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Abstract: The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked biobank 
at the University of Pennsylvania (Penn Medicine). A large variety of health-related information, 
ranging from diagnosis codes to laboratory measurements, imaging data and lifestyle information, 
is integrated with genomic and biomarker data in the PMBB to facilitate discoveries and transla-
tional science. To date, 174,712 participants have been enrolled into the PMBB, including approxi-
mately 30% of participants of non-European ancestry, making it one of the most diverse medical 
biobanks. There is a median of seven years of longitudinal data in the EHR available on participants, 
who also consent to permission to recontact. Herein, we describe the operations and infrastructure 
of the PMBB, summarize the phenotypic architecture of the enrolled participants, and use body 
mass index (BMI) as a proof-of-concept quantitative phenotype for PheWAS, LabWAS, and GWAS. 
The major representation of African-American participants in the PMBB addresses the essential 
need to expand the diversity in genetic and translational research. There is a critical need for a 
“medical biobank consortium” to facilitate replication, increase power for rare phenotypes and var-
iants, and promote harmonized collaboration to optimize the potential for biological discovery and 
precision medicine. 

Keywords: genomics; electronic health records; biobank; PMBB; precision medicine; learning health 
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1. Introduction 
Precision medicine incorporates clinical, environmental, lifestyle, family, and ge-

nomic data to tailor disease management and optimize disease prevention and health 
maintenance. Since the completion of the human genome project, large-scale genomic in-
formation linked to individual-level phenotype data has fueled biomedical discovery and 
has become an integral component of precision medicine. Large amounts of clinical data 
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are generated daily in clinical care and stored in the electronic health record (EHR). Link-
ing the phenomic data encompassed in the EHR with biospecimens and genomic data 
from appropriately consented individuals at scale represents a tremendous opportunity 
for biomedical discovery and precision medicine. Penn Medicine, part of the University 
of Pennsylvania, is a large integrated academic health system with six hospitals and ten 
multispecialty centers that serve south-central Pennsylvania, south-central New Jersey, 
and northern Delaware. The Penn Medicine BioBank (PMBB) was launched with the in-
tent of harnessing clinical data for discovery, creating a genomics-enabled learning 
healthcare system [1], and facilitating precision medicine for disease prevention and per-
sonalized therapy. Patients are enrolled under a single IRB-approved protocol that ena-
bles the acquisition of biospecimens, generation of genomic and multi-omic data, linkage 
to clinical information included in the EHR, and permission to recontact participants for 
future studies and/or the return of clinically relevant results. The scientific goal of the 
PMBB is to promote the integration of clinical and genomic data to power biomedical dis-
covery and precision medicine. This report describes the operations and architecture of 
the PMBB and summarizes the information on the first ~170,000 participants recruited. 

2. Materials and Methods 
2.1. Planning and Development of PMBB 

Recognizing the need for access to large numbers of appropriately consented and 
well-characterized human biospecimens to conduct translational research, in 2008, Penn 
Medicine established an IRB protocol and process for consenting patients and obtaining 
blood for genomic and biomarker research. In 2013, after a strategic planning process 
identified a pressing institutional mandate for an expanded biobank resource, the Penn 
Medicine BioBank (PMBB) was formally constituted, funded, and launched under the In-
stitute of Translational Medicine and Therapeutics (ITMAT) in order to ensure it was in-
tegrated with critical infrastructure relevant to clinical and translational research and pre-
cision medicine. 

The PMBB protocol was established as an institutional umbrella protocol under 
which any registered patient of Penn Medicine aged 18 or older was eligible, with no ex-
clusions except an inability to provide informed consent. The core features of the consent 
include: (1) provision of a blood sample for biobanking and broad use for data generation, 
including genomic data and permission to bank any other residual tissues obtained in the 
context of clinical care; (2) permission to access data from the EHR for the purpose of 
research; and (3) permission to recontact participants for potential future studies or to 
return results. 

2.2. Patient-Participant Recruitment 
Initially, PMBB enrollment was accomplished through face-to-face encounters with 

clinical research coordinators (CRCs) in outpatient clinical areas, prioritizing locations 
where procedures that involved access to blood samples (phlebotomy labs, imaging pro-
cedures involving IV placement, cardiac catheterization labs, etc.) were being performed. 
After the onset of the COVID-19 pandemic, in August of 2020, the PMBB transitioned to 
remote recruitment efforts to prioritize patient-participant and staff safety by initiating an 
electronic consent and enrollment process through REDCap, a secure web platform for 
building and managing online databases and surveys. Simultaneously, a process for con-
sent utilizing the EHR (PennChart, Epic) was developed, which was initially done in per-
son at the time of patient check-in, and then also expanded to include consent at the time 
of pre-check-in through their myPennMedicine online patient portal, available through 
web browsers and mobile devices. Eligible patients scheduled for an upcoming outpatient 
office visit at one of the UPHS clinic sites actively recruiting (Figure 1E) receive the PMBB 
consent form as part of their electronic pre-visit check-in process and have the option to 
complete the form online through this portal. The three-page consent form includes a link 



J. Pers. Med. 2022, 12, 1974 3 of 16 
 

 

to the PMBB website, the PMBB email address, and the PMBB enrollment telephone num-
ber, which is staffed by CRCs on weekdays from 7:30 a.m. to 5 p.m. local time to answer 
questions potential participants may have as they are completing the consent procedure. 
A small percentage (~5%) of patients who either are not eligible to receive the online pre-
check-in (e.g., certain surgical patients), or patients who skip the consent form during their 
online pre-check-in, are consented in person by registration desk staff when the patient 
physically reports for their appointment. PMBB brochures, with basic information about 
the PMBB, the PMBB website link, and contact information, are also available for registra-
tion desk staff to distribute to patients during the consent process. The website also con-
tains a short video for patients explaining how PMBB participants contribute to scientific 
research. 

 
Figure 1. Recruitment and Demographics. (A) Distribution of enrollment through paper and elec-
tronic consent. (B) Cumulative numbers of participants consented and biospecimen sample collec-
tion. (C) Distribution of participants by age group and self-reported sex. (D) Distribution of partic-
ipants by self-reported race. (E) Density of recruitment around the six clinical sites of UPHS in Penn-
sylvania and New Jersey: Hospital of the University of Pennsylvania, Penn Presbyterian Medical 
Center, Pennsylvania Hospital, Chester County Hospital, Lancaster General Health, Princeton 
Health. 

A) B)

C) D)

E)
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2.3. Sample Collection 
The PMBB patient participants consent to the collection of identifying information 

(e.g., name, date of birth, medical record number, and contact information), information 
from medical records (e.g., test results, medical procedures, medical diagnosis and proce-
dure codes, lab values, images such as X-rays, and medicines), blood samples (up to four 
tablespoons), urine, saliva and/or respiratory specimens, and residual samples from clin-
ical pathology. There is no limit on the length of time samples may be kept in the biobank. 
All blood samples are banked as whole blood, plasma, serum, buffy coat, and DNA for 
future studies following stringent standard operating procedures. Samples are collected 
in sterile vacutainer tubes barcoded with an identification number and scanned into a 
system for sample tracking. Using the institution’s adopted laboratory information sys-
tem, LabVantage (LabVantage Solutions, Inc., Somerset, NJ, USA), biospecimens are pro-
cessed and tracked with time-date stamps to document processing and freezing times 
throughout the laboratory workflow. Sample inventory is robustly supported with real-
time, adaptive sample pull lists and images of sample pull locations, as well as simulta-
neous creation of distribution boxes and decrement of sample aliquots. 

Prior to the COVID-19 pandemic, blood samples were collected from patients at the 
point of enrollment by CRCs cross-trained as certified phlebotomists. With the transition 
to electronic consenting, the consenting and sample collection processes have been decou-
pled. For sample collection, an automated weekly report is generated containing a list of 
consented patients for whom a blood sample is absent who have an upcoming phlebot-
omy appointment the following week at select Penn Medicine sites. Every Friday, three 
PMBB physicians place the electronic lab order for PMBB blood draws in the EHR of these 
patients. When they report to their phlebotomy appointment, the phlebotomist adds on 
the PMBB blood order to the patient’s existing orders and collects the blood sample. One 
6 mL EDTA tube is collected per patient. All blood samples are transported to the central-
ized clinical laboratory and logged in prior to being transferred to the PMBB core labora-
tory, where the blood is processed and stored following standard operating procedures. 

Additionally, the PMBB banks residual biospecimens and tissues (for example, 
blood, urine, cerebrospinal fluid, or tissue collected as part of clinical care) when available 
as fresh, frozen or fixed dependent upon the tissue histology, following standard proce-
dures. Residual tissues are released by the Department of Pathology after examination if 
the specimen or tissue is determined to be in excess of that required for patient care, or for 
tissue or bodily fluid that would otherwise be waste material. 

2.4. Genomic Data Generation 
2.4.1. Genotyping and Imputation 

DNA samples on approximately 44,000 PMBB participants have been genotyped to 
date on an Illumina Global Screening Array v.2.0 (GSAv2) by the Regeneron Genomics 
Center (RGC). The genotyping array chip has a backbone of 654,027 genetic markers as 
well as additional ancestry informative markers. In addition, approximately 8595 of the 
44,000 PMBB participants were also genotyped in the Center for Applied Genomics (CAG) 
at the Children’s Hospital of Philadelphia on the GSAv1 and GSAv2 genotyping array. 
After performing sample-level quality control (QC), genotype imputation was performed 
using Eagle2 [2] and Minimac [3] software on the TOPMed Imputation Server [3]. Impu-
tation was performed for all autosomes, with TOPMed version R2 on a GRCh38 reference 
panel. Cosmopolitan post-imputation QC included imputation score filtering (R2 > 0.7), 
removal of palindromic variants, biallelic variant check, sex check, genotype call rate 
(>99%) and sample call rate (>99%) filtering, minor allele frequency filtering (MAF > 1%), 
and a Hardy–Weinberg equilibrium test (p-value > 1 × 10−08). We generated PCAs to adjust 
for population structure and to identify genetically informed ancestry (GIA) from EIGEN-
SOFT [4]. 
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2.4.2. Whole Exome Sequencing 
Whole exome sequencing (WES) has been performed on approximately 44,000 par-

ticipants to date by the RGC. DNA samples were processed with the custom IDT xGen v1 
exome capture platform and sequenced on the Illumina NovaSeq 6000 system on S4 flow 
cells. Sequence alignment, variant identification, and genotype assignment were per-
formed using a WeCall variant caller. Sample level QC steps were then applied and sam-
ple sex errors, high rates of heterozygosity/contamination (D-stat > 0.4), low sequence cov-
erage (less than 85% of targeted bases achieving 20X coverage), or genetically identified 
sample duplicates, were excluded. Additional filters were applied to pVCFs. Any SNV 
genotype with a read depth of less than seven reads (DP < 7) was changed to a no-call. 
After the application of the DP genotype filter, only the SNV variant sites that met at least 
one of the following two criteria were retained: (1) at least one heterozygous variant gen-
otype with an allele balance ratio greater than or equal to 15% (AB ≥ 0.15); (2) at least one 
homozygous variant genotype. The same filtering was applied to INDEL variants but 
with an INDEL depth filter of DP < 10 and an INDEL allele balance cutoff of AB >= 0.20. 
Multi-allelic variant sites in the PVCF file were normalized by left-alignment and repre-
sented as bi-allelic. The variant frequency data for exome sequences and imputed data are 
available here: https://pmbb.med.upenn.edu/allele-frequency (accessed on 20 November 
2022). The PMBB has a return of actionable results program for genomic findings that have 
a potential impact on participant health; this program is beyond the scope of this manu-
script and will be described in a separate manuscript. 

2.5. Clinical Data and Clinical Informatics Core 
Clinical data are obtained through multiple sources, including a questionnaire com-

pleted at the time of recruitment and the Penn Medicine Clinical Data Warehouse and 
PennG&P (Penn Genotype & Phenotype) platform. PennG&P contains over 5.6 million 
patient records and other discrete clinical information amalgamated from 12 different 
source systems throughout the enterprise. PennG&P is based on a standard research data 
model called the Observational Medical Outcomes Partnership (OMOP), Common Data 
Model (CDM) [5], which is used worldwide by the Observational Health Data Sciences 
and Informatics (OHDSI) research consortium. It uses standardized language from na-
tional coding systems, such as SNOMED, LOINC [6], and RxNorm [7], for consistent 
terms and the labeling of information. Additionally, the PMBB maps International Classi-
fication of Diseases (ICD)-9 and ICD-10 codes to 1866 discrete disease traits using Phecode 
groupings [8]. 

2.6. Access to Data and Biospecimens 
In keeping with the expansive mission of the PMBB, data and biospecimens are avail-

able to investigators throughout the Perelman School of Medicine and Penn Medicine for 
a broad range of research. External collaborations, including those with other academic 
institutions as well as biopharma, are encouraged and proceed through scientific collabo-
ration with identified local Penn investigators. All research studies must have study spe-
cific IRB approval because the umbrella PMBB IRB protocol covers only sample and data 
acquisition, processing, storage, and dissemination. Researchers request access to data 
and biospecimens using a simple REDCap project proposal intake form which is then re-
viewed by the PMBB Steering Committee. Proposals are evaluated for scientific merit and 
priority, as well as the efficient use of data and biospecimens, as well as the ability to 
impact the care provided by Penn Medicine clinicians. The PMBB Steering Committee 
provides feedback to the investigator with either approval to move forward or with con-
cerns to be addressed. This REDCap project also includes a Data Access Agreement form 
that must be signed by investigators prior to gaining access to any PMBB data. Per the 
terms of this agreement, the sharing of PMBB data with additional collaborators, whether 
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they are internal or external to Penn, must be handled by the PMBB and not the investi-
gators themselves, to maintain the confidentiality and integrity of any protected health 
information (PHI) included within PMBB datasets. 

Standardized EHR clinical data are deidentified and provided to approved investi-
gators in a secure computing environment. For assistance with the creation of more com-
plicated phenotypes, researchers have access to the Clinical Informatics Core (CIC), a 
shared resource that is managed by the Institute for Biomedical Informatics in collabora-
tion with the PMBB. The CIC is staffed by clinical data scientists with expertise in data 
extraction, natural language processing (NLP), and data analysis. 

3. Results 
3.1. Enrollment 

During the initial phase of recruitment from 2008 to 2013, 13,366 Penn Medicine pa-
tients were enrolled (Figure 1A,B). In 2013, recruitment was expanded, resulting in a 
steady increase in enrollment to ~71,000 participants by the end of 2019 (Figure 1A,B). In 
2020, the transition to electronic consenting triggered a rapid expansion in PMBB enroll-
ment, with the total number of participants more than doubling between 2020 and 2022. 
There were 174,712 total participants enrolled in the PMBB as of September 2022 (Table 1, 
Figure 1A,B). Presently, nearly 3500 new participants are being enrolled weekly across 
two Penn Medicine hospitals that are actively recruiting through all their ambulatory 
sites, and recruitment at the other four Penn Medicine hospitals is targeted to begin in 
2023. The PMBB currently has obtained and processed blood biospecimens from approx-
imately 50% of enrolled participants; the recent shift to an electronic consent process has 
resulted in enrollment outpacing sample collection (Figure 1B). Active processes are un-
derway to obtain biospecimens on the remainder of enrolled individuals. The goal is to 
enroll >1 million Penn Medicine patient participants, with >90% providing a blood sample 
for DNA and biomarker studies. 

The PMBB participant population currently represents approximately 2.5% of active 
Penn Medicine patients. Similar to the general Penn Medicine patient population, a 
slightly higher percentage of PMBB participants are female (55.9%) as compared to male 
(44.1%) (Table 1, Figure 1C). The age distribution of PMBB participants also tracks with 
that of Penn Medicine patients, with participants ranging in age from 18 years to >100 
years (Table 1 and Figure 1C). The age distributions differ slightly between sex, with males 
trending towards an older age (Figure 1C). The PMBB cohort is diverse: 17% of enrolled 
PMBB participants (and 25% of genotyped/sequenced participants) are identified as Afri-
can American, 4% as Asian, and 3.3% as Hispanic (Table 1; Figure 1D). With nearly 30,000 
African-American patient participants currently enrolled, the PMBB has, to our 
knowledge, the largest number of African-American participants of any single-institu-
tional medical biobank in the US. As shown in Figure 1E, most biobank participants reside 
within the Philadelphia metropolitan area including New Jersey and Delaware (53.6%); 
there is also a total of 3.3% of participants from other states across the US. 

Table 1. Comparison of PMBB Participant Characteristics with UPHS Patient Characteristics. 

 
PMBB  

Participants  
n (%) 

Genotyped  
Participants  

n (%) 

UPHS  
Patients  
n (%) † 

Total 174,712 43,884 3,688,610 
Gender    

Female 97,674 (55.9%) 21,965 (50.1%) 2,042,868 (55.4%) 
Male 77,055 (44.1%) 21,918 (49.9%) 1,604,210 (43.5%) 
Other 17 (<1%) 1 (<1%) 107 (<1%) 

Age Range (Years) 18–103 18–103 0–121 
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Age Groups    
18–29 17,815 (10.2%) 4302 (9.8%) 392,532 (10.5%) 
30–39 27,355 (15.7%) 5406 (12.3%) 518,679 (14.1%) 
40–49 25,819 (14.8%) 5688 (13.0%) 430,489 (11.7%) 
50–59 33,827 (19.4%) 9519 (21.7%) 458,952 (12.4%) 
60–69 40,268 (23.0%) 10,839 (24.7%) 507,397 (13.8%) 
70–79 28,582 (16.4%) 5941 (13.5%) 400,016 (10.8%) 
80+ 8811 (5.0%) 2189 (5.0%) 333,781 (9.0%) 

Self-reported Race    
African American 29,372 (16.8%) 10,815 (24.6%) 672,461 (18.2%) 

White 124,406 (71.2%) 29,329 (66.8%) 2,029,684 (55.0%) 
Asian 7156 (4.1%) 979 (2.2%) 152,615 (4.1%) 
Other 9386 (5.4%) 1372 (3.1%) 370,313 (10.0%) 

Unknown 7499 (4.3%) 1761 (4.0%) 463,537 (12.6%) 
Self-reported Ethnicity    

Hispanic 5715 (3.3%) 1112 (2.5%) 174,179 (4.7%) 
Non-Hispanic 165,713 (94.8%) 42,425 (96.7%) 3,290,018 (89.2%) 

Unknown 3284 (1.9%) 347 (0.8%) 183,723 (5.0%) 
Genetically-Inferred  
Ancestry    

African N/A 11,300 (25.7%) N/A 
European N/A 30,360 (69.2%) N/A 
East Asian N/A 680 (1.5%) N/A 

South Asian N/A 573 (1.3%) N/A 
Admixed American N/A 711 (1.6%) N/A 

Other N/A 301 (0.7%) N/A 
Median period of EHR  
follow-up since enroll-
ment 

7 years 5.7 years N/A 

† Demographics based on EHR data on UPHS patients who have been seen at least once from 2008 
to present. Data from following UPHS sites were included: Hospital of the University of Pennsyl-
vania, Penn Presbyterian Medical Center, Pennsylvania Hospital, Chester County Hospital, Prince-
ton Health. 

3.2. Clinical Data Availability 
There are over 66.7 million data points collected in the form of encounters, diagnosis 

codes, procedure codes, and medication orders (Table 2). Across the PMBB cohort, over 
46.7 million encounters, 10 million diagnosis codes, 3.6 million procedure codes, and 6.3 
million medication orders have been recorded, averaging 268 encounters, 57 diagnosis 
codes, 21 procedure codes, and 36 medication orders per individual (Table 2). The most 
common diagnoses codes include hypertension, hypercholesterolemia, obesity, and in-
somnia (Figure 2). 
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Table 2. Clinical Data Availability for PMBB Participants. 

Event Type Total Number of Events Mean Number of Events 
(SD) * 

Encounter 46,738,773 268 (321) 
Diagnosis Code (number of 
condition-related visits) 10,023,922 57.4 (58.7) 

Procedure Code 3,621,056 20.7 (26.7) 
Medication Order 27,914,486 159.8 (271.8) 
* Average number of events each patient has for each event type. 

 
Figure 2. Prevalence of diagnoses code among PMBB participants grouped by broader disease do-
main. 

3.3. Phenome-Wide Association Study (PheWAS) of BMI 
To evaluate the validity of the PMBB clinical data, a phenome-wide association study 

(PheWAS) was conducted using mean body mass index (BMI) as the exposure and 1856 
disease traits derived from grouping encounter diagnoses using phecodes as the outcome. 
All the models were adjusted with age, sex, and self-reported race in the EHR. A total of 
662 associations of BMI with at least one disease trait across the 18 disease categories 
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passed Bonferroni correction for multiple hypothesis testing (p < 2.6 × 10−5). The strongest 
associations with BMI were with type 2 diabetes, hyperlipidemia, overweight, obesity, 
sleep apnea, and osteoarthritis (all p < 1 × 10−331, Figure 3, Supplementary Table S1). The 
associations with mean BMI show evidence of its effect on all organ systems, covering 
associations with the spectrum of disease categories (Figure 3). Additional associations 
include hypertension, heart failure, endometrial hyperplasia, bone fracture, depression, 
pregnancy complications, and respiratory failure (Figure 3). 

 
Figure 3. A phenome-wide association between mean body mass index and 1856 EHR-derived phe-
notypes. 

  



J. Pers. Med. 2022, 12, 1974 10 of 16 
 

 

3.4. Laboratory-Wide Association Study (LabWAS) of BMI 
We extracted 24 clinical laboratory measurements from the EHR for all the PMBB 

participants. These lab measurements were selected based on a common lab test in the 
health system and contained at least 1000 individuals within each lab which was meas-
ured. We computed median values for each individual within each lab and, as a proof-of-
concept, evaluated their association with BMI. Linear regression was performed to test for 
association and all the models were adjusted with age, sex and self-reported race. We rep-
licated many known associations between BMI and lab values (Figure 4, Table S2). For 
example, blood glucose measures were significantly associated with increased BMI. Tri-
glyceride levels were significantly positively associated and high-density lipoprotein cho-
lesterol (HDL-C) levels were significantly inversely associated with BMI, as expected. 
Markers of inflammation were also significantly associated with BMI. In this proof-of-
concept analysis of the lab measurements, the associations with BMI support the associa-
tion with the disease outcomes reported in the PheWAS. 

 
Figure 4. A laboratory-wide association between mean body mass index and 24 laboratory meas-
urements derived from the electronic health records. 

3.5. Genome-Wide Association (GWAS) with BMI 
As a proof-of-concept, we conducted a GWAS for median BMI within five genetically 

inferred ancestry groups. These included 30,360 EUR, 11,300 AFR, 711 AMR, 680 EAS, and 
573 SAS individuals in the PMBB (Table 1). The analysis tested the association of ~7.6 mil-
lion SNPs with MAF > 1%, imputation R2 > 0.3, using a linear mixed model implemented 
in REGNIE. All the models were adjusted with age, sex, and the first six ancestry specific 
principal components to account for population stratification. We then conducted cross-
ancestry meta-analysis by integrating GWAS summary statistics from each ancestry 
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group using PLINK. Our meta-analysis identified 201 genome-wide significant SNP asso-
ciations with BMI (p < 5 × 10−08, Figure 5), replicating several previously reported associa-
tions in published GWAS of BMI. The strongest association in our PMBB analysis was 
with FTO variant rs55872725 (p = 4.7 × 10−28, beta = 0.271), which has been previously re-
ported. Other known associations included rs7559547 (p = 3.92 × 10−14, beta = 0.41, 
TMEM18) and rs539515 (p = 9.02 × 10−11, beta = 0.36, SEC16B), among others. Summary 
statistics of results with p < 1 × 10−04 are available in Supplementary Table S3. 

 
Figure 5. Manhattan plot showing association between common genetic variants (MAF > 1%) and 
BMI. 

4. Discussion 
The Penn Medicine BioBank was created to harness clinical data and biospecimens 

for biomedical research within Penn Medicine, a large academic healthcare system. 
Within a decade, it has emerged as a critical resource for translational medicine that has 
fueled discovery science and facilitated precision medicine, empowering a genomics-en-
abled learning healthcare system. As of September 2022, the PMBB had enrolled over 
174,000 participants, obtained biospecimens on >70,000 participants, and generated ge-
nomic data on ~44,000 of its participants. The PMBB intends to enroll >1 million partici-
pants, obtain biospecimens on >90% of participants, and generate genomic data on all par-
ticipants for whom biospecimens have been obtained. 

The 2015 Institute of Medicine (now National Academy of Medicine) report on Trans-
lating Genomic-Based Research for Health [1] advocated for the development of ‘ge-
nomics-enabled learning healthcare systems’ based on the systematic summarized collec-
tion and use of genomic data, integrated with phenotypic data, to make discoveries and 
enhance healthcare in large healthcare systems. More recently, in its strategic vision for 
genomics research and application of genomics to clinical care, the National Human Ge-
nome Research Institute (NHGRI) emphasized the design and implementation of ge-
nomics-enabled learning healthcare systems to include infrastructure, resources, and tech-
nology development for genomics; the inclusion of underrepresented and minority 
groups to make genomic research more equitable; the development of multi-omics studies 
to get a comprehensive view of disease biology and the progression of diseases; and build-
ing tools to implement the knowledge back into the EHR to improve healthcare [9]. Large 
disease-agnostic and diverse medical biobanks at academic medical centers, such as the 
PMBB, are a critical component of fulfilling this vision. 

Despite recapitulating health and disease traits from structured diagnosis codes, and 
the successful integration of this with genomic data [10–16], it must be acknowledged that 
diagnosis codes are crude approximations of underlying biological traits. As such, the fu-
ture of EHR-empowered genomics research lies in ‘advanced phenotyping’ beyond diag-
nosis codes. These approaches include laboratory data, medication data, and other forms 
of structured data, all of which are relatively straightforward to access and use for re-
search. Laboratory data, procedure codes, family history, and billing codes are all being 
mapped to concepts from various vocabularies (MONDO [17], SNOMED) to develop phe-
notypic algorithms that characterize the outcome of interest. Even more exciting and in-
formative is the extraction of meaningful quantitative information from unstructured data 
(e.g., clinical notes, procedure reports, imaging reports, and pathology reports) using nat-
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ural language processing (NLP) methods. To this end, the PMBB has deployed NLP soft-
ware (Linguamatics, Cambridge, UK) to extract phenotypes from clinical notes and other 
unstructured data in PMBB participants. Furthermore, there is an immense amount of 
clinical imaging performed in medical centers and these images are another potential 
source of phenotypic data, sometimes referred to as ‘imaging-derived phenotypes’ (IDPs). 
In several ongoing PMBB efforts, deep learning and machine learning techniques are be-
ing used to translate imaging data, such as CT, MRI, and fMRI, into quantitative IDPs to 
fuel new discovery. 

Another approach to collecting additional phenotype and exposure data that are ab-
sent in the EHR is using participant questionnaires. During the COVID-19 pandemic, an 
initial COVID-19 survey [18] was deployed to PMBB participants to collect information 
on symptoms, co-morbidities, and outcomes related to COVID-19. As the pandemic has 
progressed, we now administer an active longitudinal survey to follow participants for 
up to 18 months from their first COVID-19 diagnosis, yielding insights into long COVID. 
Combining survey results with biospecimen and EHR-derived phenotypes can shed light 
on factors that predict the onset of disease, refine preventative care, and optimize the clin-
ical trial design. Current efforts are focused on extending active data acquisition through 
integrating mobile devices for both real-time data collection from survey questions and 
biometric activity data. 

A major focus of biobank research is the use of genomics to understand the genetic 
architecture of health and disease and its implications for clinical care by linking phe-
nomic efforts with genomic data obtained from biospecimens. Leveraging these ap-
proaches, the PMBB has developed a robust and diverse genomics research enterprise. 
Studies using PMBB data have highlighted the utility of the ‘genome-first’ approach’s util-
ity in studying rare variants at scale and identifying new associations between genes and 
disease [10,11], as well as refined the range of the phenotypic presentation of individuals 
carrying rare impactful variants in known disease genes [12,19]. 

To support equitable genomic research, a commitment to participant diversity has 
been a hallmark feature of the PMBB since its inception. Seventeen percent of PMBB par-
ticipants (and 24% of those for whom biospecimens are currently available) are African 
Americans or immigrants of African ancestry. This diversity has led to novel genomic and 
biological insights that directly impact the health of underrepresented groups. For exam-
ple, recent work in the PMBB highlighted that hereditary amyloid transthyretin cardio-
myopathy was a common yet markedly underdiagnosed cause of heart failure among Af-
rican-American individuals [20], with many cases of the disease remaining undiagnosed 
even at a tertiary medical center such as Penn Medicine. Given the availability of targeted 
therapy, this finding advocates for the aggressive utilization of genomic and precision 
medicine to diagnose transthyretin cardiomyopathy in this population. This ‘genome-
first’ approach is revealing an under-diagnosis of other genetic conditions. A ‘return of 
actionable results’ program is underway, and the implications for the greater utilization 
of genetic testing in clinical practice are clear. 

The integration of genomic data into clinical practice is essential for the next genera-
tion of healthcare. Penn Medicine is at the forefront of developing techniques to provide 
high-quality patient care based on real-world evidence and genomic discoveries [21,22]. 
An analysis of pharmacogenetic (PGx) variants in the PMBB concluded that anticipatory 
genotyping can efficiently lead to the effective communication of PGx results to patients 
[23]. Polygenic risk scores (PRS) have been posited as a novel approach to leverage com-
mon-variant genetics for clinical care to predict the genetic risk for complex diseases, alt-
hough the clinical utility of this approach has yet to be fully determined [24,25]. Research-
ers utilizing PMBB data reported that PRS for psychiatric disorders [26] and substance use 
disorders [27] has shown cross-trait associations beyond traditional diagnostic bounda-
ries, suggesting broad effects of genetic liability for these disorders. Furthermore, PRS in 
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PMBB participants significantly increased the ability to identify the cancer status of Euro-
pean individuals but not African Americans, underscoring the need for large-scale ge-
nomic studies on non-white populations [13]. 

A critical feature of the PMBB is the availability of stored plasma and serum for bi-
omarker analyses and integration with clinical and genomic data. Although the effort and 
expense of generating and storing plasma/serum aliquots are substantial, the benefit of 
this approach is rapidly becoming apparent. Multiple investigators have utilized the ge-
nomic data to identify PMBB participants with genotypes of interest to then use stored 
samples in cases and controls to measure biomarkers of interest. During the COVID-19 
pandemic, access to stored samples from PMBB participants enrolled pre-pandemic who 
subsequently developed COVID-19 permitted investigators to address a number of im-
portant research questions [28–31]. Now, with over seven years of median follow-up data 
since the recruitment of PMBB patient participants, the stored samples are increasingly 
precious for their use in assaying biomarkers that may be predictive of incident disease. 
As methods for large-scale proteomics and metabolomics improve and the costs come 
down, the opportunity to generate plasma-based large-scale omics and integrate with ge-
nomics and clinical data is increasingly feasible and promises to further enhance biologi-
cal discovery and precision medicine. 

All PMBB participants consent to be recontacted, a critical feature of the protocol that 
is useful for several purposes. Patient-reported surveys represent an important addition 
to the EHR data for certain phenotypes as well as lifestyle and exposure data. Permission 
to recontact facilitates ‘recall-by-genotype’ deep phenotyping studies, which represents a 
tremendous opportunity for ‘genome-first’ discovery. Several investigators are actively 
performing studies in which the genomic data are used to identify individuals that carry 
rare variants in genes of interest or have a high polygenic risk for certain conditions, and 
participants are contacted to consider participation in hypothesis-driven deep phenotyp-
ing studies. Deep phenotyping can include targeted imaging, immunological profiling, 
provocative testing (e.g., oral glucose or fat tolerance test), creation of induced pluripotent 
stem cells (iPSCs), or any number of other clinical phenotyping approaches driven by the 
specific scientific question. Finally, the era of precision medicine will certainly include 
many clinical trials that are targeted to individuals of a specific inherited genotype; large 
medical biobanks with pre-existing genomic data, such as the PMBB, offer a fertile oppor-
tunity for the recruitment of individuals for such genotype-directed clinical trials. 

5. Conclusions 
The PMBB is a disease-agnostic institutional biobank under a single umbrella proto-

col based at a large academic health system with the purpose of promoting a genomics-
enabled learning healthcare system to fuel scientific discovery, translational science, and 
precision medicine. A comprehensive biobank of DNA, plasma, and serum on all partici-
pants with selected other specimens and tissues on a subset of participants is linked to 
rich EHR clinical data, imaging, and survey data. The clinical database is standardized to 
OMOP and contains demographic, diagnoses (e.g., ICD-9/ICD-10 codes), procedures (e.g., 
Current Procedure Terminology—CPT codes), laboratory data, medication data, encoun-
ter types, socioeconomic factors, and survey data. The initiation of e-consenting has led to 
a substantial increase in the rate of enrollment. As of September 2022, genome-wide ge-
nomic data have been generated on ~44,000 participants and plasma multi-omics data on 
several thousand participants. The substantial representation of African-American patient 
participants in the PMBB addresses the urgent need to increase diversity in human genetic 
studies. Researchers with approved IRB protocols can request access to biobank samples 
and data through a data access portal. Publications supported by PMBB data and speci-
mens can be found here: https://pmbb.med.upenn.edu/pmbb/publications.html (accessed 
on 20 November 2022). The PMBB is one of several large medical biobanks at academic 
medical centers in the US and is strongly supportive of the creation of a ‘medical biobank 
consortium’ to facilitate replication, increase power for rare phenotypes and variants, and 
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promote harmonized collaboration around genotype-directed deep phenotyping and re-
cruitment into clinical trials. 
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