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Abstract: Colorectal cancer (CRC) is one of the most frequent tumours and one of the major causes 

of morbidity and mortality globally. Its incidence has increased in recent years and could be linked 

to unhealthy dietary habits combined with environmental and hereditary factors, which can lead to 

genetic and epigenetic changes and induce tumour development. The model of CRC progression 

has always been based on a genomic, parametric, static and complex approach involving oncogenes 

and tumour suppressor genes. Recent advances in omics sciences have sought a paradigm shift to 

a multiparametric, immunological-stromal, and dynamic approach for a better understanding of 

carcinogenesis and tumour heterogeneity. In the present paper, we review the most important 

preclinical and clinical data and present recent discoveries in the field of transcriptomics, 

proteomics, metagenomics and radiomics in CRC disease. 
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1. Introduction 

Colorectal cancer (CRC) is one of the most frequent tumours and one of the major 

causes of morbidity and mortality globally. Its incidence has increased in recent years, 

being the third most common worldwide with approximately one million new cases per 

year, particularly in developed countries [1]. This dramatic increase could be linked to 

risk factors such as unhealthy dietary habits, stress, smoking, and a sedentary lifestyle 

that, combined with environmental and hereditary factors [2], can lead to genetic and 

epigenetic changes in normal epithelial cells and induce tumour development. The polyp 

cancer progression sequence model described by Fearon and Vogelstein is considered a 

parametric, static and complex model involving oncogenes (e.g., Kirsten rat sarcoma viral 

oncogene (KRAS), Neuroblastoma RAS viral oncogene homolog (NRAS), V-raf murine 

sarcoma viral oncogene homolog B1 (BRAF), and phosphatidylinositol-4,5-bisphosphate 

3-kinase, catalytic subunit alpha (PIK3CA)), tumour suppressor genes (e.g., tumour 

protein P53 (Tp53), adenomatous polyposis coli (APC), phosphatase and tensin homolog 

(PTEN)) and pathognomonic signalling pathways that modulate cell differentiation, 

proliferation and apoptosis in the CRC: Wnt/β-cadherin, epidermal growth factor 

receptor (EGFR), mitogen-activated protein kinase (MAPK), transforming growth factor 

beta (TGF-β) and phosphoinositide 3-kinase (PI3K) [3]. Despite multiple efforts to better 

understand tumorigenesis, the lack of new biomarkers and tumour heterogeneity present 
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many unclarified challenges. Since the human genome project, omics sciences have 

revolutionised the study of CRC. Transcriptomics, proteomics, metagenomics, 

metabolomics and radiomics contribute to a paradigm shift towards a multiparametric, 

dynamic, immunological and stromal model that allows for a better understanding of 

CRC development as well as its classification into different molecular subtypes for patient 

stratification and the development of new biomarkers and targeted therapies. This review 

highlights the contributions of transcriptomics, proteomics, metagenomics and radiomics 

over the last few years in building a multi-omics model for a better understanding of 

tumour development and heterogeneity to ensure optimal treatment of CRC. 

2. Genomics 

CRC is one of the first tumours to be molecularly profiled and multiple genes and 

pathways involved in tumorigenesis have been identified but only a limited number are 

recurrently mutated in a large proportion of tumours that play a crucial role. Molecular 

defects can be of two types: alterations leading to a new or enhanced function of oncogenes 

and disorders causing loss of function of tumour suppressor genes. The switch of cellular 

genes to oncogenic variants as well as the inactivation of tumour suppressor genes may be 

the result of point mutations or rearrangements that modify the structure or function of 

these genes, as well as chromosomal amplifications that affect regulated gene expression. 

Genes with defects in key functions in tumour initiation, progression and/or maintenance 

are called driver genes [4,5]. The Cancer Genome Atlas (TCGA), through a 

multidimensional analysis of 276 samples, has identified 32 somatic recurrently mutated 

genes, of which APC, TP53, KRAS, NRAS, PIK3CA, FBXW7, SMAD4, TCF7L2 CTNNB1, 

SMAD2, FAM123B (also known as WTX) and SOX9 were the most frequently mutated [6]. 

The Ras gene family encodes for cytoplasmic proteins with GTPase activity: H-ras, 

K-ras and N-ras. V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is 

mutated in 40% of CRC cases, mostly in exon 2, (codons 12 and 13) and less frequently in 

exon 3 (codon 61) and exon 4 (codon 146), followed by NRAS, which is present in 

approximately 3%–5% of CRC and can be found in exon 3 (codon 61) and exon 2 (codons 

12, 13) [7,8]. Ras mutations can be detected by real-time PCR (RT-PCR), BEAMing, Next-

generation sequence (NGS) and Sanger sequencing but recently the use of liquid biopsy 

(LB) has been implemented as an emerging tool with a concordance between plasma and 

tissue of approximately 90% [9,10]. One of the particularities of this genetic alteration is 

that acquired RAS mutations are maintained throughout carcinogenesis, as can be seen 

by the almost perfect concordance of RAS mutation status in primary and metastatic 

colorectal cancer. On the other hand, the V-raf murine sarcoma viral oncogene homolog 

B1 (BRAF) gene is mutated in 10–15% of patients with CRC, it is found in exon 15 and 

around 80% corresponds to the T17991 transversal mutation causing the V600E amino 

acid substitution, while the other 20% corresponds to a wide variable range of missense 

mutations all residing in the G-loop glycines in exon 11 or in exon 15 near V600 [11–13]. 

The V600E substitution results in constitutive MAPK phosphorylation and subsequent 

RAF-mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK) 

signal transduction. RAS and BRAF mutations are both associated with a poor prognosis 

and are mutually exclusive, lending additional support to the hypothesis that an 

activating mutation in either gene is sufficient to promote tumorigenesis by increasing 

MAPK signalling and is also related to MSI tumours. In addition to its prognostic role, 

multiple studies have investigated its potential predictive role in the development of 

target therapies to help optimise the treatment of metastatic colorectal cancer. 

Amplification in the human epidermal growth factor receptor 2 (HER2) gene (ERB2) 

has been described in approximately 3–4% of CRC patients, and is highly enriched in 

KRAS wild-type (6–8%) and MSI-H patients [14,15]. Very recent studies have described 

the sensitivity of HER2 amplified tumours to anti-EGFR therapy [16–18]. Also, other genes 

such as ALK, ROS, and NTRK occur in less than <1.5%. Fusions in NTRK genes are more 

commonly detected in non-Lynch syndrome/MSI-H tumours as well as in wild-type 
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BRAF, KRAS, and NRAS tumours. However, it remains unclear precisely which CRC 

population should be tested. Molecularly driven therapy with the selective TRK inhibitor 

larotrectinib and multikinase inhibitors with activity against these fusion proteins has 

been tested in selected populations with NTRK fusions. Finally, RET fusions have been 

found in a small fraction of patients with CRC (<1%), predominantly on the right side, 

RAS and BRAF wild-type tumours, and carry a worse prognosis compared to patients 

without RET fusions [19–21].  

Although several pathways are involved in CRC carcinogenesis, TCGA provided 

data that 93% of tumours showed alterations in the WNT/B-catenin pathway through 

inactivation of the APC gene or active mutations of the CTNNB1 gene as well as alteration 

of negative regulatory genes such as ARID1A and FAM123B. Genetic alterations in the 

RAS-MAPK and PI3K pathways were reported as the second most common, not only due 

to overexpression of the insulin-like growth factor 2 (IGF2) gene, but also due to mutations 

in PIK3CA and in the Ras gene family. Another pathway deregulated in CRC is the TGF-

B pathway, where genomic alterations were found in the TGFBR1, SMAD4-SMAD3-

SMAD2 and ACVR2A genes [6,22–24]. 

Defects in DNA repair genes can occur due to germline mutations, somatic mutations 

or gene silencing leading to biallelic inactivation of these genes. The DNA mismatch 

machinery consists of four proteins (MSH2, MSH6, MLH1 and PMS2) so that when a loss 

of function of any of them occurs, a cascade of favourable events is triggered in the 

development of CRC [25,26]. Immunohistochemistry (IHC) and genomic sequencing tools 

can be used for diagnosis; IHC detects the loss or absence of some of the proteins, while 

PCR can analyse the corresponding loci (BAT-25, BAT-26, DS2S123, D5S346 and D17S250) 

[27]. Microsatellite instability status occurs in 5% of metastatic colon tumours and 15% of 

primary tumours and may have predictive and prognostic value, respectively. The 

combination and sum of these alterations lead to a genetic classification of CRC 

carcinogenesis, and two phenotypes can be identified: [1] The CIN phenotype (65–70%) is 

related to defects in chromosomal segregation, telomeric stability and mutations in APC, 

KRAS and TP53; [2] MSI phenotype (15%), which are hypermutated as a result of a 

defective DNA mismatch repair (MMR) system. This categorisation provides a linear 

model of carcinogenesis that has raised several unresolved questions about tumour 

heterogeneity. 

3. Transcriptomics 

The information present in the DNA and its genetic and epigenetic changes are expressed 

by transcription, detailing the most precise activity of a cell at that moment and its close 

relationship with the tumoral phenotype and its subsequent clinical behaviour. From the 

linear genetic model of carcinogenesis pathways to the advancement of technologies to study 

the transcriptome, multiple attempts have been made to molecularly characterise CRC. In the 

absence of a gold standard for molecular analysis of CRC, in 2015 a group of experts evaluated 

in an exhaustive and methodological way all the molecular classifications of CRC obtained 

through different approaches, to achieve an integrative set of samples that could resolve the 

inconsistencies of the pre-existing classifications and unify all the existing data not only on 

gene expression but also at the level of mutational burden, copy number, microRNAs, 

methylations and proteins in order to achieve four molecular subtypes (CMSs), being the 

clearest and most consistent classification in use up to date. [28]. The main characteristics of 

each subtype are summarised as follows: at the genomic aberration level, CMS1 (~15%) is 

characterised by a hypermutated and generalised hypermethylated status, with low Somatic 

Copy Number Alteration (SCNA) in concordance with TCGA data as well as overexpression 

of proteins involved in DNA repair. On the other hand, CMS2 (~40%) and CMS4 (~25%) are 

characterised by high chromosomal instability (CIN) and high SCNA. Meanwhile, CMS3 

(~13%) has a mixed pattern with few SCNAs but also a state of moderate hypermutation. 

Despite attempts to identify specific mutations in each subgroup, we were only able to identify 

a higher presence of BRAF mutations in CMS1 and KRAS mutations in CMS3, but without 
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achieving a distinctive pattern. Finally, at the level of gene expression, CMS1 was 

characterised by the presence of genes associated with immune infiltration and with activation 

of immune evasion pathways, while CMS2 was closely associated with the Wnt/Myc 

pathways. By contrast, CMS3 showed an enhancement of multiple metabolic signatures and 

CMS4 a pronounced upregulation of genes associated with epithelial to mesenchymal 

transition and signatures linked to the activation of TGF-β signalling. Moreover, multiple 

subsequent investigations have tried to relate these subgroups to different events (clinical-

pathological relationship, immune–microenvironment interaction, and prognosis–treatment 

association] to achieve a possible refinement of the classification (Figure 1).  

Figure 1. CMS classification. CIN, chromosomal instability; CMS, consensus molecular subtypes; 

DC, dendritic cell; EGFR, epidermal growth factor receptor; MSDC, myeloid-derived suppressor 

cells; MSI, microsatellite instability; MSS, microsatellite stability; NK, natural killer; PD-1, 

programmed cell death protein 1; TGF-β, transforming growth factor beta; Tregs, regulatory T cells; 

LAG3, lymphocyte activating 3; Th17, lymphocyte T helper 17. 

The clinical-histopathological variables through the CMSs are associated with different 

histological types of the precursor adenoma; trabecular-mucinous, complex tubular structure, 

papillary and desmoplastic reaction for CMS1, CMS2, CMS3 and CMS4, respectively [28,29]. 

In addition, a relationship with their localisation has also been observed; CMS1 is 

predominantly found on the right side and CMS2 on the left side and may be correlated to 

their respective mutational characteristics [30]. Another clinical feature observed has been the 

relationship between CMSs and the different stages of CRC, with CMS4 being the most 

frequently found in advanced stages. However, converting these relationships into a gold-

standard pattern is complicated by the intratumoral heterogeneity of CMSs in the same 

sample observed in different studies. This pronounced heterogeneity is probably explained 

by gene expression variations between the different regions of the tumour and in association 

with the components of the tumour microenvironment (immune-stromal content). The 

different immuno-stromal phenotypes of CRC can be directly related to genomic events and 

the production of immunogenic peptides as well as the density of CTL infiltration [31]. This 

leads to two major immuno-stromal phenotypes; [1] Highly immunogenic: hypermutated 

tumours with DNA repair defects, high infiltration of Cytolytic T Lymphocytes (CTLs) and 
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Lymphocyte T helper 1 (Th1), high expression of CTL-associated antigen 4 (CTLA4), 

programmed cell death protein 1 (PD1), PD1 ligand 1 (PDL1), and indoleamine 2,3 

dioxygenase 1 (IDO1]; [2] Inflamed: high infiltration of regulatory T cells (T-reg) cells, 

myeloid-derived suppressor cells (MDSCs], intimately related to TGF-β and genes encoding 

cytokines IL-23 and IL-17 [32,33]; more recently, Thorsson et al. [34] presented a possible 

global immune classification of solid tumours based on the transcriptomic profiles where six 

groups were detailed (Table 1).  

Table 1. Thorsson et al.: global immune classification of solid tumours based on the transcriptomic 

profiles. Th1/Th2, lymphocyte T helper 1/2; TCR, T cell receptor; Th17; lymphocyte T helper 17; IFN-

y, interferon y; TGF-β, transforming growth factor β. 

C1  

Wound  

Healing 

Elevated expression of angiogenic genes 

High proliferation rate  

Low Th1/Th2 ratio related to the adaptive immune infiltrate. 

C2  

IFN-y dominant 

High proliferation rate 

Highest intratumoral heterogeneity 

Macrophages M1/M2 polarisation  

CD8 T cell population  

TCR diversity. 

C3  

Inflammatory 

Elevated Th17 and Th1 genesLow to moderate proliferation 

Lower levels of aneuploidy 

Higher somatic copy-number alterations 

C4  

Lymphocyte  

Depleted 

Moderate cell proliferation and intratumoral heterogeneity 

Prominent macrophage signature with Th1 suppressed and a high M2  

response 

C5 

 Immunologically 

quiet 

Lowest lymphocyte and highest macrophage, dominated by M2 

Low rates of proliferation and heterogeneity. 

C6  

TGF- β 

Mixed tumours with the highest TGF-b signature  

High lymphocytic infiltrate with a balanced Th1:Th2 ratio. 

The application of these phenotypes across CMSs taking into account their genomic and 

transcriptomic framework can establish that CMS1 would be immune active, while CMS4 

could be related to the inflammatory or immunosuppressed pattern; in turn, CMS2 is 

considered immune desert and CMS3 immune mixed. The prognostic value of CMS 

subgroups has been extensively studied over the last few years but Galon and colleagues [35–

37] were among the first to highlight the relevance of immunologic phenotypes in the 

prognosis of early-stage CRC, describing that high lymphocyte infiltration, especially of Th1 

CTLs and interferon gamma (IFNγ), correlates with positive overall survival (OS) and disease-

free survival (DFS), and higher levels of interleukin (IL 17) and Th17 are associated with worse 

outcomes, which may be linked to their ability to develop pro-metastatic immune evasive 

mechanisms. On the other hand, the predictive value in early stages was demonstrated only 

by a retrospective analysis of the MOSAIC trial where CMS2 patients benefited from the use 

of Oxaliplatin as adjuvant treatment. In the metastatic setting, retrospective analyses of clinical 

trials such as CALGB-80045 and FIRE 3 showed that CMS2 was associated with a positive OS, 

while CMS4 and CMS1 were associated with poor and intermediate OS, respectively [38,39]. 

The CALGB 80045 study demonstrated that the use of Bevacizumab in CMS1 was associated 

with better OS compared to the use of Cetuximab and that CMS2 showed a prolonged OS 

under treatment with Cetuximab, which could be explained by the intimate relationship of 

CMS1 with BRAF mutations and an MSI state. In addition, immunogenic subtypes, especially 
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CMS1, have a greater tendency to respond to immunotherapy than immunosuppressed 

tumours. Despite all these developments, further efforts are needed to refine the CMS 

classification to assess its predictive role and for the development of optimal therapies. 

4. Proteomics 

Proteins represent key actors in several biological processes and their expression 

could be altered by the presence of gene mutations. The proteome is the functional 

translation of the genome, as well as a useful source of potential biomarkers. Protein 

biomarkers are notably up- or downregulated in the cancer proteome as compared to the 

normal proteome; for this reason, in recent years, proteomics research has focused on 

identifying differential expression characteristics between normal and cancer cells; 

detecting proteins involved in cancer formation and progression as well as observing the 

effects of protein perturbation or modification to provide new classification tools such as 

possible diagnostic, prognostic and predictive biomarkers in CRC.  

Several preclinical studies have identified the proteome of CRC cell lines and murine 

models, to underline the biological changes that affect CRC disease. CRC cell line secretome 

has been studied as a part of a large analysis of different solid tumour cell lines in which 4584 

non-redundant proteins were identified and 30% of these were found in a ubiquitous manner 

along with different tumour types. On the other hand, 109 proteins were found only in CRC 

cells, thus demonstrating specificity for CRC and potentially being considered as biomarkers 

of disease [40]. A lot of other differences in in vitro studies showed the presence of different 

proteomics biomarkers, also in correlation with treatment, such as the study by Boisvert et al., 

in which the authors found that DNA damage could change subcellular proteomic localisation 

by performing a proteomics analysis [41]. Proteomics studies also involved engineered 

murine models. Interestingly, Zhu and colleagues utilised APC/+ mouse models and 

identified 27 up-regulated proteins in tumour tissue, compared to the normal one. Another 

group found biomarkers such as MCM4, S100A9 and CHI3L1 in CRC proteasome proximal 

fluids of conditional APC knockout mice, compared to healthy mice with normal mucosa [42]. 

Several proteomics studies have been performed in a clinical setting using biological samples 

such as blood, stools and tissue, with the same aim to identify putative biomarkers of CRC 

disease. However, even if a lot of effort has been made over the last 20 years in the field of 

proteomics, predictive proteomic biomarkers of response to treatment have not yet been 

defined. In fact, all the analyses have been conducted in small cohorts and have not provided 

the expected results since a plethora of biomarkers have been identified but none of these 

similarities between the different studies. Moreover, none of the abovementioned biomarkers 

found in a “discovery phase” have reached a “validation phase”, thus precluding their use in 

a clinical setting [43–47] (Table 2). Integration of proteomics with transcriptomic and genomic 

data and the implementation of technologies such as mass spectrometry assays could 

overcome the heterogeneity of proteomics biomarkers. 

Table 2. Predictive proteomic biomarkers in clinical setting. 

Biomarkers Relevance References 

Apolipoprotein E 180 (APOE) 

Angiotensinogen (AGT) 

Vitamin D binding protein (DBP) 

Survival outcomes in Bevacizumab-

treated patients 
Martin et al(2014) [45]] 

Phosphorylated EGFR (pEGFR) 

 
Response to Cetuximab Katsila et al (2014) [46] 

Poly (C) binding protein 1 (PCBP1)  

 
Oxaliplatin  resistance Guo et al (2017) [47] 
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FAST Kinase Domains 2 (FASTKD2) 

Caldesmon 1 (CALD1) 

Carboxypeptidase A3 (CPA3) 

Receptor interacting serine/threonine-

protein kinase 1 (RIPK1) 

Mast cell carboxypeptidase 4 (CPA3) 

Beta-1,3-galactosyltransferase 5 

(B3GALT5) 

CD177 antigen (CD177 

Dihydropyrimidine dehydrogenase 

(DPYD) 

 

Response to neoadjuvant treatment 

(5-Fu/Capecitabine  ± oxaliplatin ) 

for rectal cancer 

Chauvin et al (2018) [48] 

Plectin -1 (PLEC 1) 

Transketolase (TKT) 

Trifunctional enzyme subunit 

mitochondrial precursor (HADHA) 

Transgelin (TAGLN) 

 

Response to 5-FU ± oxaliplatin Croner et al (2016) [49] 

Fibrinogen B chain (FGB) 

Serpin B5 – B9  

Peroxiredoxin-4 (PRDX4)  

Cathepsin D (CTSD) 

Response to 5-FU ± oxaliplatin epetto et al (2017) 

5. Metagenomics 

Metagenomics is the study of a microbiota community. The microbiota is the set of 

microorganisms (bacteria, viruses, fungi, protozoa, worms and archaea) that inhabit the 

human body. This science allows the discovery of microbial communities in their complex 

natural environment and their relationship with the host using techniques based on 

sequence divergences of the small subunit ribosomal RNA (16S rRNA) as NGS, 

denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridisation 

(FISH), terminal restriction fragment length polymorphism (T-RFLP) and DNA 

microarrays [48]. The Human Microbiota project emerged in the 2000s with the aim of 

characterising the human microbiome with more precision in order to determine the 

intrinsic relationship with diseases and to provide a standardised data source. Both 

metagenomics and HMP allowed the development of the gut microbiota profiling that 

represents 29% of the human microbiota and is mostly composed of prokaryotic 

microorganisms that maintain a dynamic and homeostatic symbiotic relationship with the 

host supporting a robust immune and nutritional system [49,50]. The disruption of this 

homeostatic process leads to the development of multiple diseases such as inflammatory 

bowel disease (IBD) and CRC. Initial evidence for host–microbiota interactions in CRC 

emerged in 1969 with the publication of Vivienne Aries et al. and in 1975 when it was 

shown that the carcinogen dimethylhydrazine triggered significantly less colonic 

tumorigenesis in germ-free rats than in those with gut microbiota [51], but over time, 

multiple studies have also demonstrated that pro-carcinogenic microorganisms can 

influence cell proliferation, genomic instability and the tumour microenvironment of CRC 

[50,52–54]. Enterotoxigenic Bacteroides fragilis (ETBF) secretes B-fragilis toxin (BFT) that 

binds to E-cadherin, allowing its translocation to B-cadherin and the subsequent 

activation of the proto-oncogene c-Myc and therefore the cell proliferation of the colonic 

epithelium; by a similar mechanism, Fusobacterium nucleatum binds to E-cadherin through 

FadA, activating the Wnt/B-cadherin pathway, while Escherichia coli (EC) releases the 

genotoxin colibactin (pks+), which causes senescent cells to secrete growth factors. 

Furthermore, in vitro studies have shown that the genotoxin colibactin pks+ and 
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Enterococcus faecalis alkylates DNA, producing double-strand breaks, aneuploidy and 

microsatellite instability [55]; by contrast, ETBF can induce DNA damage by stimulating 

inflammation and a pro-oxidant microenvironment through the expression of the 

spermine oxidase enzyme (SMO). Moreover, the relationship between the microbiota and 

the immune system has allowed endogenous pathogens to interfere in the tumour 

microenvironment by activating pro-tumorigenic immune responses like ETBF increase 

in mice models the T-Th17 that is generally associated with worse prognosis in CRC and 

Fusobacterium nucleatum use Fad 2 adhesine binding to the T cell immunoreceptor with 

immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) 

to silence the tumour-killing capabilities of cytotoxic immune cells, among other 

mechanisms described [56,57]. Therapeutic treatment of the gut microbiota has been the 

focus of recent studies (Refs. [58,59]); antibiotics, microbiota transplantation, vaccines and 

immunotherapy have been some of the therapies proposed but have not yet been enough 

to stop the development of CRC. The need for large, international studies with prospective 

and longitudinal sampling and a more focused study of colorectal cancer microbiota and 

emerging targeted therapies has led to the creation of two recent projects: the 

OPTIMISTICC project (Opportunity to investigate the microbiome’s impact on science 

and treatment in colorectal cancer) and MICROCOSM (Microbiome of colorectal cancer: 

a longitudinal study of mechanism), the results of which are awaited. 

6. Radiomics 

The progress to a multiparametric approach to CRC development is also closely 

linked to technological advances in medical imaging. Magnetic resonance imaging (MRI), 

computed tomography (CT) and fluorodeoxyglucose positron emission tomography 

(FDG-PET/CT) have diagnostic and prognostic value in all stages of CRC. Tumour 

location, volume, size and texture as well as FDG uptake represent important qualitative 

parameters that cannot reflect tumour heterogeneity. Since genomic profiling is essential 

for therapy in CRC, there have been several attempts to explore the potential role of 

radiomics in this context by developing radiogenomic models able to predict genomic 

mutations such as KRAS, BRAF and MSI status and enhance decision-making and patient 

outcomes. Lee et al. in 2016 attempted to predict KRAS status depending on C-reactive 

protein (CRP) levels using FDG-PET/CT; 179 patients of all stages were studied, 75% had 

normal CRP values and 25% had increased values. The maximum standardised uptake 

value (SUVmax) relationship could only be demonstrated in KRAS mutated (KRASmt) 

patients with normal CRP values [60]. Years later, Arslan et al. also attempted to 

demonstrate by FDG-PET/CT the association of SUVmax with the coexistence of KRAS 

mutations in 83 patients with CRC; they found that SUVmax was higher in KRASmt 

patients than in wild-type patients (24.0+/−9.0 vs. 17.7+/−8.2) [61]. Chen et al. were also 

able to show, in a study of 74 patients, the association between radiomics and KRAS 

mutations using SUVmax, 6 histograms and 40 textural indices [62]. Other works such as 

those of Oh et al. and Xu et al. were performed with MRI specifically for patients with 

rectal cancer. The first group was able to demonstrate that three radiomics features were 

significantly associated with KRAS mutation status, while Xu et al. observed that 

differences were higher in the KRASmt group [63,64]. Gonzalez Castro et al. in a study of 

147 patients noted that grey-level pixels and spectral texture features CT-based radiomics 

can predict KRAS mutations [65]; these findings were supported by the group of Taguchi 

et al. [66]. On the other hand, two studies (Orner et al. and Krikelis et al.) that predict 

KRAS status by FDG-PET/CT failed to demonstrate a statistically significant relationship 

between SUVmax value and KRAS mutation status [67]. Similarly, Hong et al. also failed to 

find a significant relationship between MRI and KRAS mutation. By contrast, there is 

limited literature related to radiomics predicting BRAF mutations and MSI status in CRC 

[68]. Kawada et al. in 2012 with a retrospective study of 51 patients showed that 

KRAS/BRAF mutation correlated with higher SUVmax [69]. Similar results were found by 

Lei Yang et al. in 2018 that demonstrated that three CT radiomics feature signatures were 
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significantly associated with KRAS/NRAS/BRAF mutations (p < 0.001) [70]; Negreros-

Osuna et al. in 2020 show that BRAF mutation could be predicted by radiomics features 

[71]. Concerning MSI’s predicted status, two studies published in 2021 support the 

previous research findings of Pernicka et al. [72]. Both prospective and multicentre trials 

attempted to predict MSI status by CT using three models (clinical model, radiomics 

model and an integrated model); the clinical-radiomic model was in both cases the best 

predictor of the relationship with MSI status [73,74]. (Table 3 summarises the 

characteristics of radiomics studies.)  

Table 3. Selected colorectal cancer radiogenomics studies on TC/MRI and FDG-PET/TC  imaging. 

CT, computed tomography; MRI, magnetic resonance imaging; FDG-PET, fluorodeoxyglucose 

positron emission tomography; MSI, Microsatellite instability; SUVmax, Maximum standardized 

uptake value; KRASmt, KRAS mutated; BRAFmt, BRAF mutated. 

Year 
Author 

 

Complementary  

Imaging Method 
Study N Study Population Aim Conclusion 

2021 
Cao et al 

[75] 
CT scan R 502 Stage II-III 

Prediction of MSI  

status  

32 radiomics features show  

correlation with MSI status, the 

combined model (Clinical risk 

factors + radiomic features) is 

better to predict MSI status 

2021 Li et al [76] CT scan  R 368  
Prediction of MSI  

status  

The combined model (tumour 

location + 8 radiomic features) 

can predict MSI status.  

2020 
Arslan et al 

[63] 
FDG-PET/CT R 83 All stages 

Prediction of  KRAS 

status 
SUVmax was higher in KRASmt 

2020 Oh et al [65] MRI R 60 
Rectal tumours 

All stages  

Prediction of KRAS 

status 

MRI imaging features  

(Skewness, médium texture)  

could predict KRASmt 

2020 

Gonzalez-

Castro et al 

[67] 

CT scan R 47 All stages 
Prediction of KRAS 

status 

Radiomics features (texture in 

the tumour region + standard  

intensity) can predict the 

presence of the KRASmt  

2020 
Negreros-

Osuna [73] 
CT scan R 145 Stage IV 

Prediction of BRAF 

status 

Standard deviation (SD) and 

mean value of positive pixels 

(MPP) were lower in the BRAFmt 

group.  

2020 Cui et al MRI R 304 
Rectal tumours 

All stages 

 Prediction of KRAS 

status  

Seven radiomics features were 

moderated predicting KRAS  

status 

2019 
Chen et al 

[64] 
FDG-PET/CT R 74 All stages 

Prediction of KRAS 

status  

 KRASmt tumours had an  

increased value of SUVmax  

2019 Xu et al [66] MRI R 158 
Rectal Tumours 

stages II-III 

Prediction of KRAS 

status 

Six radiomic features  were 

higher in the KRASmt group 

2019 
Taguchi et 

al [68] 
CT scan R 40 Stage II-IV 

Prediction of KRAS 

status  

CT textures can predict the 

KRASmt  

2019 
Pernicka et 

al [74] 
CT scan R 198 Stage II-III 

Prediction of MSI  

status  

The combined model (Clinical + 

radiomic features) is better at 

predicting MSI 

2018 
Yang et al 

[72] 
CT scan  R 117 All Stages 

Prediction of 

KRAS/NRAS/BRAF 

status 

Three  radiomics features could 

be useful for predicting 

KRASmt/NRASmt/BRAFmt 
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2017 Oner et al FDG-PET/CT R 55  
Prediction of KRAS 

status 

No significant association  

between KRAS gene mutation 

and SUV max, MTV, TLG and 

haematological parameters. 

2016 
Lee et al 

[62] 
FDG-PET/CT P 179 All stages 

Prediction of the 

KRAS status  

depending on CRP 

level  

Higher SUVmax in KRASmt  

patients with normal CRP 

2016 
Lovinfosse 

et al 
FDG-PET/CT R 151 All stages 

Prediction of KRAS, 

NRAS, BRAF 

No significant association  

between quantitative parameters 

and KRAS, NRAS, BRAF status  

2015 
Kawada et 

al 
FDG-PET/CT R 55 Stage IV 

Prediction of KRAS 

status 

SUVmax remained significantly 

associated with KRASmt in  

tumours larger than 10mm   

2014 
Krikelis et 

al [69] 
FDG-PET/CT R 44 Stage IV 

Prediction of KRAS 

status 

No significant correlation  

between SUVmax values and 

KRASmt 

2013 
Hong et al 

[70] 
MRI R 29 

Rectal Tumours  

Stages II-III 

Prediction of KRAS 

status 

No significant correlations  

between MRI parameters and 

KRASmt 

2012 
Kawada et 

al [71] 
FDG-PET/CT R 51 All stages 

Prediction of KRAS-

BRAF status  

Higher FDG accumulation in  

patients with KRASmt and 

BRAFmt and can be used to 

predict mutations 

The potential role of radiomics in the identification of new prognostic and predictive 

CRC biomarkers has been translated into the use of machine-learning algorithms to 

provide clinical information on innovative artificial intelligence (AI) models. These 

computational analyses have identified patterns that represent a diagnostic tool better than 

conventional radiomics models [75]. Recently, at ESMO 2021 Congress, an AI model to 

automatically detect MSI status in early CRC has been presented. AI integrated imaging 

has led to the identification of CRC on unstained tissue samples and subsequently to a 

dichotomic differential diagnosis between MSS and MSI status, even if with low 

specificity. Therefore, although AI imaging could represent an innovative approach to 

determine MSI status, larger studies are requested to further confirm these data [76]. 

Despite the high potential of radiomics, the small population numbers and lack of 

reproducibility are two major limitations. Future efforts with a better-defined population, 

combined (clinical-radiomic) models, and the definition of the most appropriate imaging 

method could better clarify the landscape for prospective studies and change clinical practice. 

7. Conclusions 

The development of omics sciences and their technologies has helped to understand 

the onset, progression and treatment of CRC in a more integrated manner. Genomic and 

transcriptomic profiling has the main role of establishing molecular subtypes with the 

corresponding stratification of patients to pave the way for personalised medicine. Both 

DNA and RNA are vectors of genetic information that encode proteins. Their study, 

through proteomics, allows the true functional interpretation of what happens at the 

cellular level in a given situation as well as its most crucial contribution to CRC in the 

identification of potential new biomarkers and targets for novel targeted therapies. The 

study of the microbiota provides a non-traditional tool with a future role in better 

understanding tumour biology, as does radiomics, which serves as a bridge between 

medical imaging and precision medicine, providing objective and accurate information 

that in the future will help to better understand intratumoral and intertumoral 
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heterogeneity through the use of a non-invasive method. This multiparametric and 

holistic approach has provided short-term benefits through biomarkers and potential 

targets, but there is still a long way to see long-term benefits through early diagnosis and 

increased overall survival in CRC. 
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