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Abstract: Objective: To evaluate the feasibility of automated machine learning (AutoML) in predict-
ing 30-day mortality in non-cholestatic cirrhosis. Methods: A total of 932 cirrhotic patients were 
included from the First Affiliated Hospital of Soochow University between 2014 and 2020. Partici-
pants were divided into training and validation datasets at a ratio of 8.5:1.5. Models were developed 
on the H2O AutoML platform in the training dataset, and then were evaluated in the validation 
dataset by area under receiver operating characteristic curves (AUC). The best AutoML model was 
interpreted by SHapley Additive exPlanation (SHAP) Plot, Partial Dependence Plots (PDP), and 
Local Interpretable Model Agnostic Explanation (LIME). Results: The model, based on the extreme 
gradient boosting (XGBoost) algorithm, performed better (AUC 0.888) than the other AutoML mod-
els (logistic regression 0.673, gradient boost machine 0.886, random forest 0.866, deep learning 0.830, 
stacking 0.850), as well as the existing scorings (the model of end-stage liver disease [MELD] score 
0.778, MELD-Na score 0.782, and albumin-bilirubin [ALBI] score 0.662). The most key variable in 
the XGBoost model was high-density lipoprotein cholesterol, followed by creatinine, white blood 
cell count, international normalized ratio, etc. Conclusion: The AutoML model based on the 
XGBoost algorithm presented better performance than the existing scoring systems for predicting 
30-day mortality in patients with non-cholestatic cirrhosis. It shows the promise of AutoML in its 
future medical application. 

Keywords: non-cholestatic cirrhosis; automated machine learning; shapley additive explanation; 
partial dependence plots; local interpretable model agnostic explanation 
 

1. Introduction 
Cirrhosis is a leading cause of morbidity and mortality across the world, which is 

characterized by a systemic pro-inflammatory milieu consisting of persistent liver inflam-
mation, extracellular matrix remodeling, and the accumulation of collagen in liver tissue 
[1]. Etiologically, viral hepatitis, especially hepatitis B viral (HBV), has been the leading 
pathogeny of cirrhosis. In addition, several kinds of cirrhosis were associated with cho-
lestasis, such as primary sclerosing cholangitis (PSC) and primary biliary cholangitis 
(PBC) [2]. Complications mainly include ascites, portal hypertensive gastrointestinal 
bleeding, jaundice, coagulopathy, and hepatic encephalopathy which may recur with in-
creasing frequency after the initial presentation, and most patients die within a median 
time of approximately 2 years [3,4]. Most studies support that early intervention in stabi-
lized cirrhosis may delay its progression to the decompensated stage [5]. 
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Several prediction models for the prognosis of liver cirrhosis have been proposed. 
The Child-Turcotte-Pugh score (CTP), including serum levels of bilirubin and albumin, 
prothrombin time, degree of ascites, and severity of hepatic encephalopathy, was initially 
introduced to predict mortality in patients with cirrhosis who underwent surgery [6]. It 
consists of two subjective indicators, which were prone to bias during application. The 
model for end-stage liver disease (MELD) score was validated as a predictor of allocation 
of organs for liver transplantation, rather than originally used to assess mortality in pa-
tients undergoing trans-jugular intrahepatic portosystemic shunt (TIPS) [7,8]. Even 
though these above models were classical, they ignored the effect of cholestasis on lipid 
metabolism in patients with cirrhosis. 

Machine learning (ML) is a scientific discipline that emphasizes efficient computing 
algorithms, including supervised, unsupervised, semi-supervised, and reinforcement 
learning, which are widely used in medicine [9]. Traditional ML includes support vector 
machine (SVM), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), 
etc. Automated machine learning (AutoML) intelligently computes hundreds or even 
thousands of mathematical models and eventually filters out the optimal model, which is 
more suitable for clinicians without a computer foundation. 

A series of previous studies has proven that clinical models based on machine learn-
ing performed better than models based on traditional logistic regression. There were no 
previous reports concerning AutoML and cirrhosis, thus we conducted this hospital-
based case-control study to develop AutoML models for predicting 30-day mortality in 
patients with non-cholestatic cirrhosis. On one hand, we evaluate the feasibility of Au-
toML in the management of chronic liver disease. On the other hand, we observe the per-
formance of AutoML in clinical modeling based on electronic health records. In this study, 
multiple models, based on various AutoML algorithms, were developed and compared 
with the existing scoring systems. 

2. Materials and Methods 
2.1. Study Design 

This was a hospital-based cohort study involving 932 patients with non-cholestatic 
cirrhosis from the First Affiliated Hospital of Soochow University between 2014 and 2020. 
A random grouping method was used to divide all participants into the training and val-
idation datasets according to the ratio of 8.5:1.5, consisting of 792 and 140 patients, respec-
tively. The outcome was 30-day mortality since hospitalization. All participants had 
signed informed consent for the medical data used in the study. According to the princi-
ples of the Declaration of Helsinki, the study was approved by local Institutional Review 
Boards. 

A series of AutoML algorithms on the H2O platform were used for modelling in the 
training dataset. H2O, an open source and scalable platform for machine learning, pro-
vided multiple algorithms and used K-fold cross-validation to develop and validate mod-
els [10]. Models were evaluated by area under receiver operating characteristic (ROC) 
curves (AUC) and compared with the existing scorings, including the model of end-stage 
liver disease (MELD) score, the MELD-Na score, and the albumin-bilirubin (ALBI) score, 
in the training and validation datasets. The flowchart is plotted in Figure 1. 

2.2. Inclusion and Exclusion Criteria 
Subjects included had clear evidence of non-cholestatic liver cirrhosis either by liver 

histology or by clinical presentations, liver function tests, and medical imaging tech-
niques. Exclusion criteria included the presence of solid organ transplantation, malignant 
neoplasm, PBC, and lack of complete medical records. The diagnosis of PBC is based on 
the following criteria [2]: (1) biochemical evidence of cholestasis with an elevation of al-
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kaline phosphatase activity; (2) presence of antimitochondrial antibody (AMA); (3) histo-
pathologic evidence of nonsuppurative cholangitis and destruction of small or medium-
sized bile ducts if a biopsy is performed. 

 
Figure 1. Flowchart of the study. 

2.3. Clinical Data Collection 
The data of all participants were retrospectively enrolled from the Department of 

Gastroenterology and Hepatology, The First Affiliated Hospital of Soochow University. 
Demographic information included gender, age, body mass index (BMI), history of hy-
pertension, history of diabetes, etiology of cirrhosis, and complications of cirrhosis. La-
boratory parameters include white blood cell count (WBC), platelet count (PLT), total bil-
irubin (TBIL), creatinine, alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), albumin, sodium, total cholesterol (TC), triglycerides (TG), high-density lipopro-
tein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), prealbumin, pro-
thrombin time (PT), and international standard ratio (INR). Biochemical analyses were all 
available from a Hitachi 7600 Auto-Analyzer (Hitachi, Tokyo, Japan) or an Abbott-Archi-
tect Immunoanalyzer (Abbott Laboratories, Abbott Park, IL). According to survival con-
ditions 30 days after admission, participants were separately divided into two groups, 
namely the death and survival groups. The calculation methods of MELD score [7], 
MELD-Na score [11], and ALBI score [12] were as follows: 

MELD = 3.78 × ln[serum bilirubin(mg/dL)] + 11.2 × ln[INR] + 9.57 × ln[serum creati-
nine mg/dL] + 6.43. 
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MELD-Na = MELD-Na−[0.025 × MELD × (140−Na)] + 140, where the serum sodium 
concentration is bound between 125 and 140mmol/L. 

ALBI = 0.66 × log[serum bilirubin(mg/dL)] − 0.085 × protein(mg/dL). 

2.4. Statistics Analysis 
Data analysis was performed by R (version 4.1.0, R Foundation for Statistical Com-

puting, Vienna, Austria), and SPSS (version 24.0, SPSS Inc., Chicago, IL, USA). Continuous 
variables were expressed as median (Q1-Q3) or mean ± standard, and categorical variables 
were expressed by frequencies and percentages. Binary logistic regression analysis and 
automated machine learning based on the H2O package were used to establish the pre-
dictive model for non-cholestatic cirrhosis. The discrimination of the model was assessed 
by using receiver operating curves (ROC). Our study utilized three methods for model 
interpretation: the SHapley Additive exPlanations (SHAP) analysis, Partial Dependency 
Plots (PDP), and Local Interpretable Model Agnostic Explanation (LIME), which repre-
sented how the features affect the output of the model’s prediction. A two-sided p < 0.05 
was considered statistically significant. 

3. Results 
3.1. Characteristics of the Patients 

A total of 932 cirrhotic patients were enrolled in this study, including 136 in the non-
survival group and 796 in the survival group. The 30-day mortality rate was 14.6%. Fur-
ther details on the characteristics of patients for 30-day mortality are given in Table 1. 

Table 1. Characteristics of patients with non-cholestatic cirrhosis by 30-day mortality. 

 Total (n = 932) Survival (n = 796) Mortality (n = 136) p 
Sex, n (%)    0.742 

Male 581(62) 494(62) 87(64)  
Female 351(38) 302(38) 49(36)  

Age (years) 61(50,69) 60(49,69) 67(53,73) <0.001 
BMI 23.24 ± 3.19 23.33 ± 3.14 22.50 ± 3.56 0.074 
Etiology    0.784 

ALD 80(9) 67(8) 13(10)  
Others 852(91) 729(92) 123(90)  

Complication, n (%)    <0.001 
Ascites 123(13) 115(14) 8(6)  

Hypersplenism 69(7) 67(8) 2(1)  
EGVB 283(30) 247(31) 36(26)  

HE 102(11) 79(10) 23(17)  
Hypohepatia 355(38) 288(37) 67(49)  

WBC (1012 g/L) 4.87(3.30,7.23) 4.53(3.15,6.48) 7.29(4.91,10.91) <0.001 
PLT (109 g/L) 77.00(50.00,124.25) 78.00(51.00,126.00) 76.00(49.00,112.25) 0.489 
TBIL (μmol/L) 2.14(1.23,4.46) 1.99(1.20,3.75) 4.93(1.93,13.59) <0.001 
Creatinine (mg/dL) 0.74(0.60,0.94) 0.73(0.59,0.92) 0.84(0.65,1.40) <0.001 
ALT (U/L) 28.00(18.00,52.02) 27.55(17.90,48.00) 33.10(19.67,89.50) 0.003 
AST (U/L) 41.65(28.67,71.75) 40.00(28.08,67.53) 52.95(32.88,106.40) <0.001 
Albumin (g/L) 30.40(26.67,34.10) 30.70(27.00,34.70) 28.00(23.98,31.50) <0.001 
Na (mmol/L) 139.50(137.00,141.80) 139.50(137.00,141.80) 138.30(134.67,141.27) 0.01 
TC (mmol/L) 3.14(2.50,3.91) 3.21(2.55,4.00) 2.64(2.00,3.17) <0.001 
TG (mmol/L) 0.88(0.66,1.24) 0.88(0.66,1.22) 0.94(0.64,1.30) 0.4 
HDL-C (mg/dL) 0.87(0.52,1.17) 0.90(0.62,1.21) 0.47(0.21,0.78) <0.001 
LDL-C (mg/dL) 1.60(1.18,2.16) 1.65(1.26,2.20) 1.21(0.89,1.85) <0.001 
Pre-ALB (mg/dL) 73.35(48.00,104.65) 76.55(50.98,108.20) 58.90(39.93,83.30) <0.001 
PT (s) 15.50(13.70,17.90) 15.20(13.50,17.30) 18.30(15.60,22.02) <0.001 
LnINR 0.30(0.17,0.45) 0.28(0.17,0.42) 0.48(0.30,0.68) <0.001 
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MELD 9.89(6.16,14.83) 9.41(5.77,13.37) 17.11(9.87,23.73) <0.001 
MELD-Na 10.43(5.54,16.46) 9.62(5.10,14.94) 18.07(10.30,25.39) <0.001 
ALBI −1.53 ± 0.66 −1.59 ± 0.64 −1.14 ± 0.62 <0.001 
Abbreviations: ALBI, albumin-bilirubin; ALD, alcoholic liver disease; ALT, alanine transaminase; 
AST, aspartate aminotransferase; EGVB, esophagogastric variceal bleeding; HDL-C, high-density 
lipoprotein cholesterol; HE, hepatic encephalopathy; LDL-C, low-density lipoprotein cholesterol; 
LnINR, Ln(international normalized ratio); MELD, a model for end-stage liver disease; MELD-Na, 
MELD combined serum sodium concentration; PLT, platelet count; Pre-ALB, prealbumin; PT, pro-
thrombin time; TBIL, total bilirubin; TC, cholesterol; TG, triglyceride; WBC, white blood cell. 

3.2. Models Based on AutoML Algorithms 
In the validation dataset, the AutoML model based on the XGBoost algorithm 

showed the best performance in discrimination (AUC = 0.888) when compared to logistic 
regression (AUC = 0.673), gradient boost machine (AUC = 0.886), random forest (AUC = 
0.866), deep learning (AUC = 0.830), stacking (AUC = 0.850), MELD (AUC = 0.778), MELD-
Na (AUC = 0.782), and ALBI (AUC = 0.662) as shown in Table 2. 

Table 2. Performance of the AutoML models and the existing scoring systems in predicting mortal-
ity in patients with non-cholestatic cirrhosis. 

Dataset Algorithm AUC Accuracy Sensitivity Specificity 
Training GBM 0.900 0.876 0.597  0.926 
 XGBoost 0.938 0.915 0.647  0.963 
 LR 0.662 0.852 0.555  0.905 
 RF 0.807 0.833 0.513  0.890 
 DL 1.000 0.999 1.000 0.999 
 Stacking 0.956 0.922 0.655 0.969 
 MELD 0.806 0.784 0.736 0.793 
 MELD-Na 0.791 0.797 0.669 0.820 
 ALBI 0.739 0.649 0.752 0.630 
Validation GBM 0.886 0.857 0.412  0.919 
 XGBoost 0.888 0.879 0.471  0.935 
 LR 0.673 0.821 0.353  0.886 
 RF 0.866 0.821 0.294  0.894 
 DL 0.830 0.850 0.471 0.902 
 Stacking 0.850 0.871 0.294 0.951 
 MELD 0.778 0.864 0.588 0.902 
 MELD-Na 0.782 0.857 0.588 0.894 
 ALBI 0.662 0.536 0.824 0.496 
Abbreviations: DL, deep learning; GBM, gradient boost machine; LR, logistic regression; RF, ran-
dom forest; XGBoost, eXtreme gradient boosting. 

3.3. Interpretation of the AutoML Model Based on XGBoost Algorithm 
Figure 2 shows the ten key variables in the AutoML model based on the XGBoost 

algorithm. HDL-C was the foremost feature, followed by WBC, creatinine, age, PT, TC, 
albumin, etc. 

Moreover, we plotted SHAP, which is a unified approach for explaining the outcome 
of any machine learning mode, to provide consistent and accurate attribution values for 
each feature. Figure 3 presented that the closer the values of features in the model were to 
1.5, the closer the correlations were with 30-day mortality of cirrhosis. 
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Figure 2. Relative importance of the variables in the XGBoost model. The chart shows that HDL-C 
was the most important variable, followed by Cre, WBC, INR, etc. Abbreviations: hdlc, high-density 
lipoprotein cholesterol; cre2, creatinine; wbc, white blood cell count; lninr, international normalized 
ratio; tc, total cholesterol; ldlc, low-density lipoprotein cholesterol; pt, prothrombin time; alb, albu-
min; tbil2, total bilirubin. 

 
Figure 3. SHAP plotting of the XGBoost model. The closer the variable value is to 1.5 at the x-axis, 
the higher the possibility of mortality at 30-day. Abbreviations: wbc, white blood cell count; hdlc, 
high-density lipoprotein cholesterol; tc, total cholesterol; cre2, creatinine; pt, prothrombin time; ldlc, 
low-density lipoprotein cholesterol; na, blood sodium; pre-alb, pre-albumin; alb, albumin; SHAP, 
SHapley additive explanation. 
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PDP were drawn to more clearly show the relationship between various variables 
and mortality of cirrhosis (Figure 4). Among the key variables, creatinine, WBC, INR, and 
age showed upward trends with the mortality, while HDL-C and TC showed opposite 
trends. 

 
Figure 4. PDP for the key variables in the XGBoost model. The chart shows that creatinine, white 
blood cell, international normalized ratio, and age showed upward trends with the mortality, while 
high-density lipoprotein cholesterol and total cholesterol showed opposite trends. Abbreviations: 
PDP, partial dependence plot; HDL-C, high-density lipoprotein cholesterol; CRE, creatinine; WBC, 
white blood cell count, INR, international normalized ratio; TC, total cholesterol. 

As shown in Figure 5, LIME plot shows how the important variables (in the XGBoost 
model) contributed to the mortality based on four selected samples. For example, case #4 
had a high probability of 0.68 for death due to cirrhosis as predicted by the XGBoost 
model. HDL-C, creatinine, TC, WBC, and age played distinct roles in the prediction. 

 
Figure 5. LIME of the XGBoost model in four cases from the validation set. The graph of LIME shows 
how the important variables (in the XGBoost model) contributed to mortality based on four selected 
samples (two from the survival group, two from the mortality group). Lable p0 means a survival 
sample, while lable p1 means a dead sample. Abbreviations: LIME, Local Interpretable Model Ag-
nostic Explanation; hdlc, high-density lipoprotein cholesterol; cre2, creatinine; tc, total cholesterol; 
wbc, white blood cell count. 
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4. Discussion 
Based on the clinical data of the 932 cirrhotic patients, we have developed and vali-

dated a series of AutoML models in predicting 30-day mortality. 
We found the AutoML model based on the XGBoost algorithm showed best perfor-

mance of discrimination when compared to the other models and the existing scoring sys-
tems. Furthermore, we visualized the best model for interpretation using SHAP, PDP, and 
LIME. 

In terms of the key variables for the mortality in cirrhosis, we found HDL-C was the 
most important variable in the XGBoost model. The level of HDL-C was associated with 
the severity of end-stage liver disease [13,14]. Terib et al. demonstrated that HDL-C level 
was a robust predictor for survival in patients with chronic liver failure [15]. Habib et al. 
suggested that HDL-C was significantly decreased in non-cholestatic cirrhotic veterans 
[16]. The mechanisms underlying the decrease in HDL-C level due to cirrhosis are unclear, 
but recent studies have focused on the anti-inflammatory effects of HDL-C. HDL-C can 
decrease cholesterol levels in cell membranes by removing intracellular lipids, thereby 
reducing lipid secretion of pro-inflammatory cytokines [17]. According to the published 
studies, we have observed that cirrhosis impaired the ability of HDL-C to inhibit lipopol-
ysaccharide-induced (LPS) activation of the pro-inflammatory transcription factor NF-kB 
and subsequent production of interleukin-6 (IL-6), interleukin-8 (IL-8, and tumor necrosis 
factor-α (TNF-α) in monocytes [18]. In addition, a study in patients with advanced chronic 
liver failure showed that the addition of recombinant HDL-C to restore HDL function re-
duced the LPS-induced inflammatory response [19]. The evidence was confirmed in var-
ious animal models [20]. 

We also found that higher WBC counts at admission were associated with mortality, 
which was inconsistent with a previous study in the United States [21]. It is possible that 
cirrhotic patients who mount a leukocytosis have a higher pro-inflammatory milieu, re-
sulting in a decrease in survival rate [22,23]. Moreover, consistent with the results of sev-
eral previous studies [24,25], elevated creatinine levels were an associated risk factor for 
poor prognosis in cirrhosis, which is mainly related to vasodilatory mechanisms and non-
vasodilatory mechanisms identified in recent years [26]. The vasodilatory mechanism is 
mainly related to the dilatation of visceral arterial vessels during the decompensated 
phase of cirrhosis, the reduction of systemic effective circulating blood volume, the reduc-
tion of cardiac output, the activation of the renin-angiotensin-aldosterone system, and the 
impaired renal function due to insufficient renal perfusion [27]. Lastly, various inflamma-
tory factors, intra-abdominal hypertension, high bilirubin and bile acids, relative adrenal 
insufficiency, and other non-vasodilatory mechanisms also play an important role in cre-
atinine elevation [28,29]. 

In addition, this study found that PT and INR values were larger in the mortality 
group than in the survival group, suggesting that coagulation function was a good pre-
dictive indicator of 30-day mortality in non-cholestatic cirrhosis. P. G. Northup et al. re-
ported that the INR and PT were inextricably linked to the prognosis and progression of 
liver disease [30]. Both J. Li et al. [31] and T. Wu et al. [32] developed predictive models 
on the prognosis of chronic liver disease and also included INR, which was mainly related 
to the involvement of the liver in coagulation factors. This study also revealed that age 
was an independent risk factor for poor prognosis of cirrhosis, consistent with recent ep-
idemiological findings [33], which may be associated with weakened immune systems in 
the elderly. 

A good predictive model can effectively and accurately predict the prognosis of dis-
ease, and facilitate the early monitoring of high-risk patients to reduce the mortality of the 
disease in question. In the study, we reported the application of AutoML in predicting 
mortality of cirrhosis for the first time. We found the model based on the XGBoost algo-
rithm showed the best performance of discrimination when compared to the existing scor-
ing systems, e.g., MELD, MELD-Na, and ABLI. To overcome the drawback of the black 
box in machine learning, we interpreted the model using various means of visualization. 
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There are several limitations in this study: first, this is a single-central study that may 
lead to results bias and multi-central data are needed to validate the new model; second, 
our results are observational, which could not prove causality and may be influenced by 
unmeasured confounders; finally, the outcome is only designed for 30-day mortality and 
may require further long-term follow-up. 

In this study, a series of AutoML models were developed for predicting 30-day mor-
tality in patients with non-cholestatic cirrhosis. The model, based on the XGBoost algo-
rithm, presented best performance when compared to existing scoring systems. It shows 
the promise of AutoML in its future medical application. 
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