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Abstract: Glaucoma is a neurodegenerative disease that affects primarily the retinal ganglion cells
(RGCs). Increased intraocular pressure (IOP) is one of the major risk factors for glaucoma. The
mainstay of current glaucoma therapy is limited to lowering IOP; however, controlling IOP in certain
patients can be futile in slowing disease progression. The understanding of potential biomolecu-
lar processes that occur in glaucomatous degeneration allows for the development of glaucoma
treatments that modulate the death of RGCs. Neuroprotection is the modification of RGCs and the
microenvironment of neurons to promote neuron survival and function. Numerous studies have
revealed effective neuroprotection modalities in animal models of glaucoma; nevertheless, clinical
translation remains a major challenge. In this review, we select the most clinically relevant treatment
strategies, summarize preclinical and clinical data as well as recent therapeutic advances in IOP-
independent neuroprotection research, and discuss the feasibility and hurdles of each therapeutic
approach based on possible pathogenic mechanisms. We also summarize the potential therapeutic
mechanisms of various agents in neuroprotection related to glutamate excitotoxicity.
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1. Introduction

Glaucoma is one of the leading causes of irreversible blindness worldwide; it is an optic
neuropathy characterized by the progressive loss of the visual field due to the apoptosis of
retinal ganglion cells (RGCs) [1]. It is a multifactorial disease with complex pathogenesis
that is not yet fully understood (Figure 1).

Intraocular pressure (IOP) is one of the most important risk factors for the develop-
ment and progression of glaucoma, and IOP-lowering therapy is widely regarded as the
only effective treatment strategy for slowing down or halting the deterioration of glauco-
matous optic neuropathy. Reductions in IOP can be achieved with medication, laser, or
surgery. Most patients with glaucoma, even after laser or surgical treatment, are treated
with topical ocular hypotensive medications, which work by reducing the production
of aqueous humor or facilitating the trabecular or uveoscleral aqueous outflow. These
anti-glaucoma medications include β-adrenergic antagonists; α2-adrenergic agonists; car-
bonic anhydrase inhibitors; prostaglandin F2a analogs; and, more recently, Rho kinase
inhibitors, latanoprostene bunod, and omidenepag isopropyl. In individuals with normal
tension or high-tension glaucoma, ocular hypotensive medications are useful in delaying
or preventing disease progression [2–4].

Although there are a variety of hypotensive medications and surgical techniques
that can efficiently and effectively lower IOP, IOP reduction is sometimes insufficient to
prevent glaucoma progression. In the Ocular Hypertension Treatment Study, 4.4% of
medicated participants developed glaucoma 5 years after follow-up despite a 22.5% IOP
reduction from an average of 24.9 mmHg to 19.3 mmHg [4]. Disease progression also
occurred in 45% of treated patients who had a 25% IOP reduction from baseline IOP of
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20.6 mmHg in the Early Manifest Glaucoma Trial [3]. Moreover, an even lower IOP does
not preclude the possibility of glaucoma progression, as the Collaborative Normal-Tension
Glaucoma Study revealed that 12% of treated patients experienced disease progression
despite a 30% reduction to an average IOP of 10.6 mmHg during 5.6 years’ follow-up [5]. In
addition, previous evidence has indicated that glaucoma is primarily an optic neuropathy
with the optic nerve head (ONH) being the primary site of the disease [6,7]. As a result,
more and more ophthalmic researchers have paid attention to investigating biomolecular
mechanisms behind neuronal survival and developing further neuroprotective therapies as
a supplement to IOP-lowering treatment.
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Figure 1. Overview of multifactorial mechanisms contributing to the development of glaucomatous
optic neuropathy. CSF, cerebrospinal fluid; IOP, intraocular pressure; LC, lamina cribrosa; NTFs,
neurotrophins; ONH, optic nerve head.

Neuroprotection is a therapeutic approach that aims at preserving neural structure
and function [8]. In glaucoma, neuroprotection refers to non-IOP-related interventions that
can prevent or delay the apoptosis of RGCs independent of IOP [9]. Although it may be
difficult to identify a single causative factor for the development of glaucoma, a reasonable
approach to tackling glaucomatous optic neuropathy remains targeting possible underlying
mechanisms of glaucomatous damage, including the deprivation of neurotrophic factors
(NTFs), the formation of reactive oxygen species (ROS), oxidative stress, glutamate exci-
totoxicity (Figure 2), ischemia, glial activation, and genetic determinants [10]. Therefore,
understanding pathogenic factors in glaucoma may further pave the way to the devel-
opment of more practical neuroprotective methods and subsequent clinical translation.
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potential therapeutic mechanisms of several agents in neuroprotection related to glutamate exci-
totoxicity. The symbol “×” indicates inhibition. BDNF, brain-derived neurotrophic factor; GBE,
ginkgo biloba extract; NMDA, N-methyl-D-aspartate; RGCs, retinal ganglion cells; TrkB, tropomyosin
receptor kinase B.

2. Neurotrophic Factors

Neurotrophic factors exert a variety of actions by binding to specific receptors and
affecting neuron development, survival, and repair via tyrosine kinase signaling [11,12].
Neurotrophic factors are neuroprotective, encouraging axon regeneration and improving
neuronal cell function [13]. Because of their promising outcomes in other neurodegenerative
disorders of the central nervous system [14–16], NTFs are an appealing therapeutic target
to explore in glaucoma.

Several NTFs have been reported to be associated with glaucoma, including nerve
growth factor (NGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor
(CNTF), fibroblast growth factor 2 (bFGF), glial-derived neurotrophic factor (GDNF), and
neurturin [17–21]. These NTFs have been proven in several glaucoma rodent models to be
effective in preventing RGC cell death [17–19,21]. Clinically, topical treatment with NGF
for 3 months was shown to enhance optic nerve functions such as visual field, visual acuity,
and contrast sensitivity in a small case series of patients with advanced glaucoma [19]. Most
recently, a phase 1b clinical trial evaluating the safety and efficacy profiles of recombinant
human NGF eyedrops in glaucoma patients for 8 weeks revealed neither major adverse
events nor statistically significant short-term neuroenhancement in terms of structural
and functional measures [22]. Such inconsistency in the results may be attributed to the
treatment duration as the regeneration of RGCs may need a longer time for observable
neuroprotective effects. Nevertheless, based on the good safety profile demonstrated
by clinical trials, we could still expect a potential neuroprotective effect if the treatment
duration is designed to extend beyond 3 months.

Brain-derived neurotrophic factor enhances RGC survival by activating the extracel-
lular signal-regulated kinases (Erk) Erk1/2 and c-jun, as well as inhibiting caspase 2 [23].
Recently, Cha et al. found that BDNF levels in serum and aqueous humor (AH) were
significantly lower in patients with normal tension glaucoma (NTG) and primary open
angle glaucoma (POAG) [24]. Clinical research conducted by Oddone et al. showed re-
duced serum levels of both BDNF and NGF in patients with early to moderate stages of
glaucoma [20]. Uzel et al. also observed that BDNF in both serum and AH was lower in
POAG patients, and the serum level of BDNF increased significantly three months after
trabeculectomy [25]. These results suggest and reinforce the association between BDNF
and glaucoma and that BDNF may serve as a potential biomarker for glaucoma detection
and disease evaluation. In addition, several prior murine models also demonstrated that
BDNF protects and facilitates RGCs’ survival [26,27]. Most recently, Lazaldin et al. found
that the intravitreal injection of BDNF can hinder RGC death caused by amyloid-β induced
apoptosis in rats [28]. Nevertheless, more efforts are required to reach conclusions about the
causal relationship between BDNF and glaucoma as well as whether the supplementation
of BDNF is effective as a neuroprotective therapy for glaucoma.

The CNTF is expressed locally by RGCs. The concentration of CNTF is reduced in the
AH and lacrimal fluid in patients with POAG [29]. NT-501, a polymeric device containing a
genetically engineered human cell line that secretes CNTF and can be surgically implanted
beneath the pars plana, has been trialed in retinal diseases without obvious treatment
benefits [30,31]. Clinical trials of NT-501-encapsulated cell therapy are currently being
undertaken to explore its therapeutic efficacy in the treatment of glaucoma (Clinical Trials
ID NCT02862938 and NCT04577300).

While studies on NTFs show that they have great potential for neuroprotection, the
challenge of clinical translation remains in how to accomplish effective and sustainable
delivery to the retina. Intravitreal injection is a feasible method of delivering pure recombi-
nant trophic factors to the retina, but in chronic diseases like glaucoma, which may last for
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several decades, this treatment modality may not be pragmatic if the injection has to be
repeated frequently. Therefore, future studies may be directed toward the development of
the sustained release of the intraocular implant containing NTFs or stem cell transplant that
can modulate the levels of NTFs in the microenvironment. Alternatively, external therapies
such as low-level electrical stimulation, in which the electrodes are attached around the
eye and on the retina, can be used to induce local production of NTFs [32–34]. Previous
rodent models have demonstrated the upregulation of CNTF and BDNF after electrical
stimulation [35,36].

3. Ginkgo Biloba

Ginkgo is a traditional medication commonly used in Eastern countries. Modern
research has been conducted to explore the neuroprotective effect of Ginkgo biloba ex-
tract (GBE) in the treatment of glaucoma, and several theories regarding the underlying
mechanisms have been proposed. First, GBE may lead to increased blood flow by altering
the blood viscosity and suppressing platelet-activating factors that can induce platelet
aggregation, neutrophil degranulation, and ROS generation [37–39]. Second, the antiox-
idative capabilities of GBE may be exerted by its component poly-phenolic flavivonoids
via the mechanism of reducing the oxidative stress in the mitochondria and scavenging
free radicals [40–43]. Conflicting clinical results for the effectiveness of GBE have been
reported in some clinical trials. Quaranta et al. reported improvements in preexisting
visual field defects (average baseline mean deviation of 11.40 dB versus 8.78 dB after GBE
treatment, P = 0.0001; average baseline-corrected pattern standard deviation of 10.93 dB
versus 8.13 dB after treatment, P = 0.0001) after one month of 40 mg GBE oral capsule three
times daily in patients with NTG without any topical hypotensive therapy [44]. Long-term
treatment of 80 mg GBE twice daily also significantly slowed the progression of visual field
defects, which improved from the pretreatment regression coefficient of mean deviation
at −0.619 dB to −0.379 dB per year without affecting the IOP in NTG patients who con-
currently used 1 or 2 hypotensive eyedrops [45]. However, a randomized controlled trial
(RCT) revealed no effect of 40 mg GBE tablets three times daily for 4 weeks on visual field
performance in NTG patients with insignificant IOP difference during the study period [46].
Although this RCT followed a similar study design to Quaranta’s, the contradictory re-
sults may be attributed to some factors such as race and disease severity. In addition, the
difference between Lee’s and Guo’s work cannot be compared directly due to different
GBE dosages and treatment duration. Recently, Sabaner et al. demonstrated increased peri-
papillary vessel density on optical coherence tomography (OCT) angiography in healthy
subjects after the four-week consumption of GBE 120mg oral capsule [47]. Because previous
studies have demonstrated a positive correlation between peripapillary vessel density and
visual field performance [48,49], a comprehensive research may be worth conducting to
directly evaluate the changes in both vessel density and visual field in patients treated with
GBE. Whether GBE is effective in the treatment of glaucoma may still need to be justified
with further large clinical trials to identify patient characteristics, disease extent, concurrent
treatments, etc. associated with the beneficial effects of GBE in patients with NTG.

4. Brimonidine

Aside from its well-known effect of decreasing IOP, brimonidine has shown neuro-
protective properties against RGC death in several preclinical studies [50–53]. It has been
shown to increase NTFs and alter N-methyl-D-aspartate (NMDA) receptors involved in
glutamate toxicity [54,55]. It is reported to boost BDNF expression in RGCs, resulting in
a neuroprotective effect [54]. In addition, brimonidine has been shown to exert neuro-
protection by interfering with the amyloid-β pathway and lowering its levels since the
disruption of amyloid precursor protein homeostasis and the subsequent accumulation of
amyloid-β and its cytotoxicity may contribute to the death of the RGCs [56,57]. In clinical
studies, brimonidine monotherapy has been shown to reduce the incidence of visual field
progression compared with timolol in treated individuals (9% versus 30%) in the Low Pres-
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sure Glaucoma Study Group over 30 months, despite identical IOP-lowering effects [58].
However, the study was restricted by high dropout rates of 55% (54/99) in the brimonidine
group and 29% (23/79) in the timolol group, as well as a relatively small sample size
involved in the final analysis [59,60]. Topical brimonidine 0.2% administered over 3 months
was also observed to increase contrast sensitivity; however, treatment with timolol 0.5%
had no benefit, despite identical IOP reduction effects [61]. In addition, Tsai et al. reported
no significant change in retinal nerve fiber layer (RNFL) thickness after the administration
of brimonidine 0.2 % versus a statistically significant decrease in average RNFL thickness
(P = 0.004) from baseline in the timolol 0.5 % group in patients with ocular hypertension
treated for 1 year, despite similar mean IOP reduction in both groups [62]. Overall, these
findings imply that brimonidine has a neuroprotective effect that is not related to IOP and
may be used more widely for its IOP-independent treatment effect in glaucoma.

5. Calcium Channel Blocker (CCB)

Over the past few decades, calcium dysregulation has been regarded as a patho-
physiological component in the degeneration of RGCs [63]. Theoretically, CCBs protect
RGCs by preventing cell death caused by calcium influx and increasing local blood flow
in ischemic tissues by inducing vasodilation [63,64]. A cell culture study by Yamada et al.
demonstrated that CCBs, including iganidipine, nimodipine, and lomerizine, can facilitate
RGC viability to sustain hypoxic damage by blocking calcium ion influx into RGCs [65].
Meanwhile, another in vitro study also showed that nilvadipine may be capable of inhibit-
ing glutamate-induced RGC apoptosis by interfering with calcium influx [66]. An RCT
revealed that in systemically healthy patients with NTG, nilvadipine in a dosage of 2 mg
twice daily may preserve the optic nerve structure as assessed by direct ophthalmoscopy,
improve optic nerve head blood flow, and slow visual field progression compared with the
placebo group [67]. Another member of CCB, brovincamine, has also been shown to be
beneficial in improving visual field results and retarding disease progression in patients
with NTG [68,69]. Recently, Duan et al. reported an improvement in ocular hemody-
namics as well as visual field defects by nimodipine combined with latanoprost in OAG
patients [70]. An increase in superficial macular capillary vessel density was also found in
patients with NTG after consuming sixty mg of nimodipine for three months [71]. Despite
the aforementioned benefits of CCB revealed in these small-scale studies, one should keep
in mind that the influence of vasodilation induced by CCB may not sufficiently explain the
neuroprotective effect because vasodilation may inversely direct blood flow away from the
ischemic tissues and exacerbate the condition [72]. In addition, reduced systemic blood
pressure appears to decrease ONH blood flow and cause further damage to the optic nerve
in patients with glaucoma [73]. As a result, future studies may be directed at evaluating the
optimal dosage and improving the selectiveness of CCB to exert maximal neuroprotection
while minimizing accompanying side effects.

6. Memantine

Glutamate is a neurotransmitter activating proapoptotic cascades via NMDA and
non-NMDA receptors. Increased glutamate level has been thought to be a possible cause of
glaucoma [74]. Memantine is an NMDA receptor antagonist that inhibits excessive gluta-
mate activity, has been studied in experimental models of glaucoma, and has demonstrated
a protective effect on RGC survival and reductions in functional loss [74–77]. Despite
promising results from animal models, a large phase 3 RCT showed that daily treatment of
memantine over 4 years has little impact on delaying visual field progression in patients
with bilateral open-angle glaucoma [78]. Several variables influencing therapeutic effec-
tiveness may be taken into account to explain the discrepancy between animal studies
and clinical trials, including baseline glaucoma severity, trial duration, memantine dosage,
and administration route. In addition, because glaucoma is a multifactorial disease, such
complexity may be impossible to simulate by a single animal model. Additional factors
that could affect the treatment outcome should also be evaluated, including the presence of
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disc hemorrhage, central corneal thickness, etc. Further research may be directed toward
enrolling patients with early-stage glaucoma, a less heterogeneous population in terms of
different glaucoma progression risk factors, longer study duration, and other doses and
methods for medication delivery. Although the clinical study failed to prove the association
between memantine and visual field outcome, studies investigating the changes in RNFL
using OCT and OCT angiography are also warranted as they represent more objective
structural parameters in the assessment and detection of early glaucoma [79,80].

7. Citicoline

Citicoline is a natural compound that participates in the chemical reaction involving
the neurotransmitter acetylcholine and other neuronal membrane components. It is crucial
for preserving the levels of sphingomyelin and cardiolipin in neurons [81]. Citicoline exerts
its neuroprotective effect by reducing glutamate excitotoxicity, lowering oxidative stress in
RGC damage, and improving axonal transport deficit [82,83]. While the axons of RGC in
the retrobulbar space are rich in myelin, citicoline may be a potential treatment option to
modulate RGC viability via phospholipid metabolism in the myelin membrane [84].

In an animal model of glaucoma using adult rats with optic nerve crush, a decrease
in RGC density was attenuated following intraperitoneal citicoline administration, indi-
cating a protective effect against neuronal degeneration [85]. Improvements in pattern
electroretinogram (PERG) and visual evoked potentials (VEP) were demonstrated in an
RCT enrolling participants with POAG following the intramuscular injection of citicoline
1000 mg/day for 60 days [86]. Similar findings were also observed in glaucoma patients
treated with topical citicoline eyedrops [87,88]. A study consisting of 47 POAG patients with
beta-blocker monotherapy revealed that patients treated with topical citicoline (OMK1®,
Omikron Italia, 3 drops/day) over 4 months had improved PERG and VEP, whereas no
significant changes in PERG and VEP were observed in the control group treated with
beta-blocker monotherapy [87]. In addition, 4 cycles of treatment, in which each cycle
contains oral citicoline solution 1 vial (500 mg of citicoline) for 4 months and stopped
for 2 months, were effective in halting visual field progression in 41 patients with POAG
despite well-controlled IOP with hypotensive medications [89]. Recently, an RCT revealed
that the addition of citicoline eyedrops 3 times daily for 3 years in patients with progressing
OAG might be effective in terms of reducing the progression of mean deviation on 10-2
visual field and RNFL thickness [90]. Based on the aforementioned findings, it appears
that citicoline offers great potential as a future therapeutic strategy for glaucoma and other
neurological illnesses. Several trials are currently underway to explore the treatment ef-
fect of citicoline and its related products. (Clinical Trials ID NCT05315206, NCT04499157,
NCT04784234).

8. Antioxidant Q10

Coenzyme Q10 (CoQ10) is an important endogenous antioxidant and electron trans-
port chain component [91]. The intraocular administration of CoQ10 therapies has been
demonstrated to help delay RGC apoptosis and reduce glutamate concentration in a rat
model [92]. A diet containing CoQ10 has also been shown to be neuroprotective against
NMDA-induced retinal damage both in vitro and in mice in vivo [93]. In another mouse
model of glaucoma, a diet supplemented with CoQ10 could reduce glutamate excitotoxicity
and oxidative stress-mediated RGC degeneration and improve RGC survival by 29% [94].
A similar neuroprotective effect was also observed in a rat model given topical CoQ10
and vitamin E treatment for 4 weeks after mechanic optic nerve injury [95]. A small study
conducted by Parisi et al. revealed that in patients with POAG, the administration of
CoQ10 plus vitamin E had a beneficial effect on the inner retinal function and visual cor-
tical responses by using PERG and VEP, respectively [96]. In an RCT containing 64 eyes
with pseudoexfoliative glaucoma, a lower level of superoxide dismutase in the AH was
found in patients treated with topical CoQun solution containing CoQ10 and vitamin
E [97]. Currently, a large multicenter RCT evaluating the neuroprotective effects of CoQun
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eyedrops in addition to prostaglandin monotherapy on glaucoma progression in patients
with POAG is still undergoing (Clinical Trials ID NCT03611530) [98]. As more studies
are being conducted, we can expect the treatment potential of CoQ10 in conjunction with
IOP-lowering medications in the management of glaucoma.

9. Nicotinamide (Vitamin B3)

Nicotinamide, also known as vitamin B3, is a precursor to nicotinamide adenine
dinucleotide (NAD), which is a co-enzyme found in living cells and an essential molecule
for the proper function of the metabolic system. As reduced NAD levels and mitochondrial
dysfunctions are considered to be the hallmarks of the aging process [99], the question
remains whether the repletion of nicotinamide could be beneficial in the treatment of
neurodegenerative diseases including glaucoma. In 2017, Williams et al. first demonstrated
that oral supplementation with high-dose nicotinamide could alleviate the decreased NAD
levels in the retina caused by aging in DBA/2 J mice, a mouse model of age-dependent
inherited glaucoma [100]. In line with the findings of NAD depletion in the murine
model, Nzoughet et al. revealed a reduced plasma level of NAD in patients with POAG
compared with the control group [100,101]. This finding further suggests the potential
role of nicotinamide supplementation in treating human glaucoma. Therefore, to evaluate
the effect of supplementation of nicotinamide in human glaucoma, Hui et al. examined
57 participants with early to moderate glaucoma with well-controlled IOP who received
either oral placebo or nicotinamide at the dosage of 1.5 g/day for 6 weeks and 3 g/day
for another 6 weeks, and all participants crossed over without washout after 12 weeks.
Overall, they found that patients consuming nicotinamide had improved RGC function
as evaluated by ERG, independent of IOP [102]. A recent phase 2 RCT also showed a
greater number of improving visual field test locations and improved rates of change of
pattern standard deviation in patients with treated, moderate open-angle glaucoma taking
a combination of oral nicotinamide and pyruvate [103]. These findings emphasize the
importance of nicotinamide supplementation in glaucoma treatment, and the ongoing
clinical trials examining the long-term effects of high-dose nicotinamide in glaucoma will
be crucial in establishing the therapeutic role of NAM supplementation to slow the loss of
visual field in people with glaucoma. (Clinical Trials ID NCT05275738, NCT05405868).

10. Statins

Statins are medications originally used to treat hypercholesterolemia. Their major
mechanism of action is to block HMG-CoA reductase and hence reduce cholesterol produc-
tion. A recently published meta-analysis of observational studies reported that glaucoma
was linked to high total cholesterol and low high-density lipoprotein levels [104], which
strengthens the importance of blood lipid levels in the treatment of glaucoma. A rat model
of chronic ocular hypertension was used to evaluate the neuroprotective effect of statins
and showed the improved survival of RGCs, reduced apoptosis, and the suppression of
glial activation in the retina in the statins group [105]. One study using confocal scan-
ning laser ophthalmoscopy to measure the rate of progression of optic nerve parameters
in glaucoma suspects taking statin showed a slowed progression of loss of rim volume,
cross-sectional area of RNFL, and mean global RNFL thickness when compared with the
control group [106]. Despite promising preclinical data, Kang et al. found no significant
association between statin use and rates of change in mean deviation and RNFL thickness
in those with glaucoma or glaucoma suspects [107]. The most recent meta-analysis revealed
a slightly lower risk of OAG onset after using statins, whereas the association between
statin use and OAG progression is still uncertain [108]. With the increasing application
of statins in the treatment of cardiovascular and cerebrovascular diseases [109,110], more
preclinical and clinical studies are warranted to elucidate the underlying neuroprotective
mechanisms of statins against glaucomatous optic neuropathy.



J. Pers. Med. 2022, 12, 1884 8 of 14

11. Stem Cell Therapy

Stem cell therapy is gaining in popularity for its potential to treat neurodegenerative
diseases such as glaucoma. In glaucoma, the ultimate goal is to restore vision by the
neuroregeneration of injured or dead RGCs and their axons. Stem cell treatment may be
therapeutic for glaucoma through two different mechanisms: (1) regenerating RGCs and
producing new cells of different kinds. (2) providing a favorable neurotrophic environment
to the damaged RGCs [111,112]. In addition, the RGCs are the ideal target for stem cell
therapy because they have the benefit of being confined to the intraocular spaces and may
be less likely to be affected by immune rejection [113].

Mesenchymal stem cells (MSCs) are multipotent and can differentiate into neurons and
glial cells, support neuronal growth and synaptic connection, induce angiogenesis, modu-
late inflammatory responses, and reduce demyelination and apoptosis, which all contribute
to their neuroprotective and regenerative effects [114]. The transplanted MSCs can secret
various NTFs to promote cell survival, including CNTF (a potent RGC survival factor),
bFGF (a simulator of axonal growth), GDNF, and BDNF [112,115]. Various IOP-dependent
animal models of glaucoma have demonstrated effectiveness in terms of promoting RGC
survival and reducing RGC loss via the intravitreal injection of MSCs [116–120] and pro-
tecting trabecular meshwork tissue via the intracameral injection of MSCs [121]. Recently, a
clinical trial by Vivela et al. reported no significant improvement in visual performance
or ERG in a patient with advanced glaucoma after the intravitreal injection of autologous
bone marrow-derived MSCs. In addition, the development of retinal detachment with
proliferative vitreoretinopathy was noted in another participant [122]. Therefore, despite
successful outcomes shown in animal models, there are still obstacles that can hinder the
clinical translation of stem cell therapy into human application. Particularly, the complexity
of human disease states may not be exactly represented by a controlled experimental envi-
ronment in animal models. Nevertheless, larger clinical trials enrolling more participants
with different disease severity; using different administration routes, i.e., intracamerally
or intravitreally; and following for a longer period of duration are still warranted to fully
elucidate the clinical effectiveness of this treatment modality.

Some safety issues need to be addressed before stem cell therapy could be successfully
used in clinical practice. First, the balance between graft survival and tumorigenesis must
be carefully assessed because the longer the stem cell lasts, the more likely the tumor might
develop. Thus, meticulous laboratory and clinical research will be required to guarantee
that the potential benefit of neuroprotection far outperforms the possible danger of tumor
induction. Second, the implanted cells not only release ideal and desired trophic factors
for supporting RGCs, but they may also secret other agents that could be potentially
detrimental to the microenvironment of RGC [123]. Third, the differences in efficacy among
various animal models for glaucomatous optic neuropathy may need to be justified before
clinical translation. Therefore, more efforts are required before stem cell therapy can become
practical in clinical settings.

12. Gene Therapy

Gene therapy has made remarkable progress in the past few decades. It offers the
potential to help patients with damaged RGCs regain their lost vision. Clinical trials
conducted on patients with congenital retinal diseases such as Leber hereditary optic
neuropathy have shown promising results with direct gene medical application in the
treatment of optic neuropathy [124,125]. However, genetic treatment in the context of
glaucoma remains challenging due to its multifactorial and polygenic properties.

Some animal studies have demonstrated the efficacy of gene therapy in the treatment
of glaucoma. For example, experimental studies conducted by Jain et al. showed that
clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome
editing of myocilin (MYOC)-dominant gain-of-function mutations effectively lowered IOP
and hindered glaucomatous damage by inducing the loss of function of mutant MYOC in a
mouse model of MYOC-associated POAG [126]. Another promising result was shown in a
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recent study using multiple rodent glaucoma models, in which the reactivation of CaMKII
activity via the intravitreal injection of adeno-associated virus (AAV) vectors in diseased
mice protects RGCs and preserves visual function and visually guided behavior [114].
Gene therapy also exerts its neuroprotective effect through encoding NTFs such as BDNF
and CNTF [127,128]. In a rat model of optic nerve injury, Osborne et al. demonstrated
enhancements of RGC survival and no significant adverse effects on the retinal structure
or electrophysiological performance following the intravitreal injection of AAV2 TrkB-2A-
mBDNF [127]. Various gene targets have also been studied in the experimental models of
glaucoma, including BCLXL, NMNAT2, Myc-associated protein X, and XIAP [129–132].

With the advancement of whole-genome sequencing and genome editing technology,
further genes related to the pathogenesis of glaucoma will be able to be discovered and
tested as potential therapeutic targets. While there are still many obstacles to overcome be-
fore glaucoma gene therapy becomes clinically available, the progress in understanding the
genetic etiology of glaucoma and breakthroughs in RGC neuroprotection in various animal
models still hold the potential for leading to a new frontier of gene therapy in glaucoma.

13. Conclusions

Neuroprotection has the potential to play a critical role in glaucoma treatment. Im-
provement in RGCs survival and a decrease in cell death can not only slow disease pro-
gression but even restore visual function through tissue regeneration. Although several
treatment modalities exhibit neuroprotective effects in experimental or clinical studies
regarding glaucoma, only a few of them have resulted in approved therapy clinically, and
the road to glaucoma neuroprotection remains long. Supplementary Table S1 summarizes
the essence of the clinical study of each treatment modality and its implications. Overall,
in clinical scenarios such as patients who are intolerant to hypotensive medications or
unwilling to receive laser or surgical intervention or who have progressive glaucomatous
defect despite well-controlled IOP, supplements such as GBE, citicoline, antioxidant Q10,
and nicotinamide may be considered if they are available and not harmful to the patient’s
health. Brimonidine may also be used at the physician’s discretion. The clinical usage
and effectiveness of CCB, memantine, and statin remain to be justified. Neurotrophic
factors, stem cell therapy, and gene therapy warrant further investigation before they can
be administered to patients. Advancement in the evolution of neuroprotective therapy will
be aided by substantial investment in genetic and biomolecular research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12111884/s1, Table S1: Summary table of the included clini-
cal studies.
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116. Emre, E.; Yüksel, N.; Duruksu, G.; Pirhan, D.; Subaşi, C.; Erman, G.; Karaöz, E. Neuroprotective effects of intravitreally
transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model.
Cytotherapy 2015, 17, 543–559. [CrossRef]

117. Harper, M.M.; Grozdanic, S.D.; Blits, B.; Kuehn, M.H.; Zamzow, D.; Buss, J.E.; Kardon, R.H.; Sakaguchi, D.S. Transplantation of
BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Investig. Ophthalmol. Vis.
Sci. 2011, 52, 4506–4515. [CrossRef]

118. Johnson, T.V.; Bull, N.D.; Hunt, D.P.; Marina, N.; Tomarev, S.I.; Martin, K.R. Neuroprotective effects of intravitreal mesenchymal
stem cell transplantation in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2051–2059. [CrossRef]

119. Mead, B.; Amaral, J.; Tomarev, S. Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Promote Neuroprotection in
Rodent Models of Glaucoma. Investig. Ophthalmol. Vis. Sci. 2018, 59, 702–714. [CrossRef]

120. Wang, Y.; Lv, J.; Huang, C.; Li, X.; Chen, Y.; Wu, W.; Wu, R. Human Umbilical Cord-Mesenchymal Stem Cells Survive and Migrate
within the Vitreous Cavity and Ameliorate Retinal Damage in a Novel Rat Model of Chronic Glaucoma. Stem Cells Int. 2021,
2021, 8852517. [CrossRef]

121. Roubeix, C.; Godefroy, D.; Mias, C.; Sapienza, A.; Riancho, L.; Degardin, J.; Fradot, V.; Ivkovic, I.; Picaud, S.; Sennlaub, F.; et al.
Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal
model of glaucoma. Stem Cell Res. Ther. 2015, 6, 177. [CrossRef]

122. Vilela, C.A.P.; Messias, A.; Calado, R.T.; Siqueira, R.C.; Silva, M.J.L.; Covas, D.T.; Paula, J.S. Retinal function after intravitreal
injection of autologous bone marrow-derived mesenchymal stromal cells in advanced glaucoma. Doc. Ophthalmol. 2021, 143,
33–38. [CrossRef] [PubMed]

123. Greco, S.J.; Rameshwar, P. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative
therapies. Biol. Targets Ther. 2008, 2, 699–705. [CrossRef]

124. Newman, N.J.; Yu-Wai-Man, P.; Carelli, V.; Biousse, V.; Moster, M.L.; Vignal-Clermont, C.; Sergott, R.C.; Klopstock, T.; Sadun, A.A.;
Girmens, J.F.; et al. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the
m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front. Neurol. 2021, 12, 662838. [CrossRef] [PubMed]

125. Wan, X.; Pei, H.; Zhao, M.J.; Yang, S.; Hu, W.K.; He, H.; Ma, S.Q.; Zhang, G.; Dong, X.Y.; Chen, C.; et al. Efficacy and Safety of
rAAV2-ND4 Treatment for Leber’s Hereditary Optic Neuropathy. Sci. Rep. 2016, 6, 21587. [CrossRef]

126. Jain, A.; Zode, G.; Kasetti, R.B.; Ran, F.A.; Yan, W.; Sharma, T.P.; Bugge, K.; Searby, C.C.; Fingert, J.H.; Zhang, F.; et al. CRISPR-
Cas9-based treatment of myocilin-associated glaucoma. Proc. Natl. Acad. Sci. USA 2017, 114, 11199–11204. [CrossRef]

127. Osborne, A.; Khatib, T.Z.; Songra, L.; Barber, A.C.; Hall, K.; Kong, G.Y.X.; Widdowson, P.S.; Martin, K.R. Neuroprotection of
retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic
factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018, 9, 1007. [CrossRef]

128. Pease, M.E.; Zack, D.J.; Berlinicke, C.; Bloom, K.; Cone, F.; Wang, Y.; Klein, R.L.; Hauswirth, W.W.; Quigley, H.A. Effect of CNTF
on retinal ganglion cell survival in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2194–2200. [CrossRef]

129. Donahue, R.J.; Fehrman, R.L.; Gustafson, J.R.; Nickells, R.W. BCLX(L) gene therapy moderates neuropathology in the DBA/2J
mouse model of inherited glaucoma. Cell Death Dis. 2021, 12, 781. [CrossRef]

130. Fang, F.; Zhuang, P.; Feng, X.; Liu, P.; Liu, D.; Huang, H.; Li, L.; Chen, W.; Liu, L.; Sun, Y.; et al. NMNAT2 is downregulated
in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol. Ther. 2022, 30,
1421–1431. [CrossRef]

131. Lani-Louzada, R.; Marra, C.; Dias, M.S.; de Araújo, V.G.; Abreu, C.A.; Ribas, V.T.; Adesse, D.; Allodi, S.; Chiodo, V.; Hauswirth,
W.; et al. Neuroprotective Gene Therapy by Overexpression of the Transcription Factor MAX in Rat Models of Glaucomatous
Neurodegeneration. Investig. Ophthalmol. Vis. Sci. 2022, 63, 5. [CrossRef]

132. Visuvanathan, S.; Baker, A.N.; Lagali, P.S.; Coupland, S.G.; Miller, G.; Hauswirth, W.W.; Tsilfidis, C. XIAP gene therapy effects on
retinal ganglion cell structure and function in a mouse model of glaucoma. Gene Ther. 2022, 29, 147–156. [CrossRef] [PubMed]

http://doi.org/10.1001/jama.2016.15450
http://doi.org/10.1161/STROKEAHA.107.488791
http://doi.org/10.3129/i10-077
http://doi.org/10.1155/2019/8397521
http://www.ncbi.nlm.nih.gov/pubmed/31828134
http://doi.org/10.3390/ijms21217831
http://doi.org/10.1016/j.cell.2021.06.031
http://www.ncbi.nlm.nih.gov/pubmed/34297923
http://doi.org/10.1155/2019/7869130
http://www.ncbi.nlm.nih.gov/pubmed/31949441
http://doi.org/10.1016/j.jcyt.2014.12.005
http://doi.org/10.1167/iovs.11-7346
http://doi.org/10.1167/iovs.09-4509
http://doi.org/10.1167/iovs.17-22855
http://doi.org/10.1155/2021/8852517
http://doi.org/10.1186/s13287-015-0168-0
http://doi.org/10.1007/s10633-021-09817-z
http://www.ncbi.nlm.nih.gov/pubmed/33469852
http://doi.org/10.2147/btt.s2765
http://doi.org/10.3389/fneur.2021.662838
http://www.ncbi.nlm.nih.gov/pubmed/34108929
http://doi.org/10.1038/srep21587
http://doi.org/10.1073/pnas.1706193114
http://doi.org/10.1038/s41419-018-1041-8
http://doi.org/10.1167/iovs.08-3013
http://doi.org/10.1038/s41419-021-04068-x
http://doi.org/10.1016/j.ymthe.2022.01.035
http://doi.org/10.1167/iovs.63.2.5
http://doi.org/10.1038/s41434-021-00281-7
http://www.ncbi.nlm.nih.gov/pubmed/34363035

	Introduction 
	Neurotrophic Factors 
	Ginkgo Biloba 
	Brimonidine 
	Calcium Channel Blocker (CCB) 
	Memantine 
	Citicoline 
	Antioxidant Q10 
	Nicotinamide (Vitamin B3) 
	Statins 
	Stem Cell Therapy 
	Gene Therapy 
	Conclusions 
	References

