all of which allow for better understanding of big medical data and the factors driv-

ing disease initiation and progression. Unsupervised learning offers the ability to discover 

new knowledge, which can be used to refine outcome prediction for the individual pa-

tient. In supervised learning, the model is supplied with labeled input features that are 

considered when predicting a predetermined outcome from new data, either through re-

gression (for continuous results such as number of days or months before disease debut) 

or classification (for discrete results such as survival/death or for image classification). 

Supervised ML clinical-decision support tools allow ML the possibility to tailor prediction 

to the individual patient. Semi-supervised learning employs both labelled and unlabeled 

data for training. In all of these ML approaches, model validation is essential, and the 

accuracy of ML results is verified using independent test sets [74]. 

Even though best practices of ML have been developed, they are either not applied at all 

or applied only partially for selected aspects of the models, meaning an inconsistent or incom-

plete documentation and reporting as well as sharing of ML models and their evaluation [78]. 



J. Pers. Med. 2022, 12, 166 8 of 23 
 

 

This issue often results in vague and inconsistent decision making by the ML algorithms when 

re-used, making it difficult or even impossible to reproduce the results, with many uncertain-

ties [79]. Particularly in clinical research and application, it is absolutely mandatory to develop 

and report ML/DL-derived models following established standards for gaining trust in the 

resulting decision making. In this context, especially reporting guidelines for the correspond-

ing models and their validation are most relevant providing a list of attributes and elements 

to describe them properly. Recent examples are the SPIRIT-AI [80] and CONSORT-AI [81] 

checklists for the reporting of clinical trials that involve ML methods. The AIMe registry for 

AI in biomedical research (https://aime-registry.org) recently has been introduced as a com-

munity-driven platform for reporting biomedical AI systems [82]. The AIMe registry has a 

web interface that guides authors of new ML algorithms through the newly developed AIMe 

standard, a generic minimal information standard that allows the reporting of any biomedical 

AI system and is divided into five sections: Metadata, purpose, data, method, and reproduci-

bility. 

3. Models in Clinical Research for Discovery, Diagnosis, and Therapy 

It is to be expected that patients will greatly benefit in the future from developments 

that equip personalized medicine with predictive capabilities to investigate in silico clini-

cally relevant questions. Currently, there are a number of computational-modelling ap-

proaches in pre-clinical and clinical research that are able to address these questions in 

greater detail and, therefore, play a leading role for the future development of personal-

ized medicine. The following section contains an illustrative overview of successful com-

putational analyses in the discovery, diagnosis, and therapy of clinical research. 

3.1. Discovery 

Model applications in discovery are usually mechanism-based, such as MIMs, GEMs, 

BMs, and ODEs, since they are frequently hypothesis driven. This is because the availa-

bility of data at this level is commonly not sufficient for purely data-driven analyses. 

Mechanistic models in discovery play a significant role in a wide range of clinically rele-

vant questions ranging from representation of disease mechanisms to identification of 

drug targets or simulations of disease-specific phenotypes (summarized in Table 2): 

Table 2. Examples for mechanistic modelling in discovery. 

Research Field Content 

Molecular interaction maps 

Inflammation Knowledge-base, disease mechanisms, data interpretation [83] 

Neurodegenerative disease Knowledge-base, disease mechanisms, data interpretation [14] 

Cancer Knowledge-base, disease mechanisms, data interpretation [15] 

Rheumatoid Arthritis Knowledge-base, critical nodes (drug targets) [84] 

Asthma Disease mechanisms [85] 

Atherosclerosis Disease mechanisms, data interpretation, critical nodes (drug targets) [86] 

Boolean models 

Cancer Disease mechanism, patient stratification [17] 

Type 2 diabetes Disease mechanism, patient stratification [87] 

Obesity Disease mechanism, patient stratification [18] 

Non-alcoholic fatty liver disease Disease mechanism, patient stratification [88] 

Genome-scale metabolic models 

Cancer Disease markers, drug targets, patient stratification [22] 

Auto-Immune diseases Target identification, biomarkers, patient stratification [89] 

Cancer Personalized combination therapy [21] 

Cancer Disease signature, drug targets, patient stratification [90] 

Cancer Disease markers, drug targets, patient stratification [22] 

Auto-Immune diseases Target identification, biomarkers, patient stratification [89] 

Cancer Personalized combination therapy [21] 
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A recently published map on inflammation resolution provides functionality to vis-

ualize Omics data and allows making hypotheses on the role of connected molecules in a 

disease phenotype [83]. Another well-known example for MIMs is the disease map of Par-

kinson’s [14]. These maps serve as a knowledge platform and represent the mechanisms 

of the disease in a standardized visualization. Thereby, they structure the growing 

knowledge of the field in a comprehensible manner. Another interesting example of MIM 

is the atlas of the cancer signaling network [15], which depicts in detail the molecular 

mechanisms involved in cancer. High-throughput data can be visualized on the map to 

perform functional analysis and identify dysregulated pathways. Wu et al. constructed a 

comprehensive molecular interaction map for rheumatoid arthritis containing detailed 

molecular mechanisms of the processes in patients affected by rheumatoid arthritis [84]. 

The map was analyzed for topological properties to suggest diagnostic and therapeutic 

markers for rheumatoid arthritis. 

Disease-specific GEMs were used for the identification of biomarkers and drug tar-

gets in metabolism-related disorders including: cancer [17], type 2 diabetes [87], obesity 

[18], non-alcoholic fatty liver disease (NAFLD) [88], and Alzheimer’s disease (AD) [19]. In 

2017, Uhlen et al. generated GEMs of 17 types of cancer by integrating transcriptome data 

into a network of human metabolism using the task-driven integrative network inference 

for tissues (tINIT) method [91]. In addition to predicting driver genes for tumor growth, 

they demonstrated a widespread metabolic heterogeneity in different patients, highlight-

ing the necessity of personalized medicine for cancer treatments [17]. Varemo et al. gen-

erated manually curated GEMs to identify signatures of a diabetic muscle. They suggested 

a gene signature, which successfully classified the disease progression of individual sam-

ples [87]. Mardinoglu et al. (2013) reconstructed an adipocyte-specific GEM and showed 

that the metabolic activity of androsterone and ganglioside GM2 increased in obese sub-

jects, and their mitochondrial metabolic activities decreased compared to lean subjects 

[18]. They also identified chondroitin and heparan sulphates as suitable biomarkers for 

the staging of NAFLD by analyzing the reconstructed iHepatocytes2322 [88]. In 2014, 

Stempler et al. reconstructed an AD-specific GEM and predicted several metabolic bi-

omarkers of the AD progression, including succinate and prostaglandin D2 [19]. 

Patient-specific data have been integrated in Boolean models amongst others to sim-

ulate patient disease phenotypes and to identify disease signatures and drug targets and 

subpopulations of responders and non-responders to drug treatment [22,89]. Recently, 

another interesting study used Boolean models to integrate patent data to derive a per-

sonalized model, which can reproduce and analyze the gain-of-function or loss-of-func-

tion of mutated genes in specific diseases [21]. The model predicted dissimilarity in the 

PI3K-AKT pathway that resulted in heterogeneity in pancreatic cancer patients. Models 

also successfully simulated the known dynamics of invasive cancer in the breast and the 

bladder and predicted disease signatures and possible therapeutic targets that can revert 

invasive to non-invasive phenotypes [90]. Further, model-predicted signatures were used 

to stratify patients in long and short survivals. 

ODE models have been used to simulate clinical trials and to propose individualized 

diagnostic and therapeutic targets, such as highly heterogeneous prognostic markers for 

neuroblastoma and patient stratification into low and high survival based on model sim-

ulations [92]. They were also used to predict the patient response to apoptosis-inducing 

therapeutics and revealed significantly different inter-individual responses [93]. 

3.2. Diagnosis 

In diagnosis, the amount of personalized data is frequently sufficient to allow appli-

cation of ML/DL concepts. In addition, the provided data types are often too heterogene-

ous, such that a structural presentation of the governing processes is impossible due to an 

incomplete functional understanding. ML/DL models can make discoveries by analyzing 

large sets of input data to identify patterns and associations relevant to the outcome of 

interest. These computational models can function as clinical-decision support systems to 
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assist clinicians in diagnosis and therapy [94,95]. In the following, successful examples for 

the analysis of patient data with concepts from ML/DL are discussed (summarized in Ta-

ble 2): 

ML has been shown to be an effective analysis tool in a wide variety of medical and 

biological disciplines. The use of ML models may lead to a better understanding of dis-

eases and the mode of action of drugs as well as to precision medicine. Mason et al. 

showed that optimized therapeutic antibodies can be found by predicting antigen recep-

tor specificity with ML. It aids in integrating information from several individual recep-

tors into a single pan-receptor model [96]. In metabolomics, Goodwin et al. used Self-Or-

ganizing Maps (SOM) to structure microbial metabolic responses, and hence, were able to 

identify a response metabolome [97]. 

Thorsen-Meyer et al. showed that a time-sensitive ML model can help predict 90-day 

mortality in patients administered to the intensive-care unit. In addition, they were able 

to highlight features contributing to a certain prediction at any time-point, allowing a phy-

sician to alter treatment. A further prominent example of ML/DL in clinical application is 

image analysis [98,99]. ML image analysis is most commonly used for radiological assess-

ment and related decision making in the clinic, and models used can be categorized as 

either classification tasks or regression models. In the most commonly used classification 

tasks, models make decisions about categorical end-points such as a disease score or 

whether a clinician should take a closer look at an X-ray scan. In regression models, the 

aim is to predict a continuous variable, for example, the survival time of a patient, which 

often is not categorized into distinct portions. In 2018, Abramoff et al. debuted the first 

FDA-autonomous AI diagnostic system in medicine [100]. This development marked a 

milestone as ML models only assisted physicians in their diagnostic decisions previously. 

Abramoff et al. developed a convolutional neural network (CNN) that was able to cor-

rectly classify diabetic retinopathy with a sensitivity of 87.2% and a specificity of 90.7%. 

In recent months, ML has been widely used to diagnose and detect COVID-19-induced 

lung pneumonia (i.e., novel COVID pneumonia (NCP)), in computed tomography (CT) 

images. Zhang et al. developed a multi-scale approach that can not only distinguish NCP 

from other forms of lung lesions but also predict the progression of a patient into critical 

illness [101]. They were also able to correlate the features detected in segmented lung 

scans to clinical parameters like serum C-reactive protein (CRP) and albumin levels. 

Another important example for the use of ML models in clinical application is poly-

genic risk scores (PRS) for common diseases based on findings from genome-wide asso-

ciation studies (GWAS). PRS are estimated to predict the risk of an individual for having 

a disease based on the individual’s genetic make-up. GWAS that scan the genomes of 

thousands of individuals offer a very powerful method to identify the multiple genetic 

risk factors for having the disease that are used in PRS estimation. The potential of PRS is 

that it can aid in disease prevention and early diagnosis as well as precision medicine, 

leading to better health outcomes for individuals. There are currently different ap-

proaches developed for the estimation of PRS that may lead to some improvement over 

the other [102–112]. Examples of PRS studies include those on educational attainment 

[113], schizophrenia [114,115], diabetes [116–118], blood pressure [119], depression [120], 

coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, 

and breast cancer [102,116]. Table 3 provides an overview of the discussed modelling ap-

proaches and their application in clinical diagnosis. 
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Table 3. Examples for the application of machine learning and deep learning algorithms in diagno-

sis. 

Research Field Content 

Deep Learning and Convolutional Neural Network Models 

Ophthalmology The first FDA-authorized autonomous AI system for the detection of diabetic retinopathy [100] 

Radiology DL based model that is able to detect COVID-19-induced pneumonia on chest X-ray images [101] 

Ophthalmology Two models for quality assurance and diagnosis of diabetic retinopathy on retinal images [121] 

Pathology 
Assistance to pathologists for improving classification of lung adenocarcinoma patterns by automati-

cally pre-screening and highlighting cancerous regions prior to review [122] 

Imaging flow cytometry Automated image de-blurring of out-of-focus cells in imaging flow cytometry [123] 

Ophthalmology A DL model for the diagnosis of glaucoma based upon images and domain knowledge features [124] 

Oncology Automated detection of oral cancer on hyperspectral images [125] 

Deep Learning and Deconvolutional Neural Network Models 

Proteomics 
Neural network that is able to predict signal peptides (SP) from amino-acid sequences and distin-

guish between three groups of prokaryotic SPs [126] 

Antibody engineering 
Prediction of antigen specificity via DL, which leads to optimized antibody variants for therapeutic 

purposes [96] 

Intensive care 
ML analysis of time-series data in intensive care units led to an improvement in the prediction of 90-

day mortality [71] 

Deep Learning, Machine Learning, Random Forest, and Deconvolutional Neural Network Models 

Psychiatry 
A model that detects autism spectrum disorder risk for newborns with up to 95.62% from electronic 

medical records [127] 

Neurology 
A study with the aim to differentiate between cognitive normal people and patients with Alz-

heimer’s disease using various ML/DL techniques on blood metabolite levels [128] 

Machine Learning and Polygenic Risk Score Models 

Coronary artery disease 
Patients with high genome-wide PRS for coronary artery disease may receive greater clinical benefit 

from alirocumab treatment in the ODYSSEY OUTCOMES trial [102] 

Coronary artery disease, 

atrial fibrillation, type 2 dia-

betes, inflammatory bowel 

disease, and breast cancer 

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to 

monogenic mutations. Use of PRS to identify individuals at high risk for a given disease to enable 

enhanced screening or preventive therapies [116] 

Machine Learning, Self-Organizing Maps, Random Forest, K-Nearest Neighbors, Support Vector Machines, Self-Operating Maps 

Metabolomics 
SOM analysis of response metabolites detected by mass-spectroscopy leads to the identification of 

similar responses (ML/Self, Organizing Maps (SOM)) [97] 

Imaging flow cytometry An open-source toolbox for the analysis of imaging flow cytometry images (ML/RF) [129] 

Radiology 
Classification of COVID-19 and non-COVID-19 patients based on features extracted from chest X-ray 

images (ML/KNN) [130] 

Endocrinology Prediction of diabetes based on several blood values and other patient indices (ML/SVM,RF) [131] 

Metabolomics 
SOM analysis of response metabolites detected by mass-spectroscopy leads to the identification of 

similar responses (ML/SOM)) [97] 

CNN: Convolutional Neural Network, RF: Random Forest, DNN: Deconvolutional Neural Net-

work, SOM: Self-Operating Maps, SVM: Support Vector Machines, KNN: K-Nearest neighbors, PRS: 

Polygenic Risk Score. 

Further technical details about different ML/DL methodological approaches com-

monly used (such as convolutional neural network (CNN), random forest (RF), support 

vector machines (SVM), and K-nearest neighbors (KNN)) and current best-practice rec-

ommendations, especially for biological applications, were reviewed and discussed else-

where in detail [74]. The Polygenic Risk Score Task Force of the International Common 

Disease Alliance also published a recent comprehensive perspective on PRS with regards 

to the current application of PRS and challenges faced for improved use in clinical practice 

[132].  
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3.3. Therapy 

Applications in therapy are rather mechanism-based since a functional understand-

ing in the resulting computational simulations is mandatory for exhaustive risk assess-

ment, e.g., in clinical-trial simulations. Moreover, extrapolation between different patient 

cohorts, treatment schedules, or even species is a frequent requirement in pharmaceutical 

development. Illustrative examples for applications of mechanistic modeling in therapy 

are discussed in the following section and summarized in Table 4. 

Table 4. Examples for mechanistic modelling in therapy. 

Research Field Content 

Mechanistic Models 

Pediatrics Pediatric extrapolation [28] 

Geriatrics Geriatric extrapolation [33] 

MIPD Prediction of personalized drug exposure [133] 

Pharmaco-genomics 
Prediction of the incidence rates of myopathy in different genotypes 

[134] 

Disease models Prediction of drug PK in cirrhotic patients [135] 

MIPD: Model-informed precision dosing, PK: Pharmacokinetic. 

PBPK models can be used to support pediatric investigation plans [28], where PK 

profiles in children, toddlers, or neonates are simulated based on a reference PBPK model 

for average grown-ups. The wealth of such pediatric extrapolations lies in the fact that 

children are not just small adults but differ amongst others in terms of their body compo-

sition (fraction of water, fat, and protein, respectively) and a resulting change in drug dis-

tribution within various tissues. Similarly, maturation of absorption, distribution, metab-

olism, and excretion (ADME) of proteins has a significant effect on drug PK in different 

age groups. Another prominent example for specifications of PBPK models are patient 

cohorts with hepatic or renal impairment [136,137]. PBPK models for such patient sub-

groups can be used to simulate and analyze the effect of reduced drug clearance and to 

assess the resulting increase in drug exposure, which may lead to adverse events. For cir-

rhotic patients, such concepts have been used to represent pathogenesis according to the 

Child-Pugh score A to C in terms of, for example, ADME gene expression, plasma protein 

concentration, or glomerular filtration rate (GFR) rates. Pediatric extrapolations or pa-

tients with impaired drug clearance are not fully-personalized models, but they represent 

an important conceptual application for knowledge-based individualization of mechanis-

tic computational models. 

Another concept in pharmacology that is even closer to personalized medicine is 

model-informed precision dosing (MIPD). MIPD is currently only applied to a few drugs 

that are subject to therapeutic drug monitoring and for which appropriate PK models are 

available. Of note, such models basically require the creation of virtual twins, which are 

individualized based upon information well beyond population demographics [133]. In a 

recent study, the benefit of using individual patient information to improve PK predic-

tions was systematically assessed [138]. A PBPK model of caffeine was stepwise person-

alized by using individual data on (i) patient biometry, (ii) patient physiology, and (iii) 

CYP1A2 phenotype of 48 healthy volunteers participating in a single-dose clinical study. 

Model performance was benchmarked against a caffeine base model simulated with pa-

rameters of an average individual. The key outcome of the analysis was that consideration 

of subject-specific data in personalized PBPK models may increase the accuracy of the 

PBPK predictions but that the degree of improvement is largely dependent on the match 

between the patient data and the specific pharmacology of the drug. 

4. Challenges and Recommendations 

As outlined above, considerable results have already been achieved with computa-

tional models in personalized medicine. However, there are still significant challenges 
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until a full adoption of model-based workflows in clinical research and practice will be 

reached. Interestingly, despite obvious technical differences between the computational 

concepts in mechanistic modelling and ML/DL, challenges regarding data availabil-

ity/harmonization, model development/validation as well as standardization, model re-

use and reporting are common to both fields. 

4.1. Challenges 

4.1.1. Data Availability and Data Harmonization 

The first step in generating a model is collating the data that need to be integrated 

into the model. This task heavily relies on the data being formatted and annotated cor-

rectly. Reporting and annotation checklists, or “minimum information guidelines” are 

available for many different kinds of datatypes and can be found and accessed via the 

FAIRsharing portal (www.fairsharing.org). For availability and data harmonization, both 

mechanistic modelling and ML/DL fundamentally rely on clinical measurements for both 

model development as well as independent model validation. A significant challenge for 

data availability is confused reporting, which makes it difficult to harvest the full benefit 

of results, navigate the biomedical literature, and generate clinically actionable findings 

(Varga et al. 2020, under review). As a putative consequence, incomplete sets of data may 

arise such that specific features have to be left out of the analysis or missing data have to 

be imputed. Another challenge, particularly in multicentric studies, is the heterogeneity 

of input data from different laboratories, which, as such, significantly hampers the com-

parability of results as well as subsequent analyses. Metastandards, such as the novel ISO 

20691 “Biotechnology—Requirements for data formatting and description in the life sci-

ences” (https://www.iso.org/standard/68848.html), help in guiding through the consistent 

formatting and annotation of data used for modelling. 

4.1.2. Model Development and Model Validation 

A common challenge for model development and model validation is that all com-

putational models are highly context specific; therefore, they cannot be generalized for 

different scenarios due to limited extrapolability. Common to all in silico models is a need 

for validation [139] and predictive accuracy. However, model-validation methods are con-

sidered to be individual and type-specific. It is important that any algorithm performs 

well on novel data that have not been used in training the algorithm; i.e., the model should 

be able to generalize to new data from the same domain [140]. Uncertainty in model pa-

rameters as well as inter-individual variability are hard to assess as such significantly im-

peded model identification. Likewise, there are errors in basic model structure from prior 

assumptions, group associations, or pre-determined correlations in clinical relationships, 

which may bias outcomes. For many types of models and corresponding formats, the 

model setup and simulation environments can be documented in a standardized format, 

the Simulation Experiment Description Markup Language (SED-ML) that was designed 

to record such descriptive information necessary to re-run a model, such that it can be 

exported from one simulation tool and imported into another. 

4.1.3. Model Standardization, Model Re-use, and Reporting of Results 

Model standardization, model re-use, and reporting of results are also largely ham-

pered by the context specificity of most models. Moreover, many software tools still do 

not provide open-access rights, long-term maintenance, versioning, or standard software 

qualification. Likewise, very frequently, best practices are often not applied routinely, 

even if they are available and supported by several tools, such as the COMBINE archive 

for simulations [141]. In consequence, there is a lack of practice for standardization model 

development and the use of community defined formatting standards including Extensi-

ble Markup Language (XML)-based machine-readable formats for the model itself. Nota-

ble exceptions are SBML as a standardized interchange format for computer models of 
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biological processes; CellML, a standard format to store and exchange reusable, modular 

computer-based mathematical models; or NeuroML (Neural Open Markup Language), 

which allows standardization of model descriptions in computational neuroscience and 

others [142]. 

4.1.4. Legal and Ethical Issues 

Legal and ethical issues include data protection and the anonymity of patient data. 

Additionally, questions of liability may arise in the case of malfunction, which may be 

hard to address, and are particularly a constant matter of debate [143]. Legal aspects are 

largely covered by the general data protection regulation (GDPR). Challenges for compu-

tational modelling arise, for example, in data minimization, especially in data-driven 

models where it is not known which data will be necessary. Likewise, proprietary aspects 

of data and models may be of relevance. Finally, it may be important to exclude that im-

portant decisions are made by automated processing including the right to transparency. 

In essence, computational models must go through a process of peer review and val-

idation, and if they are to be adopted by clinicians, they must be assessed through research 

and state procedures including randomized clinical trials (RCTs) and medical devices reg-

ulation (MDR). Source input data should fulfill standard requirements in terms of data 

quality and representativeness, i.e., for example, inclusion of people of different genders 

or ethnicities. The generation of large amounts of knowledge about patients beyond the 

issue patients seek treatment for may be problematic, in particular since this explicitly 

implies the “right not to know.” Additionally, the success rates for translatability into clin-

ical practice should be openly communicated to the patients. 

4.2. Recommendations 

The four key challenges discussed above can be used to formulate a set of recommen-

dations that apply to different stages of a research project, starting from early ideation to 

implementation in clinical practice. The recommendations will be discussed in the follow-

ing (illustrated in Figure 2). Inevitably, these recommendations may remain a little generic 

for specific studies, given already the complementary character of mechanistic models on 

the one hand and data-driven approaches on the other. However, the reader is encour-

aged to compare the recommendations given here in the face of the various examples dis-

cussed above (Tables 2–4). Additionally, some of the software packages discussed provide 

best-practice guidelines for study design as well as online resources (Table 2), which can 

be used for their own applications. 

 

Figure 2. Basic recommendations for the use of computational models from early ideation to imple-

mentation in clinical practice. For each of the four key challenges (outer circle), a specific set of basic 

recommendations is given in the corresponding color. Stand.: Standardized. 
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4.2.1. Study Design 

At the start of a research project, the study design itself should be defined and agreed 

on. Additionally, it should be decided whether the to-be-expected amount of data on the 

one hand and the structural knowledge of the underlying relationships on the other indi-

cates the use of either ML/DL or mechanistic modelling. Ideally, an analysis plan should 

be formulated to address specific requirements and, above all, to meet the clinical needs 

of a study. Such preparatory discussions about the study design also support early in-

volvement of all stakeholders and, in particular, their expertise in an interdisciplinary pro-

ject team. This early-project stage also involves the definition of clear rules about general 

data protection regulation (GDPR) compliance and data ownership. Additionally, it 

should be agreed whether the automated processing of data by systems including models 

is allowed or ruled out such that the physician makes the final decision. 

4.2.2. Data Acquisition and Operation 

To increase the diversity of data as well as the sample size, multicentric studies are 

clearly preferable. Additionally, data harmonization needs to be discussed and addressed 

at the beginning of a study. Informed consent of patients should be taken care of as well. 

It should be communicated that data donation for the good of future patients and that 

consent to treatment implies consent to one’s data being processed. Acquisition of patient 

data also should include structured and standardized reporting of all relevant clinical 

characteristics measured as well as patient anthropometry, physiology, disease state, and 

other phenotypic information and further influencing factors. This disease and phenotype 

information should be shared, respecting data privacy where applicable, and following a 

standardized structuring format, such as Phenopackets (http://phenopackets.org), linking 

phenotype descriptions with disease, patient, and genetic information, enabling clini-

cians, biologists, and disease and drug researchers to build more complete models of dis-

ease. If possible, electronic health records of patients should be used, for seamless data 

interoperability ideally formatted in accepted standard formats, such as Fast Healthcare 

Interoperability Resources® (FHIR®; http://hl7.org/fhir/) of the health-care standards or-

ganization Health Level Seven International (HL7). Data should be as comprehensive and 

unbiased as feasible, rather than using selected data based on potentially flawed existing 

knowledge. Additionally, data should be available in both processed and unprocessed 

forms. Data used in creating models and in applying them must be representative, com-

parable, fairly sourced, and logically analyzed. Representativeness and completeness of 

data point towards state collection of standardized, harmonized data across the popula-

tion, provided as a non-commercial resource to research projects, which is the current 

system in many countries and is provided for by exceptions to the requirement for consent 

in specific national and EU legislation. Data input into models and model validation 

should be quality-checked thoroughly and on a running basis, with a high level of trans-

parency, to achieve the best possible level of correct results for patients individually and 

collectively, as is the case with other tools used by clinicians. 

4.2.3. Model Development and Model Validation 

For model development and validation, one should start with the simplest model 

structure, and if results are not sufficient, increase complexity in small steps. A key ques-

tion during model building always is whether the model generalizes well enough and 

how it responds to unknown data. This follows the usual concept of training and valida-

tion. In general, simulation outcomes should be compared to standard measures for 

benchmarking of the computational predictions. To support the re-use of results, software 

tools applied should support documentation as well as versioning. Reporting of simula-

tion results should follow best-practice guidelines. With regard to safety and transpar-

ency, data used in healthcare models should include information about the source of data 
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and inspection of data quality, to be ensured by rigorous scientific testing and licensing 

through well-funded licensing agencies. 

Validation of models to be used clinically must include extensive and frequent testing 

by scientific peers and licensing agencies, as well as continuous quality reporting by cen-

tres using these systems. Commercial and scientific application of models involves differ-

ent routes to validation and are difficult to discuss together, but the testing and validation 

process should in either case be rigorous, planned, ongoing, and well-financed. Licensing 

fees can, for example, cover the cost on continual testing of commercial applications. Com-

panies should be required to disclose both data and models to regulatory agencies and/or 

peer reviewers and journals for the purposes of proper quality control. Third-party vali-

dation and replication of results requires access to the data used for the development and 

training of the models. While access to health-care data used is theoretically possible by 

application to relevant authorities, preprocessing and harmonizing the data to replicate 

results is time-consuming and unrewarded. Therefore consistent, high-quality model val-

idation requires that systems be created allowing the return of enhanced (pre-processed, 

harmonized) medical data to the state. 

There are guidelines and methods for validating models, which are accurate and con-

fident in predictions, both in terms of accuracy and confidence in predictions. Perfor-

mance evaluation of in silico models should be transparent and consistent to existing 

guidelines, explaining the reasons for not doing so when alternative methods are chosen. 

Mechanistic models can serve multiple purposes, which makes it difficult to have a strict 

set of guidelines for validations. Further, for clinical practice, models are still striving to 

become a reliable partner to understand mechanisms underlying diseases, identify bi-

omarkers (diagnosis and prognosis), and support clinical-treatment decisions. Towards 

these purposes, the model will pass through a large set of testing and validation proce-

dures to ensure that model predictions hint to physiologically plausible states for realistic 

levels of parametric uncertainty. After parameter estimation, one has to compare the over-

all behavior or stimulus-response pattern and match this with evidence from the literature 

to ensure that the model represents the biological reality. This “matching” is a judgement 

and a discussion that continues an iterative process of model refinement. Ultimately, the 

usefulness of a model is not only measured by the accuracy of representation but how 

well it supports the generation, testing. and refinement of hypotheses and make predic-

tions based on which patients are stratified between responder and non-responder to a 

specific therapy [144]. Model validation is crucial, and the accuracy of ML/DL results must 

be verified using independent test datasets. Supervised ML/DL clinical-decision support 

tools use ML algorithms to make individual patient-level predictions. 

4.2.4. Translations and Applications 

The final step is translation and application such that the results can actually be 

brought back to the clinic. Here, the model results may be used for the generation of test-

able hypotheses or to simulate clinical studies. Likewise, clinical scores and markers may 

be an outcome. In this regard, it is of utmost importance that the confidence in the com-

putation predictions is frankly disclosed. Likewise, underlying model assumptions and 

uncertainties should be openly discussed in particular with regard to potential conse-

quences for the patient. This also involves algorithmic fairness. Biases should be ad-

dressed through analysis of input data both at the licensing and at the application of the 

systems to new populations, as indeed, should be the case in all tools used in medicine. 

We have seen many cases of medical discoveries and tools being used on populations for 

whom they were not designed, to the detriment of these patients’ treatment and outcomes. 

Continuous analysis of the applicability of a model to a target population should be a part 

of data integration and model validation—however, the perfect should not be the enemy 

of the good, and where data on a given population is missing, the tool should still be used 

if it can be shown to generate better outcomes for patients than not using it. The GDPR 

has gone a long way to ensuring that people and corporations dealing with personal data 
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protect them, and these efforts should be continued and redoubled to ensure technical 

security accompanies legal measures. Technical measures also include data federation and 

the creation of synthetic data, which can be shared with fewer restrictions. However, real 

data that have been identified, encrypted, harmonized, standardized, validated, and 

properly curated are more likely to lead to both better science and patient treatment, and 

they also offer significantly better transparency and quality control. This should therefore 

be the gold standard required for models used in treatment, while synthetic data can be 

used as sandboxes for hypothesis generation. 

5. Conclusions 

There is a rapidly growing amount of personalized data in today’s medicine. The 

availability of these measurements holds immense promises for both diagnosis and treat-

ment of diseases at the single-patient level. The complexity of the data, however, poses 

significant challenges in its general usability, amongst others due the underlying hetero-

geneity of samples as well as inter-patient variability. Computational models provide a 

structural framework to analyze these data through their contextualization in mathemat-

ical descriptions, be it mechanistic modelling or ML/DL. As discussed here, there are nu-

merous successful examples for the application of computational models in discovery, 

diagnosis, and therapy (Tables 2–4). However, several challenges remain to fully realize 

the possibilities of personalized data in clinical practice, in particular regarding data pro-

vision, model building, and model filing as well as legal issues and ethics. To support 

successful study outcomes, key guidelines can be formulated that refer to different stages 

of project work: 

 Careful planning of study design is of utmost importance at the project start; 

 Common standards for data sampling, data acquisition, and data operation should 

be fulfilled; 

 Data harmonization is crucial to ensure data compatibility and comparability; 

 Data should be divided in data sets for training and validation; 

 Model documentation should be written according to best practice guidelines; 

 It is important to openly communicate model assumptions and biases in the compu-

tational results; 

 New patient data should be continuously used for benchmarking of the computa-

tional results. 

We strongly believe that compliance to these guidelines will significantly support the 

realization of computational precision medicine in the future. 
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