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Abstract: Uncontrolled post-traumatic hemorrhage is an important cause of traumatic mortality that
can be avoided. This study intends to use machine learning (ML) to build an algorithm based on data
collected from an electronic health record (EHR) system to predict the risk of delayed bleeding in
trauma patients in the ICU. We enrolled patients with torso trauma in the surgical ICU. Demographic
features, clinical presentations, and laboratory data were collected from EHR. The algorithm was
designed to predict hemoglobin dropping 6 h before it happened and evaluated the performance with
10-fold cross-validation. We collected 2218 cases from 2008 to 2018 in a trauma center. There were
1036 (46.7%) patients with positive hemorrhage events during their ICU stay. Two machine learning
algorithms were used to predict ongoing hemorrhage events. The logistic model tree (LMT) and the
random forest algorithm achieved an area under the curve (AUC) of 0.816 and 0.809, respectively.
In this study, we presented the ML model using demographics, vital signs, and lab data, promising
results in predicting delayed bleeding risk in torso trauma patients. Our study also showed the
possibility of an early warning system alerting ICU staff that trauma patients need re-evaluation or
further survey.

Keywords: machine learning; intensive care unit; traumatic hemorrhage; prediction

1. Introduction

Uncontrolled post-traumatic hemorrhage is an important cause leading to traumatic
mortality that can be prevented [1–4]. Severe hemorrhage while arriving at the hospital
should be detected soon by clinical judgment, image, and laboratory studies. After immedi-
ate resuscitation and hemostatic procedures, the patient might suffer from rebleeding from
active or occult hemorrhage. Most of these patients were admitted to intensive care units
(ICU) for further monitoring and evaluation. Until now, delayed hemorrhage still occurs
in trauma ICUs worldwide, and the early detection of hemorrhage can prevent adverse
events. Delayed hemorrhage in trauma patients influences multiple systems of the human
body. Due to the compensating physiologic function, a significant change in hemodynamics
usually represents the late stage of hemorrhage. Meanwhile, the best timing to perform
an intervention to stop bleeding can be missed [3,5]. Multi-systemic data evaluation in the
ICU has excellent potential for precise, early prediction of hemorrhage events before the
bleeding event of the patient, where unstable vital signs or decreased hemoglobin (Hb) are
noted by regular follow-up [3,6].

Multiple monitoring approaches and laboratory examinations might be used in in-
tensive care units to achieve better patient care, such as demographic features, physical
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parameters, laboratory data, and interventional or medical therapy administered to the
patients [7]. These clinical data are stored as electronic health records (EHR). Due to the
enormous volume of data from the ICU, a high staff-to-patient ratio will be required to
analyze and interpret these data to help physicians make clinical decisions [8,9]. However,
bias may be inevitable because not all health providers from different fields of expertise
operate this system well [10].

Machine learning (ML) is a subfield of artificial intelligence (AI) in which a model
learns from examples rather than pre-programmed rules for complex relationships or
patterns [6,11,12]. With the availability of healthcare data, enriched data size also empowers
the ability and possibility of ML. In sequence, ML became used in various fields of clinical
healthcare, from event diagnosis to outcome prediction. Early detection and intervention
for patients in the ICU who are fragile to the complication are important for prognosis and
the length of the ICU stay [7]. Recently, increasing studies have collected ICU patients’ data
to predict clinical events or outcomes [6,7,10,13–16]. Vezzoli, Marika et al. have applied
machine learning for the prediction of in-hospital mortality in the coronavirus disease [17],
and except for prediction, Abate, Giulia et al. used machine learning to identify Alzheimer’s
disease in preclinical and prodromal stages [18]. As the available data set increased and
the technique improved, ML showed earlier advantages in detecting high-risk events
earlier [12]. As described above, delayed hemorrhage in trauma patients impacts multiple
organ systems. Increasing evidence supports multi-systemic parameters evaluation from
the ICU having the potential for precise, early prediction for hemorrhage events that may
occur to the patients [3,6]. We currently do not have a proper ML model to predict the
delayed hemorrhage event.

In this study, we developed the ML-based algorithm to predict the risk of ongo-
ing hemorrhage events during the ICU stay, and validate the efficacy and efficiency of
this algorithm.

2. Materials and Methods
2.1. Database

We conducted a prospective data collection of the trauma registry (CGTR) since 2008 in
Chang Gung Memorial Hospital, Linkou, Taiwan. The summary of demographic data,
procedures, hospital course, follow-up, and information regarding the complications of
each hospitalized trauma patient was recorded. The Chang Gung Research Database
(CGRD) is a multi-institutional electronic medical records (EMR) collection that includes
medical documents, laboratory data, vital signs, and nursing records for clinical research
across all the hospitals in the Chang Gung Medical Foundation. Both databases can be
linked with the same deidentified patient identity.

2.2. Data Selection and Inclusion Criteria

The data set was established by acquiring data from CGTR and CGRD from May
2008 to December 2018. The demographic and trauma-related data, including age, sex, date
of injury, mechanism of injury, vital signs upon arrival, final diagnosis, associated physio-
logic and laboratory parameters during the ICU stay, abbreviated injury scale (AIS) score,
injury severity score (ISS), and outcomes were collected. Figure 1 demonstrates the data set
preparation schema. All the details of the variables are listed in supplementary file S1.

We enrolled patients diagnosed with torsal trauma with International Classification
of Diseases (ICD) diagnosis codes and admitted to the trauma ICU for more than 48 h.
The patients with the diagnosis of brain hemorrhage were excluded by the ICD code due
to particular concerns and situations of brain hemorrhage that may influence our model
building. Detailed information on the ICD codes for including and excluding criteria is
listed in Supplementary Table S1. The bleeding event was defined as Hb dropping more
than 2 mg/dL, as a major bleeding definition according to Schulman, S. et al.’s study [19]
from the baseline within 24 h. The study was approved by the Internal Review Board of
CGMH No: 202100091B0.
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Figure 1. The data set preparation schema in the current study.

2.3. Features Generation and Data Preprocessing

The following variables were used in the development of our model: demographics
(ages, gender), GCS scores while arriving at the emergency department (ED) and after
leaving the ED, ED evaluation, and clinical events (labeled as trauma team activation or
not, abbreviated injury scale (AIS), injury severity score (ISS), intubation or not, cardiopul-
monary resuscitation (CPR) or not, received transarterial embolization (TAE) or not), ICU
vital signs (blood pressure, heart rate, saturation, respiratory rate, and shock index), and
laboratory findings (hematology, including coagulation examination, such as a prothrombin
time test and activated partial thromboplastin time, biochemistry, and arterial blood gas).

Each Hb datum during the ICU course can be defined as a bleeding (if Hb drops more
than 2 mg/dL in 24 h) or a negative event. Because we are going to build a prediction
model to predict the event 6 h before, the variables were collected 48 h to 6 h before the
event. Our study’s patients were subgrouped according to bleeding events during the
ICU stay. The hemorrhage group is the patients with one or more episodes of bleeding
events, and the negative group had no bleeding episodes throughout the ICU course. The
negative events outnumbered the positive events. To balance both groups and avoid bias,
we prepared the first positive event in the hemorrhage group as the positive sample. For
the negative samples, we randomly selected one of the events in the ICU course from each
patient in the negative group to balance the two group’s data numbers. Figure 2 shows the
current study’s definition of events and data collection.
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The vital signs and laboratory data were used as time series variables. Each variable
was calculated for the maximum, minimum, median, mean value, frequency of the test,
and the difference between each test in the sample to generate more features.

2.4. Model Development

Our machine learning models were developed on Waikato Environment for Knowl-
edge Analysis (WEKA, version 3.8.5). The data from two groups (hemorrhage and negative)
was input to WEKA. As for attribute selection, we used the gain ratio attribute to evaluate
the worth of the attribute by measuring the gain ratio with respect to our result (bleeding
event). The variables that attribute more than zero were finally put into our data set to
build the model.

After testing several machine learning algorithms, we used the logistic model tree
(LMT) and the random forest, which showed better performance with ICU data mining
and prediction at our data set, to build our model in order to predict the bleeding event
6 h before it happened. Each model was tested with 10-fold cross-validation to ensure
the robustness of the model performance. The data were split into ten equal groups. The
first group was left as the test set and others were used to train the model. Then, the
second group was left as the test set, and so on. In the end, we will have ten models with
performance evaluation. The final result was expressed as the weighted average outcome
from these ten models.

2.5. Statistical Analysis

Demographic and outcomes data are presented as medians with interquartile ranges.
For continuous variables, extensive exploratory data analysis, including the calculation
of maximum, minimum, median, and mean values, was conducted; and the frequency
of the test and the difference between each test were recorded. The accuracy, sensitivity,
specificity, and area under the receiver operating characteristic curve (AUC) with a 95%
confidence interval (CI) were used to assess the model performance. Statistical analysis as
t-tests for calculating p-values was performed by Python (scikit-learn Python library). The
gain ratio attribute algorithm of WEKA was used to determine feature importance for our
model. After model development, SHApley Additive exPlanation (SHAP) was used for the
explanation of the feature importance of each model.

The percentage of missing data of each variable in both groups was calculated and we
excluded the features with more than 30% missing data. For the rest of the missing data,
we imputed it with the mean value of the whole database.
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3. Results
3.1. Demographics and Clinical Characteristics

We collected 2218 trauma patients’ data during the study period (2008 to 2018). The
median age was 37 years old (IQR 22–55). Most injured patients were males (1572/2218,
71%). The median ISS score was 20 (IQR 13–29). Forty-four percent of patients arrived with
trauma team activation (900/2218). Thirty percent of patients received TAE as bleeding
management (770/2218). Twenty-nine patients required CPR (1.8%) and 245 required
intubation with mechanical ventilation (245/2218). There were 1036 patients with positive
bleeding events during their ICU stay (11%). The remainder of the demographic and clinical
characteristics is summarized in Table 1, divided into two groups by having bleeding events
or not. Regarding vital signs and laboratory data during the ICU stay, as mentioned before,
we calculated and recorded their maximum, minimum, mean, median, and frequency.

Table 1. The demographic feature comparison between each group.

Group Positive Negative p Value

No. 1036 1182
Gender, male, n (%) 782 (75.5) 790 (66.8) <0.001
Age, median (IQR) 37 (23–54) 37 (225–6) 0.914

ED arrival GCS, median (IQR) 15 (11–15) 15 (13–15) 0.843
ED leave GCS, median (IQR) 15 (11–15) 15 (11–15) 0.805

AIS head, median (IQR) 0 (0–2) 0 (0–1) 0.87
AIS chest, median (IQR) 3 (0–4) 2.5 (0–4) 0.864

AIS abdomen, median (IQR) 2 (0–3) 3 (0–4) 0.868
ISS, median (IQR) 22 (16–29) 20 (13–29) 0.634

NISS, median (IQR) 26 (173–4) 22 (14–29) 0.598
TAE, n (%) 399 (38.5) 371 (31.4) <0.001
CPR, n (%) 14 (1.4) 15 (1.3) 0.865

Trauma team activation, n (%) 514 (49.6) 466 (39.4) <0.001
Intubation, n (%) 145 (14.0) 100 (8.5) <0.001

ED: emergency department, GCS: Glasgow coma score, AIS: abbreviated injury scale, ISS: injury severity score,
NISS: new injury severity score, TAE: transarterial embolization, CPR: cardiopulmonary resuscitation.

3.2. Feature Selection Outcome

To clarify the relation between the collected features and our outcome event (Hb
dropping), we used the algorithm of the gain ratio attribute of WEKA and the results
shown in Table 2, divided into groups of demographic features, vital signs, hematology,
and biochemistry.

3.3. The Performance of Prediction Models

Two machine learning algorithms were applied in our study. The logistic model
tree (LMT) achieves 73.8% precision, 71.3% sensitivity, and 75.9% specificity at the best
Youden index of 0.486, with an AUC of 0.816 (95% CI: 0.798–0.834) for the validation
set. The random forest algorithm achieves 73.6% precision, 73.6% sensitivity, and 73.7%
specificity at the best Youden index of 0.479, with an AUC of 0.809 (95% CI: 0.791–0.827)
for the validation set (Table 3). The ROC curve is shown in Figure 3. After model
development, SHAP was applied, and the importance of each feature was checked. The
temporal change of Hb and hematocrit are critical determining factors. The heart rate
and shock index also contribute a lot to the prediction. Among the demographic factors,
only ISS, NISS, and angiography affect the prediction. Examples of SHAP plots are
shown in Figure 4.
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Table 2. The Gain Ratio attribute.

Demographic Feature Gain Ratio Hematology Gain Ratio Biochemistry Gain Ratio

NISS 0.0140824 HB last diff 0.060502 ALT max 0.0217857
ED intubation 0.0111678 HB max 0.057131 AST mean 0.0217508

ISS 0.0105278 Hct max 0.055303 AST median 0.0217508
ED trauma blue 0.0076397 Hct last diff 0.049209 AST min 0.0191412

Gender 0.0075227 HB median 0.044343 AST max 0.0171591
ED leave GCS 0.0054404 Hb mean 0.044343 Cre min 0.0157679

TAE 0.0043155 Hct median 0.041516 Cre frequency 0.0153933
ED CPR 0.0000937 Hct mean 0.041516 Cre max 0.0130096

Hb diff 0.03215 Cre median 0.0126784

Vital signs Gain Ratio Hct diff 0.031456 Cre mean 0.0126784

HR median 0.017608 Hct min 0.029003 ALT min 0.0120391
HR mean 0.017608 RBC max 0.028482 ALT median 0.0117981
HR max 0.0142613 Hb min 0.027336 ALT mean 0.0117981
HR min 0.013361 MCV min 0.020603 K diff 0.01081
BT min 0.0107972 RBC mean 0.019859

SI median 0.0094917 RBC median 0.019859
SI mean 0.0094917 RBC min 0.016197
SI min 0.0094543 MCV max 0.016045
SI max 0.0077304 MCV median 0.015736

BT frequency 0.0073078 MCV mean 0.015736
SBP frequency 0.0071975 Platelets frequency 0.013502

NISS: new injury severity score, ED: emergency department, ISS: injury severity score, GCS: Glasgow coma
score, CPR: cardiopulmonary resuscitation, TAE: transarterial embolization, HR: heart rate, BT: body temperature,
SI: shock index, SBP: systolic blood pressure, min: minimum values, max: maximum values, diff: difference
between maximum and minimum value, last diff: difference between values of the last recorded value and maxi-
mum value, RBC: red cell count, MCV: mean corpuscular volume, AST: aspartate amino transferase, ALT: alanine
aminotransferase, Cre: creatinine, K: potassium.

Table 3. Demonstration of two machine learning algorithm results.

Algorithm Positive (Pred) Negative (Ped) Sensitivity Specificity F-Measure AUC

LMT Positive (Act) 740 296 71.40% 75.90% 0.718 0.816
Negative (Act) 285 897

RF Positive (Act) 762 274 73.60% 73.70% 0.723 0.809
Negative (Act) 311 871

LMT: logistic model tree, RF: random forest, Pred: predicted result, Act: actual result.
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4. Discussion

Our study demonstrates that the ML-based algorithm can be a promising tool for
evaluating trauma patients in predicting delayed bleeding. It alarms physicians to monitor
and take adequate resuscitation and hemostasis for hazardous patients. In this study,
a machine learning-based algorithm helps us to identify risky patients with potential
delayed hemorrhage events in the next 6 h. Once patients enter the ICU and the data is
automatically attributed to the model, the system will warn us if this patient has a potential
bleeding risk in the next 6 h. It can help lower the patient’s delayed findings of hemorrhage
problems. By early re-evaluation or intervention, the prognosis of the patient can be
improved. By this means, it can decrease the dismal outcome that results from bleeding
without early detection. The substantial elements of ICU monitoring can assist and compose
the algorithm without additional laboratory or examination. The present algorithm can
predict the hemorrhage event in the next 6 h with an accuracy of 0.816. There are still limited
studies using ML, even deep learning techniques for trauma patients so far. As our research
presented, we built an efficient and feasible algorithm to achieve an appropriate level of
prediction function. The current study is an exploratory research. Therefore, we only use
the ten-fold cross-validation method to validate our result without an external validation
data set. Further external validation will be conducted for the best algorithm chosen.

In the current medical environment, numerous data will be generated from patients,
which are necessary to be collected to assist health providers in making therapeutic de-
cisions. Especially in the ICU, the most critical patients who need to be monitored the
most closely will generate numerous data. How to figure out an efficient and feasible
method to predict the prognosis and advanced events is pursued by investigators [20]. For
decades, several prediction regression models for evaluating the patient’s bleeding were
reported [4,5,14,21,22]. However, additional laboratory examinations or complex calcu-
lated formulas were necessary to be applied. Regular blood sample collection and image
studies, such as angiography or contrast-enhanced CT, guide our treatment’s direction.
In the current study, we developed the algorithm consisting of 56 elements from baseline
hemodynamic parameters before entering the ICU, and regular physiologic and laboratory
parameters during the ICU stay. No additional work or examination needed to be per-
formed to attain the prediction results. Furthermore, the conventional prediction regression
algorithm provided some clues about the linear correlations between clinical characteristics
and outcomes [23–25]. However, outcomes are usually not linearly correlated with inputs
in a real clinical environment. The complicated relationship between the combination of
inputs and outcomes makes it difficult to calculate directly. Therefore, the limitation might
prevail when applying these regression models to clinical practice. Meanwhile, numerous
monitoring features and laboratory examinations might be performed in intensive care
units to provide better patient care and facilitate translational research. In addition to
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the difficulty of developing the algorithm, there are challenges in ICU data usage: [7].
Numerous parameters and records might be generated once patients enter the ICU to
define the attributes as ambiguous core elements. Therefore, deciding which attributes
are most suitable for the model is often hard. Therefore, attribute selection is complex,
and confounding bias cannot be neglected [13,14]. To analyze the immerse data and select
proper parameters into prediction models themselves, the advantage of machine learning
is that these models assist us in transforming these data into meaningful outcomes [20];
and not only individual parameters, but also a combination of features can integrate. This
is the advantage of machine learning for data handling and analysis.

Machine learning showed its greatness in data analytics and complexity regression to
predict numerous aspects. Several innovative studies also showed the possibility of ML
in handling complicated situations in the intensive care unit. With the supplement of ML,
physicians can predict the opportunity and risk of tracheal tube reintubation, the necessity
of renal replacement therapy, and sepsis risk and mortality prediction. In the current study,
we developed the first ML algorithm to predict delayed hemorrhage in trauma patients, and
integrated the ML into ICU to accelerate the data organization, classification, interpretation,
analysis, and even data prediction [26].

5. Limitation

In this study, we presented the ML algorithm that can predict the delayed or ongoing
hemorrhage events in trauma patients once they are admitted to the ICU in the next 6 h
with acceptable accuracy. However, there were still some limitations to our study. First,
this was a retrospective single-center study, and the nature of the study design means the
selective bias cannot be avoided. Second, there were missing data in our database, and
we were forced to remove some variables due to many missing data. The reason that we
cannot afford too much missing data in variables is to ensure that our outcome relates more
to the real clinical situations. We also chose the mean value imputation instead of other
complicated imputation methods to avoid over-manipulating the data. In addition, we are
trying to build a general analysis system that can be applied to most ICUs. If the variable
contains many missing data, it means that this variable may not be collected frequently
at the ICU, which is not suitable for our study. Third, as mentioned before, we have not
included all the bleeding-related events in our study; thus, we could miss some patients
with delayed bleeding, but not expressed as Hb dropping. The blood transfusion event time
was also not included in our study due to inaccurate data in the current database. Forth,
our study used Hb dropping 2 g per deciliter as a cut point as bleeding events. Besides Hb
dropping, there are other events related to hemorrhage. Interventions such as transarterial
embolization or exploratory laparotomy/thoracotomy also point to bleeding events that
cannot be controlled by conservative treatment. In the databases we used in the current
study, we only have raw codes rather than details of procedures. Further work to identify
these events and add to our model or build models by a separate event is necessary and
helpful for physicians’ decision-making. Furthermore, increasingly innovative tools, such
as a pulse-induced contour cardiac output (PiCCO), assisted the intensivist in immediately
evaluating the patient’s hemodynamics. By adding these dynamic data, we can expect
a more accurate and immediate prediction model to be built in the near future. Because
these data are not included in our database, we lack the advanced information to integrate
them into this algorithm. Finally, machine learning (ML) is a subfield of AI that focuses on
algorithms that allow computers to define a model for complex relationships or patterns
from empirical data without being explicitly programmed [10]. How to interpret the result
and integrate it into the clinical flow to assist the intensivist in managing their patients is
the most critical part, and prospective studies need to be conducted to prove these results.

6. Conclusions

In this study, we presented the ML model using demographics, vital signs, and lab
data with promising results in predicting delayed bleeding risk in torsal trauma patients.
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Our study also showed the possibility of an early warning system alerting ICU staff that
trauma patients need re-evaluation or further survey.
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current study.
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