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Abstract: Purpose: To assess the qualitative relationship between liquid biopsy and conventional
tissue biopsy. As a secondary target, we evaluated the relationship between the liquid biopsy results
and the T stage, N stage, M stage, and compared to grading. Methods: The Local Ethics Committee
of the “Università degli Studi della Campania Luigi Vanvitelli”, with the internal resolution number
24997/2020 of 12.11.2020, approved this spontaneous prospective study. According to the approved
protocol, patients with lung cancer who underwent Fine-Needle Aspiration Cytology (FNAC), CT-
guided biopsy, and liquid biopsy were enrolled. A Yates chi-square test was employed to analyze
differences in percentage values of categorical variables. A p-value < 0.05 was considered statistically
significant. Data analysis was performed using the Matlab Statistic Toolbox (The MathWorks, Inc.,
Natick, MA, USA). Results: When a genetic mutation is present on the pathological examination,
this was also detected on the liquid biopsy. ROS1 and PDL1 mutations were found in 2/29 patients,
while EGFR Exon 21 was identified in a single patient. At liquid biopsy, 26 mutations were identified
in the analyzed samples. The mutations with the highest prevalence rate in the study populations
were: ALK (Ile1461Val), found in 28/29 patients (96.6%), EML4 (Lys398Arg), identified in 16/29
(55.2%) patients, ALK (Asp1529Glu), found in 14/29 (48.3%) patients, EGFR (Arg521Lys), found in
12/29 (41.4%) patients, ROS (Lys2228Gln), identified in 11/29 (37.9%) patients, ROS (Arg167Gln) and
ROS (Ser2229Cys), identified in 10/29 (34.5%) patients, ALK (Lys1491Arg) and PIK3CA (Ile391Met),
identified in 8/29 (27.6%) patients, ROS (Thr145Pro), identified in 6/29 (20.7%) patients, and ROS
(Ser1109Leu), identified in 4/29 (13.8%) patients. No statistically significant differences can be ob-
served in the mutation rate between the adenocarcinoma population and the squamous carcinoma
population (p > 0.05, Yates chi-square test). Conclusions: We showed that, when a genetic mutation
was detected in pathological examination, this was always detected by liquid biopsy, demonstrating
a very high concordance rate of genomic testing between tissues and their corresponding mutations
obtained by liquid biopsy, without cases of false-negative results. In addition, in our study, liquid
biopsy highlighted 26 mutations, with the prevalence of ALK mutation in 96.6% of patients, sup-
porting the idea that this approach could be an effective tool in cases with insufficient tumor tissue
specimens or in cases where tissue specimens are not obtainable.
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1. Introduction

The assessment of tumor genetic alterations is currently crucial in oncological patient
management and treatment decisions [1–10]. In fact, in the era of personalized medicine, an
accurate genetic tumor assessment allows to identify the more precise treatment, to define
the treatment time, and to standardize the follow-up time [11–21]. Usually, evaluation of
tumor mutational status is performed by means of a section of the primary or secondary
lesion [22–25]. However, this approach shows several weaknesses, such as the invasive
nature of the procedure, the inaccessibility when the lesion is in a deep site, and the risk
of an inadequate sample or a partial assessment, considering intra-tumor heterogeneity,
especially spatial heterogeneity, when a single biopsy is tested [26]. Moreover, this approach
does not allow a dynamic follow-up of cancer molecular modifications that could occur
during treatment [26]. In addition, in oncological patients, a critical point is related to the
possibility of an early cancer diagnosis. It is known that patients have a higher cure rate
and five-year survival if diagnosed at early stages [2,27–31]. To perform large-scale tumor
screening among healthy people and to obtain an accurate mutational cancer status, several
researchers and companies have turned their attention toward liquid biopsy [31–37]. Blood
includes several categories of biological substances, such as circulating cells, extracellular
vesicles, platelets, protein, mRNA, miRNA, and cell-free DNA (cfDNA) [36]. In oncological
patients, a cfDNA portion, known as circulating tumor DNA (ctDNA), is liberated by
lesions due to active release, necrosis, and apoptosis [37]. The alterations in ctDNA can be
considered as a biomarker, and these can allow to identify cancer patients from a group
of healthy individuals, to evaluate the cancer mutational status, to assess the response to
treatment, and to identify groups of patients with a poor prognosis. This approach could
manage the highest level of personalized medicine [38–49]. Compared to conventional
tissue biopsy, liquid biopsy is more feasible and less invasive and is more comprehensive
to assess tumor heterogeneity since all tumor parts release ctDNA [38].

Worldwide, lung cancer is one of the leading causes of morbidity and mortality among
oncological patients [50–53]. Despite the progress in the treatment, also thanks to the
benefits from immunotherapy, there is a necessity to identify new robust biomarkers that
could predict response, resistance, and/or toxicity to treatment [54–57]. Up to now, the
European Medicines Agency (EMA) [58] and the FDA [59] have approved epidermal
growth factor receptor (EGFR) mutation testing using ctDNA in non-small-cell lung cancer
(NSCLC) patients. For patients treated with immune checkpoint inhibitors for NSCLC,
several studies showed that ctDNA could be an early marker of therapeutic efficacy and it
could better predict survival outcomes [60].

ctDNA is highly fragmented, ranging from 100 to 10,000 bp. It is challenging to
isolate ctDNA from the blood for quantitation since the small fragments are easy to lose
or degrade [26]. Although the concentration of ctDNA should increase with the stage and
tumor size, the total percentage of ctDNA in the blood is extremely low, putting many
requirements on the sample processing procedure [26]. Thus, ctDNA assays used for early
cancer diagnosis should be highly sensitive. However, highly sensitive assays are always
expensive, making large-scale practical applications unrealistic. For late-stage cancer
tumor typing, the sensitivity can be moderate because the concentration of ctDNA is much
larger [26]. Additionally, it has been shown that both the concentration and stability of
ctDNA could be influenced by the form, release, degradation, and clearance of cfDNA [26].
Until now, very few studies have discussed the clearance rate and biological mechanism
of ctDNA. Another significant obstacle at present is the lack of biological knowledge and
experimental evidence to support the quantitative relationship between ctDNA and early
cancer development [26].

Another critical issue is the lack of biological knowledge and experimental evidence
to support the qualitative and quantitative relationship between ctDNA and conventional
pathological tissue.

This research is a part of an ongoing study on liquid biopsy in lung cancer. We assessed
as a primary endpoint the qualitative relationship between ctDNA and conventional



J. Pers. Med. 2022, 12, 1896 3 of 16

cytological sampling biopsy. As a secondary target, we evaluated the relationship between
the liquid biopsy results and the T stage, N stage, M stage, and grading.

2. Methods
2.1. Patient Selection

The Local Ethics Committee of the “Università degli Studi della Campania Luigi
Vanvitelli”, with internal resolution No. 24997/2020 of 12.11.2020, approved this prospec-
tive study.

According to the approved protocol, patients with histologically confirmed lung cancer
who underwent tissue CT-guided biopsy and liquid biopsy were enrolled.

The study was performed in accordance with relevant guidelines and regulations.

2.2. Subjects’ Selection

The eligibility of the patients has been assessed by the investigators. Inclusion criteria
included: (a) age ≥ 18 years, (b) suitable mental health conditions, (c) ability to sign a
specific informed consent form, (d) diagnosis of NSCLC with histological confirmation,
(e) computed tomography staging, and (f) blood sample to perform liquid biopsy.

Exclusion criteria included: (a) age less than 18 years, (b) pregnancy, (c) absolute
contraindication to CT study (previous adverse reactions to contrast medium), (d) inability
to sign a specific informed consent form, (e) refusal to provide a blood sample for liquid
biopsy, and (f) absence of conventional biopsy.

Having to compare the proportions of genetic mutations between two groups, we
used the following statistical inference model: inference for two proportions. To obtain
a statistical power of 80% and a statistical significance of 0.1, and an error of the second
type of 0.2, starting from a difference in incidence between the proportions of genetic
mutations between the two groups of 10%, it will be necessary to include at least 116 cases
(58 per group).

In this study, we report the preliminary results of the first 29 enrolled patients.

3. Sampling Protocol

The study included patients with a newly detected pulmonary nodule, who had been
scheduled to undergo transthoracic CT-guided Fine-Needle Aspiration Cytology (FNAC)
and a final cytological diagnosis of NSCLC. The patients were thoroughly informed of
risks, complications, and the possible inadequacy of the rate of the FNAC procedures and
gave their written informed consent to undergo the procedure.

A 23-G, 150 mm needle connected to a syringe mounted on the holder was used in
all cases.

Thereafter, a radiologist, with the collaboration of a cytopathologist, performed a
CT-guided percutaneous transthoracic FNAC using a Revolution Discovery 64-slice CT
scanner (General Electric, Boston, MA, USA). ROSE (Rapid On-Site Evaluation) was always
performed to provide indications on the number of passes and the choice of vials in CT-
guided cases. According to our protocol [13], a total of 1 to 4 passes were performed for
each patient. A total of 1 to 2 smears were air-dried and DiffQuik-stained for ROSE, and
additional smears were alcohol-fixed and Papanicolaou-stained. Residual material in the
hub of the needle from the first pass, as well as material from the additional passes, was
suspended in formalin for cell block (CB) preparation.

All the patients were clinically monitored in the recovery room, and 2 h after the
procedure, a chest radiography was performed to diagnose possible complications.

4. Morphophenotypical Assessment

Cytological diagnoses were matched with the corresponding histological diagnoses,
when available, and all diagnoses were conducted according to the last WHO classification
of tumors criteria (WHO 2021). All cytological and histological slides were evaluated by
two experienced pathologists with specific expertise in cytology.
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Immunocytochemistry (ICC) was carried out on CB sections for diagnostic purposes
to classify pulmonary non-small-cell carcinomas. ICC was performed on the Ventana
platform (VENTANA BenchMark Ultra system; Ventana, Tucson, Arizona) and included
the following antibodies: TTF1 (thyroid transcription factor 1), p63, Napsin, p40, cytokeratin
7 (CK7), PD-L1 (programmed death ligand-1), ALK (anaplastic lymphoma kinase), and
ROS1. The ICC markers used were TTF1, Napsin, and CK7 for adenocarcinoma, and p63,
p40, and CK 5/6 for squamous cell carcinoma.

5. Molecular and Predictive Tests

The smears were used for the extraction of DNA for next-generation sequencing,
whereas CB sections were used for ICC (ALK, ROS1, and PD-L1). Next-generation se-
quencing was performed to analyze epidermal growth factor receptor (EGFR) and BRAF
mutational status in all cases of lung adenocarcinoma. In all cases, smears were used for the
extraction of DNA by the Qiamp DNA Micro Kit (Qiagen, Hilden, Germany), according to
the manufacturer’s instructions. Extracted DNA was eluted in 20 µL of elution buffer and
subsequently quantified by a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA)
using the Qubit dsDNA HS Assay kit, according to the manufacturer’s recommendations.
The extracted DNA was stored at −20 ◦C.

6. Liquid Biopsy Analysis

- Blood Samples and ctDNA Extraction

Here, 5 mL of blood was collected by ethylenediaminetetraacetic acid (EDTA) blood
collection tubes, the same day as CT-guided Fine-Needle Aspiration Cytology.

To remove blood cells, blood was centrifuged at 1800× g for 10 min at 4 ◦C. Then,
the supernatant was centrifuged at 16,000× g for 10 min at 4 ◦C to remove any remaining
cells. Circulating tumor DNA was extracted from 2 mL of plasma, by digestion in 100 µL of
proteinase K buffer for 10 min at 37 ◦C, followed by purification with the Plasma XS kit
with the given protocol. The purified ctDNA was quantified by a Picogreen fluorescence
assay using the provided lambada DNA standards.

- ctDNA Sequencing and Analysis

The 5-biotinylated probe solution was provided as a capture probe, and the baits target
cancer-related genes. Hybridization, target amplification, barcode library preparation, and
size selection were performed according to the manufacturer’s protocols. Libraries were
prepared with the TruSigt Oncology 500 ctDNA kit, based on target enrichment that
analyzes 523 cancer-relative genes. The assay detected several classes of genetic mutations,
such as small nucleotide variants (SNVs), indels, splice variants, and biomarkers such
as tumor mutational burden (TMB) and microsatellite instability (MSI). Sequencing was
performed on an Illumina NovaSeq 6000 (San Diego, CA, USA) platform. The analysis was
performed with the TruSight Oncology local app on a Dragen server.

Statistical Analysis

A Yates chi-square test was employed to analyze differences in percentage values of
categorical variables.

A p-value < 0.05 was considered statistically significant.
Data analysis was performed using the MATLAB Statistical Toolbox (The MathWorks,

Inc., Natick, MA, USA).

7. Results

We assessed 29 patients with NSCLC. In 21/29 patients, the lesion was adenocarci-
noma, while 8/29 patients had squamous carcinoma. Tumor lesions were localized in the
peripheral area in 86.2% (25/29 patients), while 4/29 (13.8%) lesions were localized in the
central area.

Figure 1 describes the distribution of the location of tumors and the type of carcinoma.
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Table 1 reports the TNM and stage distribution in our population.

Table 1. TNM and stage distribution.

Value T (No. Patients) N (No. Patients) M (No. Patients) Stage (No. Patients)

0 20 21
1 15 1 8 11
2 7 5 4
3 4 3 6
4 3 8

All the genetic mutations, detected by pathological analysis, were found by liquid
biopsy. There were no false negatives at liquid biopsy compared to pathological analysis.

Table 2 reports the mutations found at pathological analysis: ROS1 and PDL1 muta-
tions were found in 2/29 (at immunocytochemical analysis) patients, while EGFR Exon
21 was identified in a single patient (at RT-PCR analysis). Mutations were observed in the
adenocarcinoma group.

Table 2. Mutations found in pathological analysis.

Mutation Number of Mutations Found in Adenocarcinoma Patients

EGFR Exon 21 1
ROS1 2
ALK 0
PDL1 2

At liquid biopsy, 26 mutations were identified in the analyzed samples. Figure 2
reports the mutation status at liquid biopsy for a single patient.
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Figure 2. Mutation status at liquid biopsy for a single patient (A = adenocarcinoma and S = squamous
carcinoma).

The mutations with the highest prevalence rate in the study populations were:

- ALK (Ile1461Val), found in 28/29 (96.6%) patients;
- EML4 (Lys398Arg), identified in 16/29 (55.2%) patients;
- ALK (Asp1529Glu), found in 14/29 (48.3%) patients;
- EGFR (Arg521Lys), found in 12/29 (41.4%) patients;
- ROS (Lys2228Gln), identified in 11/29 (37.9%) patients;
- ROS (Arg167Gln) and ROS (Ser2229Cys), identified in 10/29 (34.5%) patients;
- ALK (Lys1491Arg) and PIK3CA (Ile391Met), identified in 8/29 (27.6%) patients;
- ROS (Thr145Pro), identified in 6/29 (20.7%) patients;
- ROS (Ser1109Leu), identified in 4/29 (13.8%) patients;
- KRAS (Gly12Cys) was found in 2/29 (6.9%) patients; and
- EGFR (Arg255Gln), EGFR (Val592Ile), EGFR (Ala647Thr), EGFR (Leu858Arg),

ALK (Pro254Thr), ALK (Trp288Ser), ALK (Glu797Lys), PIK3CA (Arg19Ile),
PIK3CA (Arg852Pro), PIK3CA (Met1043Ile), ROS (Glu1902Lys), ROS (Leu567Val),
ROS (Phe1153Leu), and ROS (Trp847Leu) were identified only in one patient.

Table 3 reports the mutation status at liquid biopsy compared, respectively, to T, N, M,
and grading.

No statistically significant differences were observed among the mutation status and
the disease status (p > 0.05, Yates chi-square test).

Figure 3 reports the number of mutated patients compared between the adenocar-
cinoma population and the squamous carcinoma population. No statistically significant
differences were observed in the number of each mutation between the two populations
(p > 0.05, Yates chi-square test, Table 3).
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Table 3. Mutation status at liquid biopsy compared, respectively, to T, N, and M, and to grading.

EGFR KRAS (Gly12Cys)2 ALK EML4 (Lys398Arg)2 PIK3CA ROS

Mutation Status Compared to T Stage

Negative

1 7 14 0 8 10 3
2 3 6 0 2 6 1
3 3 4 0 3 3 2
4 2 3 0 0 1 1

Positive

1 8 1 15 7 5 12
2 4 1 7 5 1 6
3 1 0 4 1 1 2
4 1 0 3 3 2 2

p-Value, Yates’ Chi-Square 0.97 0.83 1.0 0.60 0.92 0.91
Mutation status compared to N stage

Negative

0 11 18 0 9 15 5
1 0 1 0 1 0 0
2 1 5 0 2 4 0
3 3 3 0 1 1 2

Positive

0 9 2 20 11 5 15
1 1 0 1 0 1 1
2 4 0 5 3 2 5
3 0 0 3 2 2 1

p-Value, Yates’ Chi-Square 0.54 0.33 1.0 0.99 0.94 0.57
Mutation status compared to M stage

Negative 0 10 20 0 10 16 4
1 5 7 0 3 4 3

Positive 0 11 1 21 11 5 17
1 3 1 8 5 4 5

p-Value, Yates’ Chi-Square 0.76 0.93 1.0 0.94 0.36 0.58
Mutation status compared to grading

Negative

1 5 11 0 4 9 3
2 2 3 0 4 3 0
3 3 6 0 2 4 1
4 5 7 0 3 4 3

Positive

1 6 0 11 7 2 8
2 2 1 4 0 1 4
3 3 0 6 4 2 5
4 3 1 8 5 4 5

p-Value, Yates’ Chi-Square 0.94 0.91 1.0 0.60 0.77 0.91

EGFR (Arg255Gln), EGFR (Ala647Thr), EGFR (Leu858Arg), KRAS (Gly12Cys), ALK
(Pro254Thr), ALK (Trp288Ser), ALK (Glu797Lys), ROS (Glu1902Lys), PIK3CA (Met1043Ile),
ROS (Leu567Val), and ROS (Phe1153Leu) mutations were present only in patients with
adenocarcinoma.

In the adenocarcinoma group, the main mutations were ALK (Ile1461Val), in 95.24%
of patients, EML4 (Lys398Arg) in 47.62% of the patients, and EGFR (Arg521Lys) and ROS
(Arg167Gln) in 42.86% of the patients (Table 3).

EGFR (Val592Ile), PIK3CA (Arg19Ile), PIK3CA (Arg852Pro), and ROS (Trp847Leu)
mutations were present only in the squamous carcinoma population.

In the squamous carcinoma group, the main mutations were ALK (Ile1461Val), in 100%
of patients, and EML4 (Lys398Arg) in 75% of the patients (Table 4).
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Table 4. Mutation status in adenocarcinoma and squamous carcinoma groups.

Mutation Adenocarcinoma % Squamous Carcinoma % p-Value, Yates’ Chi-Square Test

EGFR (Arg255Gln) 1 4.76 0 0 0.61
EGFR (Arg521Lys) 9 42.86 3 37.5 0.93
EGFR (Val592Ile) 0 0.00 1 12.5 0.61

EGFR (Ala647Thr) 1 4.76 0 0 0.61
EGFR (Leu858Arg) 1 4.76 0 0 0.61
KRAS (Gly12Cys) 2 2 9.52 0 0 0.93
ALK (Asp1529Glu) 8 38.10 6 75 0.17
ALK (Ile1461Val) 20 95.24 8 100 0.66

ALK (Lys1491Arg) 6 28.57 2 25 0.79
ALK (Pro254Thr) 1 4.76 0 0 0.61
ALK (Trp288Ser) 1 4.76 0 0 0.61
ALK (Glu797Lys) 1 4.76 0 0 0.61

EML4 (Lys398Arg)2 10 47.62 6 75 0.36
PIK3CA (Arg19Ile) 0 0.00 1 12.5 0.61

PIK3CA (Ile391Met) 6 28.57 2 25 0.79
PIK3CA (Arg852Pro) 0 0.00 1 12.5 0.61
PIK3CA (Met1043Ile) 1 4.76 0 0 0.61

ROS (Glu1902Lys) 1 4.76 0 0 0.61
ROS (Lys2228Gln) 8 38.10 3 37.5 0.69
ROS (Leu567Val) 1 4.76 0 0 0.61

ROS (Phe1153Leu) 1 4.76 0 0 0.61
ROS (Ser1109Leu) 3 14.29 1 12.5 0.63
ROS (Ser2229Cys) 7 33.33 3 37.5 0.82
ROS (Thr145Pro) 5 23.81 1 12.5 0.87
ROS (Trp847Leu) 0 0.00 1 12.5 0.61
ROS (Arg167Gln) 9 42.86 1 12.5 0.27

Figure 4 shows the CB section of NSCLC adenocarcinoma and the immunocytochem-
istry evaluation.J. Pers. Med. 2022, 12, 1896 11 of 17 
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cable for all patients. Therefore, several liquid biopsy platforms have been established as 
a complementary tool to conventional tissue biopsy and as a feasible means of identifying 
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lege of American Pathologists (CAP)/International Association for the Study of Lung Can-
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tary studies. 

Figure 4. (A) CB section of NSCLC adenocarcinoma (40× magnification, scale bar 50 µm, H/E
staining). (B–D) Immunocytochemistry evaluation: (B) ALK-negative (Clone D5F3), (C) ROS1-
positive (Clone SP384), and (D) PDL1-positive & gt; 50% (Clone SP263) (ICC assay on Ventana
Benchmark XT, 40× magnification, scale bar 50 µm).
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8. Discussion

At present, there are two significant settings in which the liquid biopsy could provide
an improvement to NSCLC patients: at the first molecular diagnosis and at the progression
during targeted therapy [61]. A precise assessment of genetic mutations, at both baseline
and progression, is critical for patient management, and to understand the process that
causes therapies’ resistance [62]. Although repetitive tissue biopsies may represent the
tools to monitor the tumor evolution, the feasibility of these procedures is not applicable
for all patients. Therefore, several liquid biopsy platforms have been established as a
complementary tool to conventional tissue biopsy and as a feasible means of identifying ac-
quired resistance mechanisms [63–68]. Today, liquid biopsy is proposed in the new College
of American Pathologists (CAP)/International Association for the Study of Lung Cancer
(IASLC)/Association for Molecular Pathology (AMP) guideline for molecular testing of pa-
tients with NSCLC [69]. This approach cannot be a substitute of conventional tissue biopsy,
but instead an alternative in cases with insufficient tumor tissue specimens or when a tissue
specimen is not accessible [61]. In addition, circulating biomarkers are hypothetically more
likely to reveal tumor burden and are more useful in representing cancer heterogeneity.
Despite these benefits, there are several issues regarding sensitivity and utility, so due to its
function in clinical settings, these should be evaluated in supplementary studies.

In this ongoing prospective study, at the time of writing, we assessed 29 patients with
NSCLC: 21/29 with adenocarcinoma and 8/29 with squamous carcinoma. Tumor lesions
were localized in the peripheral area in 86.2% (25/29 patients) and in 13.8% (4/29) in the
central area. According to our results, all the genetic mutations detected in pathological
analysis were found by liquid biopsy. There were no false negatives at liquid biopsy
compared to pathological analysis. Although the great reliability of the results obtained
in cytology has already been proven [70,71], we are well-aware that molecular analysis
on cytological samples is not without limitations, as the tumor cell quality, quantity, and
purity can greatly vary from specimen to specimen [72]. Despite this, cytological specimens
are the main samples used for the diagnosis of advanced lung cancer and expression rates
in cytological samples are not statistically different from histological samples [73].

The mutations with the highest prevalence rate in the study populations were: ALK
(Ile1461Val), found in 28/29 patients (96.6%), EML4 (Lys398Arg), identified in 16/29 (55.2%)
patients, ALK (Asp1529Glu), found in 14/29 (48.3%) patients, EGFR (Arg521Lys), found
in 12/29 (41.4%) patients, ROS (Lys2228Gln), identified in 11/29 (37.9%) patients, ROS
(Arg167Gln) and ROS (Ser2229Cys), identified in 10/29 (34.5%) patients, ALK (Lys1491Arg)
and PIK3CA (Ile391Met), identified in 8/29 (27.6%) patients, ROS (Thr145Pro), identi-
fied in 6/29 (20.7%) patients, and ROS (Ser1109Leu), identified in 4/29 (13.8%) patients.
KRAS (Gly12Cys) was found in 2/29 (6.9%) patients, and EGFR (Arg255Gln), EGFR
(Val592Ile), EGFR (Ala647Thr), EGFR (Leu858Arg), ALK (Pro254Thr), ALK (Trp288Ser),
ALK (Glu797Lys), PIK3CA (Arg19Ile), PIK3CA (Arg852Pro), PIK3CA (Met1043Ile), ROS
(Glu1902Lys), ROS (Leu567Val), ROS (Phe1153Leu), and ROS (Trp847Leu) were identified
only in one patient.

These results are similar to the data obtained by Kong et al. [74]. In addition, in
our study, liquid biopsy was able to highlight 26 mutations, with the prevalence of the
ALK (Ile1461Val) mutation in 96.6% of patients. These data disagree with several studies
on conventional biopsy, which confirmed the presence of ALK fusion genes in 2–7% of
NSCLC, arising more commonly in nonsmokers and almost exclusively in tumors of non-
squamous histology, although this result was obtained by liquid biopsy [56]. Regarding the
adenocarcinoma group, the main mutations were ALK (Ile1461Val) in 95.24% of patients,
EML4 (Lys398Arg) in 47.62% of the patients, and EGFR (Arg521Lys) and ROS (Arg167Gln)
in 42.86% of the patients. In the squamous carcinoma group, the main mutations were ALK
(Ile1461Val) in 100% of patients and EML4 (Lys398Arg) in 75% of the patients. The EGFR
(Val592Ile), PIK3CA (Arg19Ile), PIK3CA (Arg852Pro), and ROS (Trp847Leu) mutations
were assessed only in patients with squamous carcinoma. Our results suggested that
liquid biopsy has the ability to offer much of the data needed for clinical application of
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targeted therapy. The discovery of oncogenic driver mutations of the EGFR gene and the
authorization of EGFR inhibitors have modified the therapy in NSCLC [75]. Patients with
EGFR exon 19 deletions or exon 21 L858R mutations are suitable for treatment with afatinib,
gefitinib, dacomitinib, erlotinib, and osimertin [69]. Most of the FDA-approved EGFR
mutation detection tests are based on conventional biopsies. However, several plasma-
based assays have been introduced for providing a non-invasive tool for patients not
suitable for tissue biopsy. Liquid biopsy allows the clinicians to assess therapy effectiveness
and disease progression over time. Liu et al. [75] assessed the blood samples of 24 NSCLC
patients and 6 age-matched healthy donors, comparing the EGFR mutation profile detected
from CTCs and cfDNA to matched tumor tissues. They showed that the results from this
non-invasive EGFR mutation analysis were encouraging, and this combined workflow
could represent a valuable means for informing therapy selection and for monitoring
treatment of patients with NSCLC [75].

We found no statistically significant differences among the mutation status and the
disease status (p > 0.05, Yates chi-square test) and no statistically significant differences
could be observed in the number of each mutation between patients with adenocarcinoma
and patients with squamous carcinoma (p > 0.05, Yates chi-square test), probably due to
the small sample size of the populations. Unlike our results, Van der Linden et al. showed
that by using a variant allele frequency threshold of 1%, somatic variants were detected in
23.5% of patients, with a median variant allele fraction of 3.65%. By using this threshold,
they could discriminate early-stage lung cancer patients from the control group [76].

The detection of cfDNA offers prospects for screening, diagnosis, treatment assessment,
and disease surveillance. Increasing evidence has highlighted the clinical utility of detecting
mutations in cfDNA, and the amount of cfDNA in circulation has been correlated with the
tumor burden [77]. The liquid biopsy offers advantages to the treatment-naive patient by
saving tissue for additional assessment, comprising immunohistochemistry. In addition,
this approach is simple and less expensive, providing intra-tumor heterogeneity and high
sensitivity for detecting tumor burden [77]. However, not all tumors release adequate
quantities of DNA. Treatment-naive patients with indolent, slow-growing tumors could
be at higher risk of false-negative results in plasma compared to patients with a more
disseminated cancer [75].

This study has several limits. Firstly, the small sample size makes accurate comparisons
problematic, and therefore the analysis should be performed with a larger number of
patients to verify and to validate the findings, and this represents a future end-point of
our study. Secondly, the analysis was focused on the first diagnosis, so we had no data
on genetic mutations during progression. Finally, the meanings of the 26 mutations that
we found and what role these might play in patient management were not discussed and
should be explored in future studies.

9. Conclusions

In this ongoing prospective study, we assessed 29 patients with NSCLC: 21/29 with
adenocarcinoma and 8/29 with squamous carcinoma. All the genetic mutations detected
by pathological analysis were found by liquid biopsy. There were no false negatives at
liquid biopsy compared to pathological analysis. In addition, in our study, liquid biopsy
was able to highlight 26 mutations, with the prevalence of the ALK mutation in 96.6% of
patients, supporting the idea that this approach could be an effective tool in cases with
insufficient tumor tissue specimens or in cases where tissue specimens are not obtainable.
Additionally, circulating biomarkers are more likely to reveal tumor burden and are more
useful in representing cancer heterogeneity. Despite these advantages, there are a number
of issues concerning sensitivity and utility and the role of liquid biopsy in clinical settings
that require further investigations.
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